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Control Statements,
Lists

Beyond sequential execution
So far% all our programs have looked like this:

But o&en sequential execution is not enough'
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<do thing 1>
<do thing 2>
<do thing 3>
…

Start with first command. 
Execute commands in order 
until there are no more.

if <something>:
  <do thing 1>
else:
  <do thing 2>

If something is true, execute 
the first command. Otherwise, 
execute the second command.

Control statements
A(ect how other statements are executed'

• Conditionals: control which set of statements is 
executed'
) if * else

• Iteration: control how many times a set of 
statements is executed'
) while loops
) for loops
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The if statement

• If the CONDITION is True% the BODY gets executed'
• Otherwise% nothing happens'

• NOTE: IDLE editor helps with indentation'
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if CONDITION:
   BODY

any boolean expression

any set of statements

if x < 0:
   print 'x is negative'

indentation is important

The if/else statement

• If the CONDITION is True% BODY# gets executed'
• Otherwise% BODY! gets executed'
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if CONDITION:
   BODY1
else:
   BODY2

if x < 0:
   print 'x is negative'
else:
   print 'x is positive or zero'

any set of statements

Chained conditionals

• If the CONDITION# is True% BODY# gets executed'
• Otherwise% if CONDITION! is True% BODY! gets 

executed'
• If neither condition is True% BODY$ gets executed'
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if CONDITION1:
   BODY1
elif CONDITION2: 
   BODY2
else:
   BODY3 any set of statements

another boolean expression



Chained conditionals
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if x < 0:
   print 'x is negative'
elif x > 0:
   print 'x is positive'
else:
   print 'x must be zero!'

An example
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a = False
b = True
if a and b:
   print 'I love red.'
elif a or b:
   print 'I love green.'
else:
   print 'I love blue.'
   print 'I also love purple.'

What does this output?

An example
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a = False
b = True
if a and b:
   print 'I love red.'
elif a or b:
   print 'I love green.'
else:
   print 'I love blue.'
print 'I also love purple.'

What does this output?

Nested conditionals

Can get confusing' Indentation helps to keep the 
code readable and the python interpreter 
happy!
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if is_adult:
   if is_senior_citizen:
       print 'Admission $2 off.'
   else:
      print 'Full price.'
else:
   print 'Admission $5 off.'

if is_adult:
   if is_senior_citizen:
       print 'Admission $2 off.'
   else:
      print 'Full price.'
else:
   print 'Admission $5 off.'

if is_adult:
   if is_senior_citizen:
       print 'Admission $2 off.'
   else:
       print 'Full price.'
else:
   print 'Admission $5 off.'

outer conditional
inner conditional

Another example
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What does this output?

x = 4
y = -3
if x < 0:
   if y > 0:
! print x + y
   else:
      print x – y
else:
   print x * y

Common if errors
• Syntax errors
) Mixing up + and ++ in the condition
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b = False
if b = False
   print b
  print 'inside if maybe'

SyntaxError: invalid syntax

IndentationError: unindent does not match 
any outer indentation level



The while loop

• As long as the condition is true% the body gets 
executed repeatedly'

• The ,rst time the condition is false% execution 
ends'
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while CONDITION:
   BODY

any boolean expression

any set of statements
indentation is important

The while loop

What does this output?

Side note: if the condition is false the ,rst time it 
is tested% the body is never executed!
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i = 0
while i < 3:
   print i
   i = i + 1

The break statement
Immediately exits the innermost loop'

-An if statement is not a loop!.
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while True:
   line = raw_input('>>> ')
   if line == 'done':
       break
   print line
print 'Done!'

What'  will happen with this code?

It will loop forever -aka In,nite loop.! How do 
we ,x it?
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i = 0
while i < 3:
   print i

The infinite loop

This code also loops forever!
Why? And how do you ,x this?
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i = 4
while i > 0:
   print i
   i = i + 1
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• A  list is a sequence of values'
• Each element -value. is identi,ed by an index'
• The elements of the list can be of any type'

• Lists can have mixed types in them% even other 
lists -nested.'

Lists

tens = [10, 20, 30, 40]
coins = ['dime', 'nickel', 'quarter', 'penny']
empty = []

mixed = ['hello', 2.0, 5, [10, 20]]
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• Use the /0 brackets

Creating a list

list_of_ints = [10,20,30,50]

list_of_ints 10 20 30 50

four
int values

only one name
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List operators
• Applied to lists% produce lists

Operator Operation
+ Concatenation
* Repetition
<list>[ ] Indexing
<list>[ : ] Slicing
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Individual elements are accessed using the /0 operator'

Accessing list elements

list_of_ints[0] = 17

list_of_ints 17 20 30 50
now has
value #1

Lists are mutable!
Assigns the ,rst element to #1

List indexing 
starts at "% not #!

new_var = list_of_ints[0] accesses the value
of the ,rst element

array_of_ints17 20 30 50

new_var 17 now also has
value #1

index

0   1   2   3
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• We can use the print function to output the 
contents of the list:

Printing a list

vocabulary = ['ameliorate', 'castigate', 'defenestrate']
numbers = [17, 123]
empty = []
print vocabulary, numbers, empty
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An example
numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
number = numbers[0]
letter = letters[2]
print 'number =', number
print 'letter:', letter
print 'letters:', letters

1
2
3
4
5
6
7
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Another example
numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
mixed =  letters + numbers
print mixed
print letters*2 
numbers[2] = letters
print numbers
print numbers[:2]
numbers[1:] = [40, 50]
print numbers

1
2
3
4
5
6
7
8
9

10
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• You will get a runtime error if you try to access 
an element that does not exist!

Out-of-range errors

list_of_ints = [17, 9, 42, -2]
print list_of_ints[4]

list_of_ints 17 42 -3 9

IndexError: list index out of range

list_of_ints[4]
doesn2t exist!

Lists vs. Strings

• Lists are mutable 3 their contents can be 
modi,ed

• Strings are immutable
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name = 'Lenny'
name[0] = 'J'

TypeError: object doesn't support item assignment

The for loop

Example:
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for ELEMENT in SEQUENCE:
   BODY

any set of statements

for i in [0,1,2,3]:
   print i

 sequence element
Sequence of values ) list% string% etc'

indentation is important

Using range

What does this output?
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for i in range(4):
   sq = i * i
   print i, sq

for INDEX in range(n):
   BODY

any set of statements

 index variable
generates sequence of n values
starting at " and incrementing
by # 

Using range

What does this output?
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for i in range(1, 7, 2):
   print i

for INDEX in range([start], stop, [step]):
   BODY

any set of statements

 index variable
generates sequence of values
start and step are optional 

For loop and strings

• Iterating through the characters of a 
string

• Example
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str1 = 'stressed'
for c in str1:
    print c,

str1 = 'stressed'
res = ''
for c in str1:
    res = c + res
print res



For loop and lists

• Iterating through the elements of a list
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desserts = [['tiramisu', 3.5], ['baklava', 2], ['creme brulee', 3]]

for [dessert, cost] in desserts: 
     print dessert, 'costs $', cost

Combining for and if

What does this output?
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for i in range(6):
   if i % 2 == 0:
      print i, ‘is even.’
   else:
      print i, ‘is odd.’

Nested for loops

What does this output?
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for i in range(1,6):
   for j  in range(1, 6):
! prod = i * j
! # use comma to print all on one line
      print prod, 
   print

must use 
new index 
variable for 
inner loop

For vs While

• For loop is primarily used 
• for iterating over a sequence of values
• when we know the number of iterations in 

advance

• While loop is primarily used
• when we don2t know the number of iterations 

in advance -they could be controlled by user 
input.
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Common loop errors

• Semantic errors
) Forgetting to increment*decrement index 

variable
) Incrementing*decrementing in the wrong 

direction
) Nested loops: using the same index variable 

twice!
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Today’s exercises
• Understanding and writing if * else statements

• Understanding and writing while and for loops

• Using lists and for loops

• Practice with debugging loops

• Readings for tomorrow: Sections $% 4'#35
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