Control Statements,
Lists

WTP 2010
Computer Science
Day 3: Wednesday, June 30

Control statements

Affect how other statements are executed.

e Conditionals: control which set of statements is
executed.

- if [else
e Iteration: control how many times a set of
statements is executed.

- while loops
- for loops

Beyond sequential execution

So far, all our programs have looked like this:

<do thing 1> Start with first command.
<do thing 2>

<do thing 3> Execute commands in order
until there are no more.
But often sequential execution is not enough.

if <something>:| If something is true, execute
<do thing 1>

else: the first command. Otherwise,
<do thing 2> | oyecute the second command.

2

The if /else statement

if CONDITION:
BODY1
else:
BODY2 <«

| ——any set of statements

o |f the CONDITION is True, BODY1 gets executed.
« Otherwise, BODY2 gets executed.

if x < 0:
print 'x is negative'
else:
print 'x is positive or zero'

The if statement

”,,————-any boolean expression

if CONDITION:
|, BODY —mo——_ 9" set of statements

; indentation is important

e If the CONDITION is True, the BODY gets executed.
« Otherwise, nothing happens.

if x < 0:
print 'x is negative'

« NOTE: IDLE editor helps with indentation.

Chained conditionals

if CONDITIONI: another boolean expression
BODY1 —

elif CONDITION2:
BODY2

else:

JE—
BODY3 - any set of statements

« If the CONDITION1 is True, BODY1 gets executed.

e Otherwise, if CONDITION2 is True, BODY2 gets
executed.

 If neither condition is True, BODY3 gets executed.

Chained conditionals

if x < 0:

print 'x is negative'
elif x > 0

print 'x is positive'
else:

print 'x must be zero!'

An example

a = False
b = True
if a and b:

print 'I love red.'
elif a or b:
print 'I love green.'
else:
print 'I love blue.'
print 'I also love purple.’

What does this output?

An example

a False
b True
if a and b:

print 'I love red.'
elif a or b:

print 'I love green.'
else:

print 'I love blue.'
print 'I also love purple.’

What does this output?

Nested conditionals

if is_adult:
if is senior citizen:
print 'Admission $2 off.' | innerconditional
else:
print 'Full price.'

outer conditional

else:
print 'Admission $5 off.'

Can get confusing. Indentation helps to keep the
code readable and the python interpreter

happy!

Another example
X =4
y = -3
if x < 0:
if y > 0:
print x + y
else:
print x — y
else:
print x * y

What does this output?

Common if errors

« Syntax errors
— Mixing up = and == in the condition

b = False

if b Fals
prin
[print 'ilside ifj maybe'

SyntaxError: invalid syntax

IndentationError: unindent does not match
any outer indentation level

The while loop

—_any boolean expression

while CONDITION:

> BODYﬁ—-_\\
Q—‘any set of statements
ndentation is important

« As long as the condition is true, the body gets
executed repeatedly.

 The first time the condition is false, execution
ends.

The while loop

i=0

while i < 3:
print i
i=1i+1

What does this output?

Side note: if the condition is false the first time it
is tested, the body is never executed!

The break statement

Immediately exits the innermost loop.

while True:
line = raw_input('>>> ")
if line == 'done':
break
print line
print 'Done!'’

(An if statement is not a loop!)

What will happen with this code?

i=0
while i < 3:
print i

It will loop forever (aka Infinite loop)! How do
we fix it?

The infinite loop

i=4

while i > 0:
print i
i=1i+1

This code also loops forever!
Why? And how do you fix this?

Lists

o A listis a sequence of values.
e Each element (value) is identified by an index.
o The elements of the list can be of any type.

tens = [10, 20, 30, 40]
coins = ['dime', 'nickel', 'quarter', 'penny']
empty = []

e Lists can have mixed types in them, even other
lists (nested).

lmixed = ['hello’, 2.0, 5, [10, 20]]]

Creating alist

» Use the [] brackets

[list_of ints = [10,20,30,50] |

1ist_of_ints[10 |20 [30 [50 |

|

only one name four
int values

Accessing listelements

Individual elements are accessed using the [] operator.

index

Lists are mutable!

list of ints[0] = 17‘ Assigns the first element to 17

i ints[17 |20 [30 |50 s
list_of_ints[17 [20 [0 [s0 | o deing

o 1 2 3 value 17 starts at o, not 1!

new_var = list_of_ints[O]‘*——~____ accesses the value

of the first element
neW_var now also has

' S e
21

List operators

» Applied to lists, produce lists

Operator Operation

+ Concatenation
* Repetition
<list>[] Indexing
<list>[:] Slicing

20

Printing alist

» We can use the print function to output the
contents of the list:

vocabulary = ['ameliorate',6 'castigate', 'defenestrate']

numbers = [17, 123]
empty = []
print vocabulary, numbers, empty

An example

numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
number = numbers[0]
letter = letters[2]

print 'number =', number
print 'letter:', letter

print 'letters:', letters

~N o0 W N

23

22

Another example

numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
mixed = letters + numbers
print mixed

print letters*2

numbers[2] = letters

print numbers

print numbers[:2]
numbers[l:] = [40, 50]
print numbers

O W oUW WN K

24

Out-of-range errors

 You will get a runtime error if you try to access
an element that does not exist!

list_of_ints = [17, 9, 42, -2]
print list_of_ints[4]

O ATIEN R

ist_of_ints[4]
doesn't exist!

IndexError: list index out of range

25

Lists vs. Strings

e Lists are mutable - their contents can be
modified
« Strings are immutable

name = 'Lenny'
name[0] = 'J'

TypeError: object doesn't support item assignment

26

The for loop

Sequence of values — list, string, etc.

sequence element /

for ELEMENT in SEQUENCE:

> BODY <+—0
Qny set of statements
indentation is important

Example:

for i in [0,1,2,3]:
print i

27

Using range

generates sequence of n values

index variable / starting at o and incrementing
\ by 1

for INDEX in range(n):

BODY +—0
‘\any set of statements

for i in range(4):
sq =1i * 1
print i, sq

What does this output?

28

Using range

generates sequence of values

index variable / start and step are optional

for INDEX in range([start], stop, [step]):

BODY +—0
‘\any set of statements

for i in range(l, 7, 2):
print i

What does this output?

29

For loop and strings

e Iterating through the characters of a
string

strl = 'stressed'
for ¢ in strl:
print c,

» Example

strl = 'stressed'

res = "'

for ¢ in strl:
res = ¢ + res

print res

30

For loop and lists

e Iterating through the elements of a list

desserts = [['tiramisu', 3.5], ['baklava', 2], ['creme brulee', 3]]

for [dessert, cost] in desserts:
print dessert, 'costs $', cost

31

must use
new index

variable for
inner loop

Nested for loops

for i in range(1,6): (@)
for ﬁ) in range(l, 6):
prod = i * j
use comma to print all on one line
print prod,
print

What does this output?

33

Combining for and if

for i in range(6):
if i & 2 == 0:
print i, ‘is even.’
else:
print i, ‘is odd.’

What does this output?

32

Common loop errors

¢ Semantic errors

— Forgetting to increment/decrement index
variable

— Incrementing/decrementing in the wrong
direction

— Nested loops: using the same index variable
twice!

35

For vs While

e For loop is primarily used
« for iterating over a sequence of values
» when we know the number of iterations in
advance
» While loop is primarily used

« when we don’t know the number of iterations
in advance (they could be controlled by user
input)

34

Today’s exercises

e Understanding and writing if / else statements
« Understanding and writing while and for loops
e Using lists and for loops

« Practice with debugging loops

o Readings for tomorrow: Sections 3, 6.1-4

36

