
WTP !""#
Computer Science

Day "$: Friday% July  !

Algorithms A !nite set of precise instructions for accomplishing a 
certain task

• Important characteristics:
" well#de!ned: each step is precise $no ambiguity% 
" correct: must produce the correct&desired output 

value$s%
" !nite: the algorithm runs in !nite time
" general: applicable to all problems of a similar 

form

2

What is an algorithm?

3

What do we use algorithms for?
• Some example algorithms:

" Searching
• Finding if a certain name is in a list of names'

" Sorting
• Arranging a list words in alphabetical order

" Cryptography
• Sending data safely across the web

" Data Compression
• Fitting as many pictures as possible onto a memory 

card
" Graph problems

• Finding the quickest way from New York to Boston
4

Activity

Let(s see who(s the tallest in a group!

5

Algorithm descriptions

• English
max$my_list%: )scan each element of my_list from le* to right+ 

keeping track of the largest element  you(ve seen so far and 
return this at the end,

• Python code 

def max(my_list):

max_elt = my_list[0]

for x in my_list:

!   if x > max_elt: 

        max_elt = x

return max_elt

6

Search

• Problem: want to !nd a particular element in a 
sequence

• Simplest search algorithm: linear search

• Python code:
def linear_search(my_list, val)

  !for e in my_list:
! !  if e == val: 
        return list.index(e)

!  return None



• What if your data is sorted? Can we do 
better than linear search?

• Let&s look for the value '"

Binary Search

10 20 30 50 60 70 90
0 1 2 3 4 5 6

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo hi

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo himid

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo hi

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo himid

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo
hi



Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo
hi
mid

Binary Search

• Invariant(  Algorithm maintains 
– my_list[lo] ! val !  my_list[hi].

10 20 30 50 60 70 90
0 1 2 3 4 5 6

lo
hi
mid

Binary Search
• Reduce search space by half each time by comparing 

to midpoint value
• Python code

def search(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:       # there is still a range to search
        mid = (low + high)/2 # position of the middle item
        item = nums[mid]
        if x == item:        # found it! return the index
            return mid
        elif x < item:       # x is in lower half of the range
            high = mid - 1
        else:                # x is in upper half of the range
            low = mid + 1
        return -1

16

Algorithm Analysis 

• How can you determine if an algorithm is 
e)cient or not?
* Amount of time it takes to run?
* The use of a shared resource?

The actual amount of time that an algorithm 
takes to run +measured in seconds% minutes% 
hours and millennia, depends on the details of 
the computing machine!

17

Algorithm Analysis 

• We need a measure that is independent of the 
speci-c machine!

The measure we use in computer science is the 
number of basic operations required to complete 
the algorithm(

18

Algorithm Analysis 

If we are using linear search to check whether 
the word .awesome/ appears in a sentence that 
is eight words long then:

0( What is the best1case input?

!( What is the worst1case input?



19

Algorithm Analysis 

• Big O notation
* Describes how the time +or space, an 

algorithm takes up increases as the size of 
the input +n, grows(

20

Algorithm Analysis 

• How many steps are necessary to -nd what 
we are looking for in the linear search 
algorithm?

def linear_search(my_list, val)

  !for e in my_list:
! !  if e == val: 
        return list.index(e)

!  return None

Linear Search Performance

• How many comparisons?
* If the size of the list is N:

• At most N comparisons

* Worst case running time O+N,

10 40 30 50

22

Binary Search Performance

•Each try+ halve the search space
•How many times can we halve n 

numbers until there is only one 
remaining?

23

Binary Search Performance
10 20 30 50 60 70 90
0 1 2 3 4 5 6

List Size Halvings

- .

/ -

0 /

1 2

-3 0

2/ 4

-+...+... /.

Exercise

* Sketch the graphs for f+n, 2 log+n, and g
+n, 2 n for n% where "3n30"



Exercise

* Sketch the graphs for g+n, 2 n and h+n, 2 
n/ for n% where "3n30"

26

Which search algorithm is better?

•Linear search requires n comparisons
• Binary Search requires log!"n# 

comparisons
 

•But binary search requires the list to be 
sorted '''

27

Sorting

• A sorting algorithm…
" arranges the elements of an input list in a certain order
" helps make other algorithms run more e5ciently and data 

more readable for humans
" outputs a permutation $reordering% of the input 
" no elements lost or added

• Sorting orders:
" Numerical $- 6 / 6 2 '''%
" Alphabetical $a 6 ab 6 b '''%

28

Insertion Sort

• Works like inserting a new card into a partially 
sorted hand by bubbling to the le* into the sorted 
sublist

• Demo: http:&&www'iti'fh#7ensburg'de&lang&
algorithmen&sortieren&insert&insertionen'htm

29

Insertion Sort

• For each unsorted element of the list+ walk backwards 
$forwards% through the sorted part until you !nd a 
smaller $larger% element; insert at this point

• Python code:
def insertion_sort(a):
 for i in range(1, len(a)-1):

    j = i 
  t = a[i]
  j = i – 1
  while j > 0 and a[j-1] > t:
      a[j] = my_list[j-1]  # shift right
      j -= 1
     a[j] = t   # insert

30

Analysis of sorting

• Insertion sort
" For each element+ up to n $technically+ n#-% 

comparisons
" Total of n elements
" Worst#case run time: O$n/%



31

Other sorting algorithms

• Selection sort: Scan the list multiple times 
and select the lowest element

• Bubble sort: continually swap values+ so 
that lower elements )bubble, up the list

• Mergesort: divide and conquer!

• Quicksort: randomized version of merge 
sort

Sorting Demo

32

See:
http://www.sorting-algorithms.com/

Classes of Algorithms

• Linear Algorithms : O$n%
* Linear in the size of the input

• Logarithmic Algorithms : O$log n%

* Reduces the size of the input by a constant 
factor 4 0

• Quadratic Algorithms : O$n/%
* Have nested loops 

33 34

Sorting before searching?

• Can we sort in sub#linear time?

• Can we sort in linear time? 

• Okay+ how fast we can sort?

35

Total time for Linear Search and 
Binary Search

• Linear Search 8 O$n%
• Binary Search 8 O$n logn% 9 O$logn%

•Does that mean linear search is better 
than binary search?
Depends what you are searching for

36

Total time for Linear Search and 
Binary Search

• Suppose you are looking for k elements
• Linear Search 8 O$k n%
• Binary Search 8 O$n logn% 9 O$k logn%

For very large k+ we see that binary 
search performs better'



Today’s exercises

• Identifying algorithms

• Practice analyzing algorithms

• Using sorting

• Readings for Monday: Chapter 5('10"% 0"('1#% 00(016

37


