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Computer Science
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Algorithms A !nite set of precise instructions for accomplishing a 
certain task

• Important characteristics:
" well#de!ned: each step is precise $no ambiguity% 
" correct: must produce the correct&desired output 

value$s%
" !nite: the algorithm runs in !nite time
" general: applicable to all problems of a similar 

form
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What is an algorithm?
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What do we use algorithms for?
• Some example algorithms:

" Searching
• Finding if a certain name is in a list of names'

" Sorting
• Arranging a list words in alphabetical order

" Cryptography
• Sending data safely across the web

" Data Compression
• Fitting as many pictures as possible onto a memory 

card
" Graph problems

• Finding the quickest way from New York to Boston
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Activity

Let(s see who(s the tallest in a group!
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Algorithm descriptions

• English
max$my_list%: )scan each element of my_list from le* to right+ 

keeping track of the largest element  you(ve seen so far and 
return this at the end,

• Python code 

def max(my_list):

max_elt = my_list[0]

for x in my_list:

!   if x > max_elt: 

        max_elt = x

return max_elt
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Search

• Problem: want to !nd a particular element in a 
sequence

• Simplest search algorithm: linear search

• Python code:
def linear_search(my_list, val)

  !for e in my_list:
! !  if e == val: 
        return list.index(e)

!  return None



• What if your data is sorted? Can we do 
better than linear search?

• Let&s look for the value '"

Binary Search
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Binary Search
• Reduce search space by half each time by comparing 

to midpoint value
• Python code

def search(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:       # there is still a range to search
        mid = (low + high)/2 # position of the middle item
        item = nums[mid]
        if x == item:        # found it! return the index
            return mid
        elif x < item:       # x is in lower half of the range
            high = mid - 1
        else:                # x is in upper half of the range
            low = mid + 1
        return -1
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Algorithm Analysis 

• How can you determine if an algorithm is 
e)cient or not?
* Amount of time it takes to run?
* The use of a shared resource?

The actual amount of time that an algorithm 
takes to run +measured in seconds% minutes% 
hours and millennia, depends on the details of 
the computing machine!
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Algorithm Analysis 

• We need a measure that is independent of the 
speci-c machine!

The measure we use in computer science is the 
number of basic operations required to complete 
the algorithm(
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Algorithm Analysis 

If we are using linear search to check whether 
the word .awesome/ appears in a sentence that 
is eight words long then:

0( What is the best1case input?

!( What is the worst1case input?
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Algorithm Analysis 

• Big O notation
* Describes how the time +or space, an 

algorithm takes up increases as the size of 
the input +n, grows(
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Algorithm Analysis 

• How many steps are necessary to -nd what 
we are looking for in the linear search 
algorithm?

def linear_search(my_list, val)

  !for e in my_list:
! !  if e == val: 
        return list.index(e)

!  return None

Linear Search Performance

• How many comparisons?
* If the size of the list is N:

• At most N comparisons

* Worst case running time O+N,

10 40 30 50
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Binary Search Performance

•Each try+ halve the search space
•How many times can we halve n 

numbers until there is only one 
remaining?
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Binary Search Performance
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Exercise

* Sketch the graphs for f+n, 2 log+n, and g
+n, 2 n for n% where "3n30"



Exercise

* Sketch the graphs for g+n, 2 n and h+n, 2 
n/ for n% where "3n30"
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Which search algorithm is better?

•Linear search requires n comparisons
• Binary Search requires log!"n# 

comparisons
 

•But binary search requires the list to be 
sorted '''

27

Sorting

• A sorting algorithm…
" arranges the elements of an input list in a certain order
" helps make other algorithms run more e5ciently and data 

more readable for humans
" outputs a permutation $reordering% of the input 
" no elements lost or added

• Sorting orders:
" Numerical $- 6 / 6 2 '''%
" Alphabetical $a 6 ab 6 b '''%
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Insertion Sort

• Works like inserting a new card into a partially 
sorted hand by bubbling to the le* into the sorted 
sublist

• Demo: http:&&www'iti'fh#7ensburg'de&lang&
algorithmen&sortieren&insert&insertionen'htm
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Insertion Sort

• For each unsorted element of the list+ walk backwards 
$forwards% through the sorted part until you !nd a 
smaller $larger% element; insert at this point

• Python code:
def insertion_sort(a):
 for i in range(1, len(a)-1):

    j = i 
  t = a[i]
  j = i – 1
  while j > 0 and a[j-1] > t:
      a[j] = my_list[j-1]  # shift right
      j -= 1
     a[j] = t   # insert
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Analysis of sorting

• Insertion sort
" For each element+ up to n $technically+ n#-% 

comparisons
" Total of n elements
" Worst#case run time: O$n/%
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Other sorting algorithms

• Selection sort: Scan the list multiple times 
and select the lowest element

• Bubble sort: continually swap values+ so 
that lower elements )bubble, up the list

• Mergesort: divide and conquer!

• Quicksort: randomized version of merge 
sort

Sorting Demo
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See:
http://www.sorting-algorithms.com/

Classes of Algorithms

• Linear Algorithms : O$n%
* Linear in the size of the input

• Logarithmic Algorithms : O$log n%

* Reduces the size of the input by a constant 
factor 4 0

• Quadratic Algorithms : O$n/%
* Have nested loops 
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Sorting before searching?

• Can we sort in sub#linear time?

• Can we sort in linear time? 

• Okay+ how fast we can sort?
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Total time for Linear Search and 
Binary Search

• Linear Search 8 O$n%
• Binary Search 8 O$n logn% 9 O$logn%

•Does that mean linear search is better 
than binary search?
Depends what you are searching for
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Total time for Linear Search and 
Binary Search

• Suppose you are looking for k elements
• Linear Search 8 O$k n%
• Binary Search 8 O$n logn% 9 O$k logn%

For very large k+ we see that binary 
search performs better'



Today’s exercises

• Identifying algorithms

• Practice analyzing algorithms

• Using sorting

• Readings for Monday: Chapter 5('10"% 0"('1#% 00(016
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