Algorithms

WTP 2009
Computer Science
Day os: Friday, July 2

Whatis an algorithm?

A finite set of precise instructions for accomplishing a
certain task

o Important characteristics:
— well-defined: each step is precise (no ambiguity)
— correct: must produce the correct/desired output
value(s)
— finite: the algorithm runs in finite time
— general: applicable to all problems of a similar
form

What do we use algorithms for?

« Some example algorithms:
— Searching
« Finding if a certain name is in a list of names.
- Sorting
« Arranging a list words in alphabetical order
Cryptography
« Sending data safely across the web
Data Compression

« Fitting as many pictures as possible onto a memory
card

Graph problems
« Finding the quickest way from New York to Boston
3

Activity

Let’s see who's the tallest in a group!

[4

_

9
EH
.,

~d

o

Algorithm descriptions

« English
max(my_list): “scan each element of my_list from left to right,
keeping track of the largest element you’ve seen so far and
return this at the end”

e Python code

def max(my_list):
max_elt = my_list[0]
for x in my list:
if x > max_elt:
max_elt = x
return max_elt

Search

o Problem: want to find a particular elementin a
sequence

o Simplest search algorithm: linear search

e Python code:

def linear_search(my_list, val)
for e in my list:
if e == val:
return list.index(e)

return None

Binary Search

o What if your data is sorted? Can we do
better than linear search?

[10 J20 [30 |50 [60 [70 Jeo]
0 1 2 3 4 5 6

e Let’s look for the value 60

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val < my list[hi].

[10 J20 [30 |50 [60 [70 [eo]
0 1 2 3 4 5 6
! !

lo hi

Binary Search

« Invariant. Algorithm maintains
— my list[lo] =val < my list[hi].

[10 J20 [30 |50 [60 [70 Jeo]
0 1 2 3 4 5 6

1 ! |

lo mid hi

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val < my list[hi].

10 |20 |30 |50 (60 [70 |90
6

0 1 2 3 4 5

1 |
1o hi

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val < my list[hi].

10 |20 |30 |50 (60 |70 |90
6

0 1 2 3 4 5

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val =< my list[hi].

1o J20 [30 [50 [60 [70 [90 |
0 1 2 3 4 5 6

|
lo
hi

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val =< my list[hi].

1o J20 [30 [50 [60 [70 [90 |
0 1 2 3 4 5 6

|
lo
hi
mid

Binary Search

« Invariant. Algorithm maintains
— my_list[lo] =val < my list[hi].

1o J20 [30 [50 [60 [70 [90 |
0 1 2 3 4 5 6

|
lo
hi
mid

Binary Search

« Reduce search space by half each time by comparing
to midpoint value

e Python code

def search(x, nums):

low = 0
high = len(nums) - 1
while low <= high: # there is still a range to search
mid = (low + high)/2 # position of the middle item
item = nums[mid]
if x == item: # found it! return the index
return mid
elif x < item: # x is in lower half of the range
high = mid - 1
else: # x is in upper half of the range

low = mid + 1
return -1

Algorithm Analysis

o How can you determine if an algorithm is
efficient or not?
— Amount of time it takes to run?
— The use of a shared resource?

The actual amount of time that an algorithm
takes to run (measured in seconds, minutes,
hours and millennia) depends on the details of
the computing machine!

Algorithm Analysis

» We need a measure that is independent of the
specific machine!

The measure we use in computer science is the
number of basic operations required to complete
the algorithm.

Algorithm Analysis

If we are using linear search to check whether
the word “awesome” appears in a sentence that
is eight words long then:

1. What is the best-case input?

2. What is the worst-case input?

Algorithm Analysis

» Big O notation

— Describes how the time (or space) an
algorithm takes up increases as the size of
the input (n) grows.

Algorithm Analysis

e How many steps are necessary to find what
we are looking for in the linear search
algorithm?

def linear_search(my_list, val)
for e in my_ list:
if e == val:
return list.index(e)
return None

20

Linear Search Performance
[10 J40 [s0 [50 |

 How many comparisons?

— If the size of the list is N:
o At most N comparisons

— Worst case running time O(N)

Binary Search Performance

eEach try, halve the search space

eHow many times can we halve n
numbers until there is only one
remaining?

22

Binary Search Performance

[10 J20 [30 |50 [60 [70 Jeo]

0 1 2 3 4 5 6

List Size Halvings

1 o

2 1

4 2

8 3

16 4

32 5
1,000,000 20

23

Exercise

— Sketch the graphs for f(n) = log(n) and g
(n) = nforn, where o<n<10

Exercise

— Sketch the graphs for g(n) = nand h(n) =
n2for n, where osn<1o

Which search algorithm is better?

eLinear search requires n comparisons
« Binary Search requires log,(n)
comparisons

«But binary search requires the list to be
sorted ...

26

Sorting

e Asorting algorithm...
— arranges the elements of an input list in a certain order

— helps make other algorithms run more efficiently and data
more readable for humans

— outputs a permutation (reordering) of the input
— no elements lost or added

 Sorting orders:
— Numerical (1 <2<3..)
— Alphabetical (a<ab<b..)

27

Insertion Sort

o Works like inserting a new card into a partially
sorted hand by bubbling to the left into the sorted
sublist

e Demo: http://www.iti.fh-flensburg.de/lang/
algorithmen/sortieren/insert/insertionen.htm

28

Insertion Sort

e For each unsorted element of the list, walk backwards
(forwards) through the sorted part until you find a
smaller (larger) element; insert at this point

e Python code:
def insertion_sort(a):
foriin range(1, len(a)-1):
j=i
t=ali]
j=i-1
while j >0 and a[j-1] > t:
a[fj] = my_list[j-1] # shift right
j=1
afj] =t #insert

29

Analysis of sorting

e Insertion sort

— For each element, up to n (technically, n-1)
comparisons

— Total of n elements
— Worst-case run time: O(n32)

30

Other sorting algorithms
« Selection sort: Scan the list multiple times
and select the lowest element

» Bubble sort: continually swap values, so
that lower elements “bubble” up the list

e Mergesort: divide and conquer!

e Quicksort: randomized version of merge

sort
31

Sorting Demo

See:
http://www.sorting-algorithms.com/

32

Classes of Algorithms

e Linear Algorithms : o)
— Linear in the size of the input
e Logarithmic Algorithms : oclog n)

— Reduces the size of the input by a constant
factor > 1

e Quadratic Algorithms : o(n»
— Have nested loops

33

Sorting before searching?

e Can we sort in sub-linear time?
e Can we sort in linear time?

e Okay, how fast we can sort?

34

Total time for Linear Search and
Binary Search

e Linear Search = O(n)
e Binary Search = O(n logn) + O(logn)

e«Does that mean linear search is better
than binary search?

Depends what you are searching for

35

Total time for Linear Search and
Binary Search

 Suppose you are looking for k elements
e Linear Search = O(k n)

e Binary Search = O(n logn) + O(k logn)

For very large k, we see that binary
search performs better.

36

Today’s exercises

« ldentifying algorithms

e Practice analyzing algorithms

« Using sorting

e Readings for Monday: Chapter 8.6-10, 10.6-9, 11.1-4.

37

