
WTP !"#"
Computer Science

Day $: Wednesday% June $"

Control Statements,
Lists

Beyond sequential execution
So far% all our programs have looked like this:

But o&en sequential execution is not enough'

2

<do thing 1>
<do thing 2>
<do thing 3>
…

Start with first command.
Execute commands in order
until there are no more.

if <something>:
 <do thing 1>
else:
 <do thing 2>

If something is true, execute
the first command. Otherwise,
execute the second command.

Control statements
A(ect how other statements are executed'

• Conditionals: control which set of statements is
executed'
) if * else

• Iteration: control how many times a set of
statements is executed'
) while loops
) for loops

3

The if statement

• If the CONDITION is True% the BODY gets executed'
• Otherwise% nothing happens'

• NOTE: IDLE editor helps with indentation'

4

if CONDITION:
 BODY

any boolean expression

any set of statements

if x < 0:
 print 'x is negative'

indentation is important

The if/else statement

• If the CONDITION is True% BODY# gets executed'
• Otherwise% BODY! gets executed'

5

if CONDITION:
 BODY1
else:
 BODY2

if x < 0:
 print 'x is negative'
else:
 print 'x is positive or zero'

any set of statements

Chained conditionals

• If the CONDITION# is True% BODY# gets executed'
• Otherwise% if CONDITION! is True% BODY! gets

executed'
• If neither condition is True% BODY$ gets executed'

6

if CONDITION1:
 BODY1
elif CONDITION2:
 BODY2
else:
 BODY3 any set of statements

another boolean expression

Chained conditionals

7

if x < 0:
 print 'x is negative'
elif x > 0:
 print 'x is positive'
else:
 print 'x must be zero!'

An example

8

a = False
b = True
if a and b:
 print 'I love red.'
elif a or b:
 print 'I love green.'
else:
 print 'I love blue.'
 print 'I also love purple.'

What does this output?

An example

9

a = False
b = True
if a and b:
 print 'I love red.'
elif a or b:
 print 'I love green.'
else:
 print 'I love blue.'
print 'I also love purple.'

What does this output?

Nested conditionals

Can get confusing' Indentation helps to keep the
code readable and the python interpreter
happy!

10

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

outer conditional
inner conditional

Another example

11

What does this output?

x = 4
y = -3
if x < 0:
 if y > 0:
! print x + y
 else:
 print x – y
else:
 print x * y

Common if errors
• Syntax errors
) Mixing up + and ++ in the condition

12

b = False
if b = False
 print b
 print 'inside if maybe'

SyntaxError: invalid syntax

IndentationError: unindent does not match
any outer indentation level

The while loop

• As long as the condition is true% the body gets
executed repeatedly'

• The ,rst time the condition is false% execution
ends'

13

while CONDITION:
 BODY

any boolean expression

any set of statements
indentation is important

The while loop

What does this output?

Side note: if the condition is false the ,rst time it
is tested% the body is never executed!

14

i = 0
while i < 3:
 print i
 i = i + 1

The break statement
Immediately exits the innermost loop'

-An if statement is not a loop!.

15

while True:
 line = raw_input('>>> ')
 if line == 'done':
 break
 print line
print 'Done!'

What' will happen with this code?

It will loop forever -aka In,nite loop.! How do
we ,x it?

16

i = 0
while i < 3:
 print i

The infinite loop

This code also loops forever!
Why? And how do you ,x this?

17

i = 4
while i > 0:
 print i
 i = i + 1

18

• A list is a sequence of values'
• Each element -value. is identi,ed by an index'
• The elements of the list can be of any type'

• Lists can have mixed types in them% even other
lists -nested.'

Lists

tens = [10, 20, 30, 40]
coins = ['dime', 'nickel', 'quarter', 'penny']
empty = []

mixed = ['hello', 2.0, 5, [10, 20]]

19

• Use the /0 brackets

Creating a list

list_of_ints = [10,20,30,50]

list_of_ints 10 20 30 50

four
int values

only one name

20

List operators
• Applied to lists% produce lists

Operator Operation
+ Concatenation
* Repetition
<list>[] Indexing
<list>[:] Slicing

21

Individual elements are accessed using the /0 operator'

Accessing list elements

list_of_ints[0] = 17

list_of_ints 17 20 30 50
now has
value #1

Lists are mutable!
Assigns the ,rst element to #1

List indexing
starts at "% not #!

new_var = list_of_ints[0] accesses the value
of the ,rst element

array_of_ints17 20 30 50

new_var 17 now also has
value #1

index

0 1 2 3

22

• We can use the print function to output the
contents of the list:

Printing a list

vocabulary = ['ameliorate', 'castigate', 'defenestrate']
numbers = [17, 123]
empty = []
print vocabulary, numbers, empty

23

An example
numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
number = numbers[0]
letter = letters[2]
print 'number =', number
print 'letter:', letter
print 'letters:', letters

1
2
3
4
5
6
7

24

Another example
numbers = [10, 20, 30]
letters = ['a', 'b', 'c']
mixed = letters + numbers
print mixed
print letters*2
numbers[2] = letters
print numbers
print numbers[:2]
numbers[1:] = [40, 50]
print numbers

1
2
3
4
5
6
7
8
9

10

25

• You will get a runtime error if you try to access
an element that does not exist!

Out-of-range errors

list_of_ints = [17, 9, 42, -2]
print list_of_ints[4]

list_of_ints 17 42 -3 9

IndexError: list index out of range

list_of_ints[4]
doesn2t exist!

Lists vs. Strings

• Lists are mutable 3 their contents can be
modi,ed

• Strings are immutable

26

name = 'Lenny'
name[0] = 'J'

TypeError: object doesn't support item assignment

The for loop

Example:

27

for ELEMENT in SEQUENCE:
 BODY

any set of statements

for i in [0,1,2,3]:
 print i

 sequence element
Sequence of values) list% string% etc'

indentation is important

Using range

What does this output?
28

for i in range(4):
 sq = i * i
 print i, sq

for INDEX in range(n):
 BODY

any set of statements

 index variable
generates sequence of n values
starting at " and incrementing
by #

Using range

What does this output?
29

for i in range(1, 7, 2):
 print i

for INDEX in range([start], stop, [step]):
 BODY

any set of statements

 index variable
generates sequence of values
start and step are optional

For loop and strings

• Iterating through the characters of a
string

• Example

30

str1 = 'stressed'
for c in str1:
 print c,

str1 = 'stressed'
res = ''
for c in str1:
 res = c + res
print res

For loop and lists

• Iterating through the elements of a list

31

desserts = [['tiramisu', 3.5], ['baklava', 2], ['creme brulee', 3]]

for [dessert, cost] in desserts:
 print dessert, 'costs $', cost

Combining for and if

What does this output?

32

for i in range(6):
 if i % 2 == 0:
 print i, ‘is even.’
 else:
 print i, ‘is odd.’

Nested for loops

What does this output?

33

for i in range(1,6):
 for j in range(1, 6):
! prod = i * j
! # use comma to print all on one line
 print prod,
 print

must use
new index
variable for
inner loop

For vs While

• For loop is primarily used
• for iterating over a sequence of values
• when we know the number of iterations in

advance

• While loop is primarily used
• when we don2t know the number of iterations

in advance -they could be controlled by user
input.

34

Common loop errors

• Semantic errors
) Forgetting to increment*decrement index

variable
) Incrementing*decrementing in the wrong

direction
) Nested loops: using the same index variable

twice!

35

Today’s exercises
• Understanding and writing if * else statements

• Understanding and writing while and for loops

• Using lists and for loops

• Practice with debugging loops

• Readings for tomorrow: Sections $% 4'#35

36

