Sparse Fault-Tolerant BFS Trees

Merav Parter and David Peleg Weizmann Institute Of Science BIU-CS Colloquium

16-01-2014

Breadth First Search (BFS) Trees

- \square Unweighted graph G=(V,E), source vertex $s\in V$.
- ☐ Shortest-Path Tree (BFS) rooted at s.

Sparse solution:

n-1 edges.

Problem:

Not robust against edge and vertex faults.

Fault Tolerant BFS Trees

Objective:

Purchase a

collection of edges

(BFS + backup edges)

that is robust

against edge faults.

Fault-Tolerant BFS Trees

Fault-Tolerant (FT) BFS Trees

Fault Tolerant (FT) BFS Trees

Fault Tolerant (FT) BFS Trees

FT-BFS Tree - Formal Definition

 \square Consider an unweighted graph G=(V,E) and a source vetrex s.

 \square A subgraph H is an FT-BFS of G and s if for every v in V and e in E:

 $d(s,v, H){e} = d(s,v, G){e}$

FT-BFS for Multiple Sources (FT-MBFS)

 \square Consider an unweighted graph G=(V,E) and a source set S in V.

 \square A subgraph H is an FT-MBFS of G if for every s in S, v in V and e in E:

 $d(s,v, H \setminus \{e\}) = d(s,v, G \setminus \{e\})$

The Minimum FT-BFS tree Problem

□ Input: unweighted graph G=(V,E) source vertex s in V.

☐ Output:

An FT-BFS subgraph $H\subseteq G$ with minimum number of edges.

Outline

☐ Related work

□ Lower bound construction

□ Upper bound

☐ Hardness and approximation algorithm.

Related Work

☐ Replacement Path

☐ Fault-Tolerant Spanners

A related problem: the replacement path problem

 $P(s,t,e): s-t \text{ shortest path in } G\setminus\{e\}$

Problem definition:

Given a source s, destination t, for every

 $e \in P(s,t)$, compute P(s,t,e) the shortest s-t path that avoids e.

Trivial algorithm:

For every edge $e \in P(s,t)$, run Dijkstra's algorithm from s in $G\setminus\{e\}$.

Time complexity: O(mn)

The structure of a replacement path

P(s,t,e): s-t shortest path in $G\setminus\{e\}$

The replacement paths problem

Better bounds available for replacement paths problem for

Undirected graphs:

```
Time complexity: O(m+n log n)
[Gupta et al. 1989]
[Hershberger and Suri, 2001]
```

Unweighted directed graphs:

```
Time complexity: O(m\sqrt{n}) (Randomized MonteCarlo algorithm) [Roditty and Zwick 2005]
```

Single-source replacement paths

Problem definition:

Given a source s, compute P(s,t,e) efficiently for each t in V and every $e \in P(s,t)$.

Time complexity: O(nw)

[Grandoni and Williams, FOCS'12]

FT-BFS tree revisited:

An FT-BFS tree H contains the collection of all single source replacement paths.

Complexity measure: size of H (#edges).

Spanners

 \Box Graph G=(V,E)

 \square A subgraph H is an k-spanner if

for every u, v in V:

 $d(u,v,H) \leq k \cdot d(u,v,G)$.

Fault-Tolerant Spanners

```
A subgraph H is an
f-edge fault tolerant k-spanner
if for every u, v in V and every set of
f edges F = \{e_1, e_2, ..., e_f\}:
    d(u,v,H \F) \leq k \cdot d(u,v,G \F).
```

Fault-Tolerant Spanners

 $d(u,v,H \F) \le (2k-1) \cdot d(u,v,G \F)$ for all u,v in V

Robust to f-vertex faults:

Stretch: 2k-1

#edges:

$$\widetilde{O}\left(f^2k^{f+1}\cdot n^{1+\frac{1}{k}}\right)$$
 [Chechik et al., 2009]

$$\tilde{o}\left(f^{2-\frac{1}{k}}\cdot n^{1+\frac{1}{k}}\right)$$
 [Dinitz and Krauthgamer, 2011]

Fault-Tolerant Spanners

 $d(u,v,H \F) \le (2k-1) \cdot d(u,v,G \F)$ for all u,v in V

Robust to f-edge faults:

Stretch: 2k-1

#edges: $O\left(f n^{1+\frac{1}{k}}\right)$ [Chechik et al., 2009]

FT-Spanners vs. FT-BFS trees

FT-Spanners

All-pairs $V \times V$

approximate

FT-BFS tree

Single source $s \times V$

FT-BFS's easier

exact

Outline

☐ Related work

□ Lower bound construction

□ Upper bound

☐ Hardness and approximation algorithm.

Lower Bound

Theorem [Single source]:

For every integer $n \ge 1$, there exists an n-vertex graph G=(V,E) and a source vertex $s \in V$ such that every FT-BFS tree H has $\Omega(n\sqrt{n})$ edges.

Generalization to multiple sources (FT-MBFS)

Theorem [Multiple sources]:

For every integer $n \ge 1$, there exists an n-vertex graph G=(V,E) and a source set $S\subseteq V$ such that every FT-BFS tree H has $\Omega(n\sqrt{|S|}n)$ edges.

The Lower Bound Construction

 \square Complete bipartite graph B(X,Z):

$$|X| = \Omega(n), |Z| = \Omega(\sqrt{n})$$

- \square Path of length |Z|
- \square Collection of |Z| paths which are
- Vertex disjoint
- of monotone increasing lengths.

The Construction

The Construction

The Construction

 $\Omega(\sqrt{n})$ $d(s,x_j, H \setminus \{f_i\}) > d(s,x_j, G \setminus \{f_i\})$ Contradiction since H is an FT-BFS tree. $\Omega(n\sqrt{n})$ edges

Outline

☐ Related work

□ Lower bound construction

□ Upper bound

☐ Hardness and approximation algorithm.

Matching Upper Bound

Theorem:

For every graph G=(V,E) and every source $s \in V$ there exists a (polynomially constructible) FT-BFS tree H with $O(n\sqrt{n})$ edges.

<u>Input</u>: unweighted graph G=(V,E), source vertex s.

Output: FT-BFS tree $H \subseteq G$.

* Assume that all shortest paths in G are unique.

$$\Box$$
 T₀ := BFS(s, G)

$$\Box T_e := BFS(s, G \setminus \{e\})$$

$$H = T_0 \cup \{T_e \mid e \in T_0\}$$

$$\Box$$
 T₀ := BFS(s, G)

$$\Box T_e := BFS(s, G \setminus \{e\})$$

$$\Box$$
 T₀ := BFS(s, G)

$$\Box T_e := BFS(s, G \setminus \{e\})$$

$$\Box$$
 T₀ := BFS(s, G)

$$\Box T_e := BFS(s, G \setminus \{e\})$$

$$\Box T_0 := BFS(s, G)$$

$$\Box T_e := BFS(s, G \setminus \{e\})$$

Correctness

Recall: P(s,t,e) is the s-t shortest path in $G\setminus\{e\}$.

H contains the collection of all single source replacement paths.

The replacement path $P(s, v_5, e_1)$ is the s-t path in T_{e1} =BFS(s, $G\setminus\{e_1\}$).

An edge e in H is new if it is not in T_0 .

Lemma:

Every vertex t has at most $O(\sqrt{n})$ new edges in H.

 $\pi(s,t,T)$: s-t path in tree T

New(t) ={ Last edge of $\pi(s,t,T_e)$, $e \in T_0$ } \ T_0

$$H = T_0 \cup \{New(t), t \in V\}$$

$$H = T_0 \cup \{T_e \mid e \in T_0\}$$

Size Analysis - First Bound

 $\pi(s,t,T)$: s-t path in tree T

New(t) ={ Last edge of $\pi(s,t,Te)$, $e \in T_0$ } \ T_0

 $|C|. 1: |New(t)| \leq dist(s,t,G)$

Proof:

If last edge of $\pi(s,t,T_e)$

is new then $e \in \pi(s,t,T_0)$

Size Analysis - Second Bound

 $\pi(s,t,T)$: s-t path in tree T

New(t) ={ Last edge of $\pi(s,t,T_e)$, $e \in T_0$ } \ T_0

|Cl. 2: | New(t)| $\leq \sqrt{2n}$

Size Analysis - Second Bound

$$\pi(s,t,T)$$
: s-t path in tree T

New(t) ={ Last edge of
$$\pi(s,t,T_e)$$
, $e \in T_0$ } \ T_0

A replacement path P(s,t,e) whose last edge is new

Count the number of new ending paths.

New Ending Replacement Paths

P(s,t,e) is the s-t path in $T_e=BFS(s, G\setminus\{e\})$.

Non-New Ending Path

New Ending Path

Analysis - Second Bound

Strategy: Count the number of new ending paths.

Consider the set of L new ending replacement paths

$$P_1=P(s,t,e_1), P_2=P(s,t,e_2), ..., P_L=P(s,t,e_L)$$

where each P_i ends with a *distinct* new edge of t.

Show that
$$L \leq \sqrt{2n}$$

The structure of a new ending replacement path

Lemma:

The detour segment is edge disjoint from P(s,t)

Cl. 1: The detour segment is edge disjoint from P(s,t)

By Contradiction:

There are two v-t shortest paths in $G\setminus\{e\}$.

Contradiction!

Claim 2: the detours are vertex disjoint!

$$P(s,t,e_1)$$

$$P(s,t,e_2)$$

$$P(s,t,e_2)$$

$$P(s,t)$$

New Ending Replacement Path

Notation:

```
b_i:= unique divergence point of P(s,t,e_i) and P(s,t).
```

 D_i :=detour segment of $P(s,t,e_i)$.

Set of new ending replacement paths P_1 , P_2 , ..., P_L .

$$d(s, b_1) \ge d(s, b_2) \ge ... d(s, b_L)$$

The divergence points bi are distinct!

$$d(s, b_1)>d(s, b_2)> ...>d(s, b_L)$$

Set of new ending replacement paths P_1 , P_2 ,, P_L .

- \square Towards contradiction assume $\bot > \sqrt{2n}$
- ☐ The total #vertices in the detours is:

$$|\bigcup_{i=1}^{L} D_i| = \sum_{i=1}^{L} |D_i| \ge \sum_{i=1}^{L} i > L^2 > n$$

Detours are vertex disjoint

Contradiction!

Divergence points are distinct

Generalization to multiple sources (FT-MBFS)

Theorem [upper bound]

For every graph G=(V,E) and every source set $S\subseteq V$ there exists a (polynomially constructible)

FT-MBFS tree H with $O(n \sqrt{|S|} n)$ edges.

Outline

☐ Related work

□ Lower bound construction

☐ Upper bound

☐ Hardness and approximation algorithm.

The Minimum FT-BFS tree Problem

Theorem [Hardness]

The Minimum FT-BFS problem is NP-hard and cannot be approximated to within a factor of $\Omega(\log n)$ unless NP \subseteq TIME $(n^{\text{ploylog}(n)})$.

(By a gap preserving reduction from Set-Cover)

The Minimum FT-BFS tree Problem

Theorem [Approximation]

The Minimum FT-BFS problem can be approximated within a factor of $O(\log n)$.

O(log n) Approximation algorithm for the Min-FT BFS problem

- \square Solve n-1 instances of Set-Cover.
- ☐ A Set-Cover instance of vertex t:
- \Box Universe of vertex t: $U_t = E(P(s,t))$

Every neighbor v of t is a set S_{vt}:

 $e \in P(s,t)$ is in the set S_{vt} if

 $dist(s, t, G\setminus\{e\})=dist(s, v, G\setminus\{e\})+1$

Summary

- \square FT-BFS with $O(n \sqrt{n})$ edges (tight!).
- \square FT-MBFS (5 sources) with $O(n\sqrt{|S|}n)$ edges
- (tight!).
- ☐ The Minimum FT-MBFS problem is NP-hard.
 - \square O(log n)-approximation (tight!).

What about approximate FT-BFS structure?

☐ Multiplicative stretch = 3:

Upper bound: 4n edges.

 \square Additive stretch β :

Lower bound: $\Omega(n^{1+\epsilon_{\beta}})$ edges.

P, Peleg, SODA'14

Thanks! Happy Tu-bishvat!

