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Breadth First Search (BFS) Trees

d Unweighted graph G6=(V,E), source vertex seV.
A Shortest-Path Tree (BFS) rooted at s.

Sparse solution: R
n-1 edges.
Vi V2
Problem:
Not robust against edge V3 Va4

and vertex faults.



Fault Tolerant BFS Trees

Objective:
Purchase a

collection of edges
(BFS + backup edges)
that is robust

against edge faults.




Fault-Tolerant BFS Trees

Subgraph H that contains a BFS tree in G\{e}
for every edge failure e in G.
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Fault Tolerant (FT) BFS Trees

Subgraph H that contains a BFS tree in G\{e}
for every edge failure e in G.




FT-BFS Tree - Formal Definition

O Consider an unweighted graph 6=(V,E)
and a source vetrex s.

d A subgraph H is an FT-BFS of G and s if
for every vinV and e in E:

d(s,v, H\{e}) = d(s,v, 6\{e})



FT-BFS for Multiple Sources (FT-MBFS)

O Consider an unweighted graph 6=(V,E)
and a source set S in V.

d A subgraph H is an FT-MBFS of G if for
everysin S, vinV and e in E:

d(s,v, H \{e}) = d(s,v, 6\{e})



The Minimum FT-BFS tree Problem

O Input: unweighted graph G=(V, E)
source vertex s in V.

d Output:

An FT-BFS subgraph H= G with
minimum number of edges.




[ Related work
1 Lower bound construction
 Upper bound

1 Hardness and approximation algorithm.



Related Work

1 Replacement Path

d Fault-Tolerant Spanners



A related problem:

the replacement path
P(s,t,e) : s-1 shortest path in G\{e}

Problem definition:
Given a source s, destination 7, for every

e ¢ P(s,t) , compute P(s,t,e) the shortest s-t path

that avoids e.

Trivial algorithm: [
For every edge e ¢ P(s,t), run Dijkstra's algorithm ‘s
from s in G\{e}. ‘

Time complexity: O(mn)



The structure of a replacement path

P(s,t,e) : s-1 shortest path in G\{e}

>\ N Detour




The replacement paths problem

Better bounds available for replacement paths problem for

Undirected graphs:
Time complexity: O(m+n log n)
[Gupta et al. 1989]
[Hershberger and Suri, 2001]

Unweighted directed graphs:
Time complexity: O(my/n ) (Randomized MonteCarlo algorithm)
[Roditty and Zwick 2005]



Single-source replacement paths

Problem definition:
Given a source s, compute P(s,t,e) efficiently for
each t in V and every e ¢ P(s,t).

Time complexity: O(n+)
[Grandoni and Williams, FOCS'12]

FT-BFS tree revisited:

An FT-BFS tree H contains the collection of al

single source replacement paths. ?—?
New!

Complexity measure: size of H (#edges).




Spanners

d Graph G=(V,E)

d A subgraph H is an k -spanner if

for every u,v in V:

d(u,v,H) < k -d(u,v,6).



Fault-Tolerant Spanners

A subgraph H is an

f-edge fault tolerant k-spanner

if for every u,v in V and every set of
f edges F={e;,e,, ...,.es}:

d(u,v,H \F) <k -d(u,v,G\F).



Fault-Tolerant Spanners

d(u,v,H \F) < (2k—1) -d(u,v,6\F) forallu,vinV
Robust to f-vertex faults:

Stretch: 2k-1
H#edges:

0 (f21/+1 . n1*%) [Chechik et al., 2009]
0 (fz_%- n“%) [Dinitz and Krauthgamer, 2011]



Fault-Tolerant Spanners

d(u,v,H \F) < (2k—1) -d(u,v,6\F) forallu,vinV

Robust to f-edge faults:

Stretch: 2k-1

#edges: 0 (f n”i) [Chechik et al., 2009]



FT-Spanners vs. FT-BFS trees

FT-Spanners | FT-BFS tree

4 N 4 N

All-pairs Single source — FT-BFS's
Vxv . sxV easier

4 N 4 N

approximate exact :> FT-BFS's
N y N y harder




u
J Lower bound construction
 Upper bound

1 Hardness and approximation algorithm.



Theorem [Single source]:

For every integer n> 1, there exists an n-vertex
graph G=(V,E) and a source vertex s ¢ V such that
every FT-BFS tree H has 2(n+/n) edges.



Generalization to multiple sources (FT-MBFS)

Theorem [Multiple sources]:

For every integer n> 1, there exists an n-vertex
graph G=(V,E) and a source set S&V such that

every FT-BFS tree H has 2(n./|S| n) edges.



The Lower Bound Construction

d Complete bipartite graph B(X,Z): Q&S&

IX|=02(n), |Z]=02(/n) Ay
/e — |Z]
’ 7 7
Q Path of length |Z]| "
/ , 7 o ~
0 Collection of |Z| /7 / -
: / /
paths which are /¢ 7
- Vertex disjoint /4 ) !
- of monotone " [ /
increasing lengths. I d
[ ! I’ ]
\ S -
S o o :f -



The Construction

Total number of vertices: n

2(y/n) vertex disjoint paths ,
of increasing length J/

contain 2(n) vertices. /

Total number of
edges: 2(nyn)




The Construction

Cl. : Every FT-BFS tree H must contain ALL I
the edges of the bipartite graph.

*
Rl
e -
O By contradiction: REN g
/s
. .
Assume there existsan ' 7 .~
V4 p 4 Y
edge e,  thatisnotinH' ;, / /
. ! ¢t
Y
A
d Consider the case | ! . ‘
R ( ™
where f, fails. o ¢ o
: . |\ RO l, g1
R N L TSt 02(ny/n)
\ \-_-_—— —’



The Construction

d(s.x;, H \{f}) >d(s.x;, 6\{f})

Contradiction ’
) ) P
since H is an //
FT-BFS tree. K -
v 4
'I' V4
Y 4
ll, ! /
.' | /
\ \
\\ \
T
~
\,‘\
~




J
J
 Upper bound

1 Hardness and approximation algorithm.



Matching Upper Bound

Theorem:

For every graph G=(V,E) and every source s ¢ V
there exists a (polynomially constructible)
FT-BFS tree H with O(n/n) edges.



Algorithm for constructing FT-BFS

Input: unweighted graph G=(V,E), source vertex s.
Output: FT-BFS tree H < 6.

* Assume that all shortest paths in & are unigue.

ad T,:= BFS(s, 6)

AT, :=BFS(s, 6 \{e})

V3

H :TOU{Te ‘eETo} “



Algorithm for constructing FT-BFS
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Algorithm for constructing FT-BFS

d T, := BFS(s, 6)

AT, := BFS(s, 6 \{e})




Correctness

Recall: P(s,t,e) is the s-t shortest path in G\{e}.

H contains the collection of all
single source replacement paths. T

The replacement path
P(s,vs,eq) is the s-t path in
TelzBFS(S, 6\{61})




Size Analysis - Basic Intuition

An edge e in H is new if it is not in T,.

Lemma:
Every vertex t has at most

0 (y¥/n) new edges in H.




Size Analysis - Basic Intuition

n(s,t,T): s-1 path in tree T

New(t) ={ Last edge of n(s,t,T,) ,e e Tp} \T,

H =T, U{New(t),t eV}




Size Analysis - First Bound
n(s,t,T): s-1 path in tree T

New(t) ={ Last edge of m(s,t,Te) ,e € Ty} \T,

Cl.1: | New(t)| < dist(s,t,6)

Proof:
If last edge of m(s,t,T,)

is new thene e n(s,t,T,)




Size Analysis - Second Bound
n(s,t,T): s-1 path in tree T
New(t) ={ Last edge of n(s,t,T,) ,e e Tp} \T,

Cl. 2: | New(t)| <+/2n




Size Analysis - Second Bound
n(s,t,T): s-1 path in tree T
New(t) ={ Last edge of n(s,t,T,) ,e e Tp} \T,

/

A replacement path
P(s,t,e) whose
last edge is new

‘Coun’r the number of new ending paths.



New Ending Replacement Paths

P(s,t,e) is the s-1 path in T_=BFS(s, G\{e}).

P(s. 1) I P(s,t)
I
l N
i,’ e /l
d
P(s,t,e) Z P(s.t.e)

Non-New Ending Path  New Ending Path



Analysis - Second Bound

Strategy: Count the number of new ending paths.

Consider the set of L new ending replacement paths
P,=P(s,t,e;), P,=P(s,t,e,) , ..., P.=P(s,1,e)

where each P; ends with a distinct new edge of t.

Show that L</2n



The structure of a new ending replacement path

Divergencepoint

N Detour

TO: BFS 3 ,G)

Lemma:
The detour segment is edge disjoint from P(s,t)



Analysis - Basic Intuition

Cl. 1. The detour segment is edge disjoint from P(s, )

P(s.t)
By Contradiction: e \l P(s,t.e)
/
There are two .
v-1 shortest > v
paths in G\{e}. =

Contradictionl! New edge



Analysis - Basic Intuition

Claim 2:
The detour segments
are vertex disjoint!

e,
|
P(s.t.e)

New edge #O\



Analysis - Basic Intuition
Claim 2: the detours are vertex disjoint!

there are two
v-1 shortest
® pathsin 6\ (e, e,).




New Ending Replacement Path

Notation:

b.:= unique divergence point
of P(s,t,e;) and P(s,1).
D;:=detour segment of P(s,t,e;).




Analysis - Basic Intuition

Set of new ending replacement paths P;, P, , ..., P..

d(s, b;) = d(s, b,) =>... d(s, b))

The divergence points b,
are distinct!

d(s, b,)>d (s, b,)> .. >d(s, b,)

- = bL
/
/ —
{ /’ b,
1 [/
L _
11 7 bs
1l ll»- b,
\I
‘\\\\ f b,
\\\\\\
SR



Analysis - Basic Intuition

Set of new ending replacement paths P, P, , ..., P..

J Towards contradiction assume L > /2n

(d The total #vertices in the detours is:

L — \'L L -
|Uic1 D;| = 2icqlDil 2 2iq 0> L2 > n
A
Detours are Divergence [
vertex disjoint  points are | > i
L, are distinct
Contradiction! ‘o



Generalization to multiple sources (FT-MBFS)

Theorem [upper bound]
For every graph 6=(V,E) and every source set S&V

there exists a (polynomially constructible)

FT-MBFS tree H with O(n./|S| n) edges.



1 Related work
1 Lower bound construction
L Upper bound

1 Hardness and approximation algorithm.



The Minimum FT-BFS tree Problem

Theorem [Hardness]

The Minimum FT-BFS problem is NP-hard and cannot

be approximated to within a factor of ((log n) unless
NPCTIME (nploviogm).

(By a gap preserving reduction from Set-Cover)



The Minimum FT-BFS tree Problem

Theorem [Approximation]

The Minimum FT-BFS problem can be approximated
within a factor of O(log n) .



O(log n) Approximation algorithm for

the Min-FT BFS problem

 Solve n-1 instances of Set-Cover.

0 A Set-Cover instance of vertex t: P(s. 1)

d Universe of vertex t: U,= E(P(s,1)) e, >
€2

Every neighbor v of tis aset S,:

e € P(s,1t)is in the set S, if

dist(s, t, 6\{e})=dist(s,v, 6\{e})+1 ex



d FT-BFS with O(n+/ n) edges (tight!).

O FT-MBFS (S sources) with O(n ,/|S| n) edges
(tight!).

1 The Minimum FT-MBFS problem is NP-hard.

d O(log n)-approximation (tightl).



What about approximate FT-BFS structure?

O Multiplicative stretch =3:
Upper bound: 4n edges.

3 Additive stretch p:
Lower bound: 2(n'") edges.

P, Peleg, SODA'14



Thanks
Happy Tu-bishvat!
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