
Near-Optimal Distributed Algorithms for
Fault-Tolerant Tree Structures

Mohsen Ghaffari
MIT

ghaffari@mit.edu

Merav Parter
MIT

parter@mit.edu

ABSTRACT
Tree structures such as breadth-first search (BFS) trees and
minimum spanning trees (MST) are among the most funda-
mental graph structures in distributed network algorithms.
However, by definition, these structures are not robust against
failures and even a single edge’s removal can disrupt their
functionality. A well-studied concept which attempts to cir-
cumvent this issue is Fault-Tolerant Tree Structures, where
the tree gets augmented with additional edges from the net-
work so that the functionality of the structure is maintained
even when an edge fails. These structures, or other equiv-
alent formulations, have been studied extensively from a
centralized viewpoint [PP13, NSW97, CP10, GW12]. How-
ever, despite the fact that the main motivations come from
distributed networks, their distributed construction has not
been addressed before.

In this paper, we present distributed algorithms for con-
structing fault tolerant BFS and MST structures. The time
complexity of our algorithms are nearly optimal in the fol-
lowing strong sense: they almost match even the lower bounds
of constructing (basic) BFS and MST trees.

1. INTRODUCTION
Fault-Tolerant Tree Structures are well-studied concepts

that attempt to add failure resilience to standard spanning
tree structures. Spanning trees are among the most basic
infrastructures used for communication in distributed net-
works. Two key examples are BFS and MST: Breadth First
Search (BFS) trees are the main backbone in many commu-
nication tasks such as broadcast and routing as they provide
the shallowest possible tree and shortest source-wise paths;
Minimum Spanning Trees (MST) gets used because they
provide the cheapest structure that keeps the graph con-
nected. A downside of spanning trees is their sensitivity to
faults, because even the failure of a single link disconnects

The research in this work was partially funded by the
following grants: AFOSR FA9550-13-1-0042, NSF CCF-
1461559, CCF-1217506, CCF-0939370.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935795

the tree, which may lead to a complete loss of functionality.
As the vertices and edges of the network may occasionally
fail or malfunction, it is desirable to make these tree struc-
tures robust to failures.

A Fault-Tolerant (FT) Tree Structure augments the tree
with additional edges from the base graph G in a way that
provides it some redundancy and flexibility. As this aug-
mentation carries certain costs, it is desirable to minimize
the number of added edges. The motivation for this arises
in settings where the graph edges represent the channels of a
communication network, and the system designer would like
to purchase or lease a minimal collection of channels (i.e.,
a subgraph G′ ⊆ G) that maintain its functionality under
faults. Another motivation for pre-computing fault tolerant
tree structures arises in scenarios of transient edge failures:
here, re-computing the structure after each failure is ineffi-
cient, as the failures are temporary, and instead one has to
be prepared for each single edge’s removal.

Indeed, time-efficient constructions of sparse FT tree struc-
tures have been studied extensively in the centralized setting
for various notions of trees, see e.g., [NSW97,GW12,PP13,
BK13,PP14,BGLP14]. Yet, albeit the fact that the key mo-
tivations come from distributed networks and these struc-
tures can be considered as reliable skeletons for distributed
communication, their distributed construction has not been
studied thoroughly before. In this paper, our objective is
to provide fast distributed constructions of sparse FT tree
structures. We next formalize this:

Model: We work with the standard distributed message
passing model called CONGEST [Pel00]: communications
occur in synchronous rounds; per round O(logn) bits can
be sent along each link.

Problem Definitions: We focus on two fundamental tree
structures, BFS and MST. The fault tolerant analogues of
these structures are defined as follows: A fault-tolerant BFS
(FT-BFS) structure is a sparse subgraph H of the given
network G and a source node s that contains a BFS rooted
at s in G \ {e} for every failing of the edge e ∈ G. Thus,
subsequent to the failure of a single edge e ∈ G, the surviv-
ing part H \ {e} of H still contains a BFS tree of G \ {e}.
Moreover, H preserves the source-wise distances as in the
original graph G following the failing of a single edge. Sim-
ilarly, a fault-tolerant MST (FT-MST) structure is a sparse
subgraph H of the given network G that contains an MST
in G \ {e} for every failing of the edge e ∈ G. Given these
definitions, our problems boil down to the following:

http://dx.doi.org/10.1145/2935764.2935795

Core Problem: Distributedly construct BFS trees (or
MST trees) of graphs G \ {e} for all e ∈ G.

Although this specification suggests we need to compute m
trees, where m is the number of edges of G, in reality we
just need to compute n (potentially) distinct trees: one is
the BFS or MST tree T0 of the base graph G, and n − 1
additional BFS or MST trees, one for G\{e} for each e ∈ T .

We use the standard distributed representation for trees.
In particular, for BFS trees, each vertex knows its parent.
Our algorithms also provide the additional information of
each vertex knowing its children in the tree, and its distance
from the source. For MST trees, in the output, every vertex
knows which of its incident edges are in the MST.

Our Contribution: We show somewhat surprisingly that
these sparse fault tolerant tree structures can be computed
within almost the same number of rounds as the correspond-
ing non-resilient counterparts, i.e., the time to compute
just one of the trees. We present distributed algorithms
for constructing FT-BFS in O(D logn) rounds and FT-MST
O(D+

√
n logn). These round complexities are nearly opti-

mal in the sense they almost match even the lower bounds
of constructing BFS and MST trees, respectively. Our con-
structions lead to sparse structures by simple connections
with previous works. Hence, our main focus would be on
the running time.

Theorem 1.1 (Distributed FT-BFS). Given an un-
weighted undirected n-vertex graph G = (V,E) of diameter
D, the collection of m BFS structures BFS(G \ {e}, s) for

every e ∈ G, containing at most O(n3/2) edges, can be con-
structed in O(D logn) rounds, with high probability1.

Theorem 1.2 (Distributed FT-MST). Given a
weighted undirected n-vertex graph G = (V,E,W) of diam-
eter D, the collection of m MST trees MST(G \ {e}) for each
e ∈ G, containing at most 2(n−1) edges, can be constructed
in O(D +

√
n logn) rounds, with high probability.

The above two round complexity bounds are nearly opti-
mal, because of the following: computing even one BFS
requires at least Ω(D) rounds (a trivial and folklore lower
bound), and computing even one MST requires at least

Ω(D +
√

n
logn

) rounds, by lower bounds of Das Sarma et

al. [DSHK+11] and its predecessors [PR99,Elk04].
We also note that our O(D logn) round FT-BFS con-

struction leads to O(D logn) round distributed algorithms
for single-source replacement paths and also BFS sensitivity
analysis, and our O(D+

√
n logn) round FT-MST construc-

tion leads to an (D+
√
n logn) round distributed algorithm

for MST sensitivity analysis. The definition of these prob-
lems are discussed in the next section.

2. RELATED WORK

2.1 Works Related to FT-BFS Structures
The notion of sparse FT-BFS structure was introduced in

[PP13]. The authors showed that one can obtain an FT-BFS

1As standard, we use the phrase with high probability
(w.h.p.) to indicate that the probability of an event is at
least 1− 1/nc, for a desired fixed constant c ≥ 2.

structure with O(n3/2) edges, simply by doing the following;
take the union ofm BFS structures, one for subgraphG\{e},
for each e ∈ E, while breaking ties in a consistent manner.
They also provide a matching lower bound, by presenting a
family of graphs for which Ω(n3/2) edges are necessary.

The FT-BFS structure is closely related to the problem
of constructing replacement paths. For a pair of vertices s
and t and a an edge e, the replacement path Ps,t,e is the
s − t shortest path that avoids e. In the replacement-path
problem, one is given a graph G = (V,E) and a pair of
vertices s − t, it is then required to compute the collection
of all replacement paths Ps,t,e for every edge e. s

For undirected graphs on m edges, Malik et al. [MMG89]
gave an algorithm for solving the replacement path problem

with time complexity of Õ(m). Gotthilf and Lewenstein
[GL09] showed an O(mn ·n2 log logn) time algorithm for di-
rected graphs with arbitrary edge weights. For unweighted
directed graphs, Roditty and Zwick [RZ12] gave a random-

ized algorithm which runs in time Õ(m
√
n). Weimann and

Yuster [WY13] were the first to apply fast matrix multiplica-
tion techniques to the problem and obtained an O(Mn2.584)-
time randomized algorithm for directed graphs with inte-
ger weights in [−M,M]. In [Wil11], Vassilevska Williams
showed that the replacement paths problem in directed graphs
is equivalent to the all pairs shortest paths problem (APSP),
under subcubic reductions. She also provided a determin-
istic algorithm for this problem with improved rum time of

Õ(Mnω) where ω is the exponent of matrix multiplication.
FT-BFS structures are in particular related to the single

source variant of the replacement-path problem, namely, the
single-source replacement paths problem, studied in [GW12].
That problem requires to compute the collection Ps of all
s − t replacement paths Ps,t,e for every t ∈ V and every
failed edge e that appears on the s − t shortest-path in G.
Grandoni and Vassilevska Williams [GW12] showed that the
single source replacement path problem can be solved within
nearly the same centralized time complexity as that of com-
puting all-pairs shortest paths in a graph. Since the col-
lection of paths Ps is precisely an FT-BFS structure with
respect to s, the best algorithm for computing an FT-BFS
structure in the centralized setting is almost as that of com-
puting the all pairs distances.

The replacement-path problem and its single source vari-
ant have been studied so far only in the centralized setting.
These problems have applications for computing the k short-
est simple s − t paths [RZ12] and for computing the Vick-
rey pricing of edges in a network [NR99, HS01]. We note
that our distributed construction of a sparse FT-BFS struc-
ture can also be viewed as a distributed computation of the
single-source replacement paths.

2.2 Works related to FT-MST Structures
FT-MST structures were introduced by Nardelli et al.

[NSW97] for the geometric setting. They showed that the
problem of computing the minimum (with respect to total
edge weights) FT-MST structure is NP-hard already for the
single failure case. This problem has been later studied by
Chechik and Peleg [CP10] in the general graph setting where
they showed an O(logn)-approximation algorithm for an ar-
bitrary constant number f of edge faults.

The first distributed construction of FT-MST structures
resilient against single vertex or edge faults was given by
Flocchini at el. [FEP+12]. They provide an O(n)-round al-

gorithm with message complexity of O(n2). Linear time
algorithm for constructing FT-MST (via the edge swapping
approach) was also given by Datta et al. [DLPP13]. More-
over, Gfeller et al. [GSW11] provide O(n)-round algorithm
for finding the fault tolerant MST of minimum diameter.

Finally, the concept of FT-BFS and FT-MST structures
is closely related to the sensitivity analysis problem [Tar82].
In this problem, one is given an optimal tree (with respect to
some function), and it is required to measure by how much
one can perturb each edge individually (e.g., by changing the
weight of the edge or deleting it entirely) without changing
the optimality of the tree (compared to other tree solutions
in the graph). The best centralized bounds for computing
an FT-MST structure are given by solving the MST sensi-
tivity problem: given a graph G and minimum spanning tree
T = MST (G), decide how much each individual edge weight
can be perturbed without invalidating the identity of T0 (i.e.,
that T0 is still an MST for the perturbed graph). Tarjan
showed that the MST sensitivity analysis can be perform in
O(mα(m,n)) time, where m in the number of edges, n is the
number of vertices, and α is the inverse-Ackermann function.
This was later improved by Pettie to an O(m log(α(m,n)))
time algorithm [Pet05]. Our distributed constructions for
FT-BFS and FT-BFS can also be viewed as solving the sen-
sitivity analysis problems for BFS and MST trees.

3. FAULT-TOLERANT BFS
In this section, we explain a distributed algorithm that

given a source node s, in O(D logn) rounds computes an
FT-BFS structure rooted in s that is tolerant against the
failure of each one edge. Recall that to compute an FT-BFS
structure, we need to compute BFS trees in graph G \ {e}
for each edge e ∈ G, which as we discuss next, boils down
to computing only n BFSs. By [PP13], it is sufficient to
break shortest-paths ties consistently. To do that, in our
distributed BFS construction, each node would break the
ties among its potential parents in the BFS tree by selecting
the one of minimum ID.

A basic BFS tree T0 = BFS(G, s) rooted in node s can
be computed in O(D) rounds, using the standard approach
of synchronously growing the BFS-tree one hop per round,
starting from the source s. Besides this base BFS tree, what
remains to be computed is n−1 additional BFS trees rooted
in s, one in each graph G \ {e} for each edge e ∈ T0.

As a side remark, we note that this problem is reminiscent
of the problem of computing all-to-all shortest paths in G,
i.e., computing n BFS trees, one rooted in each node v ∈ G.
Holzer and Wattenhofer [HW12] showed how to compute
these n BFS trees simultaneously in O(n) rounds, using a
simple and elegant scheduling idea. We will show that in
our case, the n − 1 BFSs can be computed much faster in
O(D logn) rounds, thanks to their structure.

3.1 Naive Approaches
We first discuss two simpler and natural approaches that

do not leverage the special structure of these BFSs and lead
to results much weaker than our end goal of O(D logn).

Straw Man Approach 1: The most naive method for
solving this problem would be to run the BFSs one by one,
sequentially. That would lead to a round complexity of
O(Dn), a far cry from our goal of O(D logn) rounds.

Straw Man Approach 2: The second method would be

to use the classic idea of random delays due to Leighton,
Maggs, and Rao [LMR94,Gha15] to schedule the n−1 BFSs.
Particularly, we would divide time into phases of O(logn)
rounds, and delay the start of each BFS Te by a random
delay of te phases where te is a random variable with a uni-
form distribution in {1, 2, . . . , n

logn
}. Once a BFS algorithm

starts, the related BFS grows at a synchronous speed of one
hop per phase. One can see that in this way, w.h.p., per
phase and per edge e′ = (v, u), there are at most O(logn)
BFS tokens scheduled to go through edge e′ from v to u, in
this phase. The reason is as follows: for each BFS, the phase
number in which the BFS arrives at v and goes to u is ex-
actly equal to the distance of v from s in the corresponding
graph plus the random delay of that BFS. Now due to the
fact that the random delay is picked uniformly from a range
of size n

logn
, the probability of this summation being equal

to each exact given value is at most logn/n. Hence, over all
the n BFSs, we expect to have at most logn BFS token that
try to go from v to u per phase. By Chernoff bound, we
know the number of such BFS tokens is at most O(logn),
with high probability. Since each phase has O(logn) rounds,
this means the phase has enough capacity to admit all the
messages of all the BFSs through e. Thus, once started, the
BFSs will be able to continually grow with the speed of one
hop per phase. Therefore, the finishing time of this routine
is O((D + n

logn
)) phases, which is O(D logn+ n) rounds.

This bound is again far from our goal ofO(D logn) rounds,
due to the additive O(n) term. This undesirable additive
O(n) term comes from the range of the random delay, which
was n

logn
phases. This range size was chosen to ensure that

per phase no more than O(logn) of the n BFSs try to go
through each edge. In fact, this is unavoidable unless we
change the BFS algorithms, because if for an edge e′, each
of the n− 1 BFSs should send one messages through e′, any
scheduling of these BFSs clearly requires n− 1 rounds.

As a side note, we remark that albeit its shortcoming in
our case, the above simple and general approach is quite use-
ful. Particularly, it can be used to compute all-to-all shortest
paths in O(D logn+n) rounds, which is only slightly worse
than the O(n) result of [HW12].

3.2 The Intuition of Our Approach
To get to the bound of O(D logn), we will have to zoom

in on the BFSs that we are trying to build and leverage
their structure. Particularly, as noted above, it is vital to
make sure that per edge e, not all the n − 1 BFSs need
to transmit independent messages through edge e—as that
would require at least n− 1 rounds. For that, consider one
edge e′ = (v, u), and let us zoom in on what messages need
to be sent from v to u for various BFSs.

In a synchronous growth of a BFS tree Te = BFS(G\e, s),
the key thing that matters for each node v is when is the
first time that the BFS token arrives at v (as well as who
is the related parent). Note that this time indicates the
distance of v from the source, in the corresponding graph.
For edge e′ = (v, u), we need to send the BFS token from
v to u if in G \ {e}, node v is closer to s compared to u.
Moreover, in that case, what u needs to learn is the time
that this token will be sent from v to u. This time is equal
to distG\{e}(s, u) + te, where the latter term is the starting
time of the BFS Te. A key observation is that, for many
of the n − 1 BFSs Te that we are trying to run, we can
make u know this time distG\{e}(s, u) + te without actually

running that BFS through edge e. Note that in each tree
Te, node u receives messages from all its potential parents
at the same time, namely, at time distG\{e}(s, u) + te. It
would then select as its parent the node of minimum ID,
which would guarantee that the shortest path ties are broken
an a consistent manner, leading to a sparse structure with
O(n3/2) edges.

Let Pv be the shortest path connecting s to v in G. If
e /∈ Pv, then distG\{e}(s, v) = distG(s, v). So, for each e /∈
Pv, the BFS(G\{e}, s) arrives at v at time distG(s, v) + te.
Thus, we can avoid running all these BFSs through edge e
if we could make node u know three things: (1) the distance
distG(s, v) in the base graph G, (2) the edges e on short-
est path Pv in the base graph G, (3) the starting time for
BFS(G \ {e}, s) for each of these e /∈ Pv.

We will explain that we will be able to make each node
u have this information about each of its neighbors v, us-
ing just O(D+ logn) rounds of communication. Hence, the
only BFSs that need to actually send a token through edge
e′ = (v, u) from v to u are those Te for e ∈ Pv. This is a to-
tal of D many BFSs, so using the random delays technique,
we will be able to schedule these remaining BFSs in a short
span of time. However, having these random delays creates
a complication, as we need to make nodes know the starting
time of (essentially) all BFSs, as needed in item (3) above.
We will explain how using classic pseudo-random genera-
tors, and via spreading only O(log2 n) bits of independent
randomness in the network, we can simulate a large string
of sufficiently-independent bits of randomness to be able to
schedule these BFSs while nodes know their starting times.

3.3 Our Algorithm
We first describe the algorithm assuming that all nodes

know a string SR of shared randomness, where SR[i] for
i ∈ [n−1] describes a random value in range {1, . . . ,Θ(D)}.
Later, we explain how to generate SR inO(D+logn) rounds.

The Distributed FT-BFS Algorithm:

1. Construct a BFS tree T0 = BFS(G, s) rooted in node
s, in O(D) rounds.

2. Number the edges of T0 by numbers 1 to n − 1 in an
arbitrary way, in O(D) rounds.

3. Make each node v know the numbers of the edges on
its shortest path Pv to s in T0, in O(D) rounds.

4. Let each node v send to each of its neighbors u the
numbers of the edges on the shortest path Pv, in O(D)
rounds.

5. Divide time into phases of Θ(logn) rounds each.

6. Generate the string SR of shared randomness, inO(D+
logn) rounds.

7. Start BFS(G\{e}, s) for each e ∈ T0 with a delay of te
phases, picked uniformly at random from {1, 2, . . . , D},
by setting it equal to SR[i] where i is the edge-number
of e. Since SR is publicly known, all nodes know te.

8. Run each BFS(G \ {e}, s) at a speed of one hop per
phase, following these rules:

• For each e′ = (v, u), each BFS(G \ {e}, s) is per-
mitted to send its token from v to u only if e ∈ Pv.
As v knows the edges on Pv, it can identify the
permitted BFSs.

• For each e /∈ Pv, if v is u’s parent in T0, then u
sets its parent in BFS(G \ {e}, s) to be also v.
In that case, u proceeds BFS(G \ {e}, s) as if the
related BFS token arrived from v to u in phase
number distG(s, v) + te + 1. Note that node u
can do this for all edges e /∈ Pv as u knows the
numbers of edges e ∈ Pv.

The correctness of the computed BFSs is immediate as
for each BFS(G \ {e}, s), each node v will receive the re-
lated BFS token in the phase number distG\{e}(s, v) + te,
which since v knows te, means v also learns its distance in
that BFS, as well as its parent in the BFS. As for the time
complexity, each of the first four steps can be performed in
O(D) rounds using the standard approach. Steps 4 and 6
are just for explanation and they do not need any commu-
nication rounds. We will discuss step 5 later in Lemma 3.2.
The execution of the last step finishes within O(D) phases,
which is O(D logn) rounds. This is because each BFS will
start at the latest by phase D and after that, it can continue
for at most 2D additional phases2.

The only two things that remain to be discussed are as
follows: (1) we should show that w.h.p., per phase, at most
O(logn) BFS tokens will need to pass through each edge,
(2) we need to explain how to generate the string of shared
randomness SR.

Lemma 3.1. W.h.p., at most O(logn) BFS tokens need
to go through each edge, per phase.

Proof. We show that w.h.p., in each phase number t and
for each edge e′ = (v, u), at most O(logn) BFS tokens will
need to go through e′ from v to u in phase t.

Note that the only BFSs that are now permitted to send
a token from v to u are those trees BFS(G \ {e}, s) for
e ∈ Pv, which by definition of Pv, is a total of at most
D BFSs. For each such BFS(G \ {e}, s), the token will
have to go through e′ from v to u in phase t if and only if
distG\{e}(v, s) + te = t. Since te is chosen randomly from
a range of size D, the probability of this event is at most
1/D. Hence, over the set of D BFSs for e ∈ Pv, we expect
to see at most 1 scheduled to go from v to u in phase t. If
the random delay values te where completely independent,
by an application of Chernoff bound, we would have that
this number is at most O(logn), w.h.p. This will not be
exactly true in our case, as we produce SR using a pseudo-
random generators, but we will have k-wise independence on
the generated string, for k = Θ(logn) as we discuss later,
and from a result of Schmidt et al. [SSS95], it is known
that for this application of Chernoff bound, it suffices to
have k-wise independence between the random values, for
k = Θ(logn).

Lemma 3.2. The string of shared randomness SR can be
generated and delivered to all nodes in O(D+ logn) rounds.

2It is easy to see that the diameter of each BFS in G\{e} is
at most 2D. For general number of faults f ≥ 1, see [CG84].

Proof. What SR needs to contain is n − 1 values of
randomness, each from a range of size Θ(D), where these
values have O(logn)-wise independent. Suppose that we
share O(log2 n) random bits that are completely random
and independent between all nodes. Note that this can be
done in O(D + logn) rounds, by having the source node
s sample these bits using its private randomness, putting
them in O(logn) messages, and then downcasting these mes-
sages on the BFS using the standard method. Then, we
can feed these bits of true randomness to a pseudo-random
number generator. Particularly, each node v feeds these
Θ(log2 n) bits into one of the classical k-wise independent,
for k = Θ(logn), pseudo-randomness constructions (e.g.,
[AS04, Theorem 15.2.1]3). This pseudo-random number gen-
erator produces n random values, each in range [Θ(D)], with
Θ(logn)-wise independence between the values.

4. FAULT-TOLERANT MST
In this section, we explain a distributed algorithm that

in O(D+
√
n logn) rounds computes an FT-MST structure

that is tolerant against failure of each one edge. Recall that
to compute an FT-MST structure, we need to compute MST
trees in graph G \ {e} for each edge e ∈ G, which as we
discuss next, boils down to computing only n MSTs.

A basic MST tree T0 = MST (G) can be computed in
O(D+

√
n log∗ n) rounds, using the classic algorithm of Kut-

ten and Peleg [KP95]. Besides this base MST tree, what re-
mains to be computed is n− 1 additional MST trees, one in
each graph G \ {e} for each edge e ∈ T0. To compute these
MSTs, we essentially need to compute n− 1 swap edges, as
we formalize next.

For a given MST T0 ⊆ G and an edge e ∈ T0, we call
edge e′ = (u, v) a swap edge for e if adding e′ to T0 \ {e}
restores the connectivity of T0 when e fails. It is easy to
see that an edge e′ = (u, v) is a swap edge for e iff the edge
e is on the unique T0-path connecting u and v. In other
words, edge e′ = (u, v) ∈ G is a swap edge for e if and only
if the following conditions are satisfied: (1) edge e appears
on the T0-path connecting the root r to v or to u, and (2)
the Least Common Ancestor (LCA) of v and u is above e.
See Figure 1.

Given this definition, it is easy to see that when a T0-
edge e fails, to restore the MST, what we need to do is to
compute the lightest swap edge for e. Particularly, we have
the following fact:

Definition 4.1. For each edge e ∈ T0, let SE(e) be the set
of all swap edges for e, by defining SE(e) = {e′ | (T0 \ {e}) ∪
{e′} is connected}. Moreover, define the best swap edge SE∗(e)
of e to be the lightest edge e′ in SE(e). Note that the tree
T0 \ {e} ∪ {SE∗(e)} is an MST of G \ {e}.

Hence, an FT-MST structure H consists of the edges of the
MST tree T0 along with at most (n − 1) best swap edges,
one SE∗(e) for each e ∈ T0. Thus, to compute FT-MST
structures, we need to distributedly compute all (n−1) best
swap edges, one SE∗(e) for each e ∈ T0.

3We note that [AS04, Theorem 15.2.1] only describes the
construction for GF(2) which yields k-wise independent bit.
However, as also described in [Cou, Section 3], the con-
struction readily extends to GF (p), for any prime number
p ∈ poly(n). Furthermore, when desiring random delays in
range [Θ(D)], we can pick them from a range {1, . . . , p} for
a prime p ∈ [D, 10D], which exists by Bertrand’s postulate.

𝑤 = 𝐿𝐶𝐴(𝑢, 𝑣)

𝑢
𝑣

𝑒

𝑒′

𝑣 = 𝐿𝐶𝐴(𝑢, 𝑣)

𝑢

𝑒
𝑒′

Figure 1: An illustration of a swap edge e′ for edge e, in
two possible shapes. The solid edges are those of the MST
tree T0, the T0 edge e is indicated with a red color, and the
dashed line indicates e′.

As a warm up, we begin in Section 4.1 by describing an
algorithm that computes all these swap edges in O(DMST)
rounds, whereDMST is the diameter of the tree T0 = MST (G).
Notice that DMST can possibly be much larger than the di-
ameter D of graph G. In Section 4.2, we explain how to ex-
tend this idea and get an algorithm with round complexity
O(D +

√
n logn). For that, in a nutshell, we will decom-

pose the tree into O(
√
n logn) segments, each of diameter

O(
√
n logn), and we will also use a virtual skeleton tree that

captures the structure between these segments.
Throughout, we consider the node r with the minimum

ID to be the root of T0 and we consider the edges of T0 to
be directed away from the root r. A vertex v is said to be
above an edge e in the tree T0 if it is closer (in hops) to the
root r in T0.

4.1 Warm Up: FT-MST in O(DMST) rounds
To compute the swap edges, we make each vertex v know

the T0 path π(r, v) connecting root r to v and moreover,
we make each two neighboring vertices exchange these path
descriptions. Note that this can be easily done in O(DMST)
rounds, using standard methods: computing the path π(r, v)
can be done by downcasting the parent IDs from the root
to the leaves. Then, each two neighbors need to exchange
at most O(DMST) path edges, which clearly can be done in
O(DMST) rounds. At the end, each two neighboring vertices
u and v connected via edge e′ can know all T0-edges e for
which e′ is a swap edge for e. Particularly, v and u compute
their LCA w in T0 and then edge e′ is a swap edge for each
T0-edge e ∈ π(r, v)∪π(r, u) that is below w. That is, if e′ is
on the unique T0-path connecting v and u.

The algorithm proceeds as follows: each vertex v evaluates
which of its incident edges e′ are swap edges for each T0-edge
e ∈ π(r, v). Specifically, vertex v defines its swap proposal
SE∗(e, v) for each edge e ∈ π(r, v) to be the lightest edge e′

incident on v that is a swap edge for e.
Next, the edges SE∗(e, v) along with their weights are up-

casted towards the head endpoint y of the edge e = (x, y) in
the following pipeline manner: Letting π(r, v) = [e1, . . . , ek],
each vertex v maintains a list of edges SE∗(e1, v), . . . , SE∗(ek, v),
where each such edge SE∗(ei, v) is the current best swap edge
for ei that v knows. Initially, the SE∗(ei, v) edges are those
incident to v. During the upcast, upon receiving values from
its descendants, these values may correspond to edges with
endpoint in the subtree of v. The vertex v keeps on forward-

Figure 2: A schematic depiction of the decomposition of the
MST and its skeleton tree. The marked nodes are depicted
as blue boxes, while small black circles indicate non-marked
nodes. One can obtain the skeleton tree by erasing the non-
marked nodes, i.e., keeping only the thicker blue lines be-
tween the boxes. The three green curves show three sample
segments; for simplicity, we do not highlight all the segments
in the picture.

ing to its parent in T0 arbitrary stored items that have not
been upcast so far; upon receiving an edge SE∗(ei, u) from a
descendant u, the vertex v updates its SE∗(e, v) values only
if the swap edge suggested by u is better, i.e., of smaller
weight. Since overall every vertex v computes the minimum
of O(DMST) functions in its subtree Tv, this piplelined up-
cast finishes in O(DMST) rounds (cf., [Pel00]).

By the end of this process, we get that every vertex v holds
the best swap edge SE∗(ev) where ev is the incoming edge to
v in T0. By rewinding the tape of the communication, the
endpoints of the selected swap edges SE∗(ev) for every v are
notified, learning that their edge is the best swap edge for ev.
They can then add these edges to the FT-MST structure H.
This completes the description for our warm up O(DMST)
round algorithm.

4.2 FT-MST in O(D +
√
n logn) rounds

We start the description of the algorithm by defining a de-
composition of the MST tree into a number of segments and
a skeleton tree capturing this decomposition. For simplicity,
we then first explain how to use these structures to com-
pute the best swap edges, and only later come back to the
description of distributed construction of these structures.

Pre-processing—Segments and Skeleton Tree: To de-
fine the tree decomposition into segments, we mark a num-
ber of nodes on the MST tree T0 such that these marked
nodes satisfy the following three properties: (P1) the root r
is a marked node and for each node v 6= r, there is a marked
node ancestor u of v such that distT0(u, v) ≤ O(

√
n logn),

(P2) for each two marked nodes u and v, their least common
ancestor is also a marked node, and (P3) the number of the
marked nodes is at most O(

√
n logn). See Figure 2.

Given these marked nodes, we decompose the MST tree
T0 into segments as follows: for each node v, define its lowest
ancestor marked node LAM(v) and its highest descendant
marked node HDM(v), if such exists, and ∅ otherwise. Each
segment is defined to include the set of all nodes with the
same pair LAM and HDM. Note that these segments are not
vertex-disjoint, as they overlap in marked nodes, but they
are edge-disjoint, and therefore, we can perform independent
communications in different segments in parallel.

Due to properties (P1) and (P3), we have O(
√
n logn) seg-

ments, each with a diameter of O(
√
n logn) hops. Having

these segments, we further define a virtual skeleton tree TS

whose vertices are the marked nodes and a marked node v
is the TS-parent of marked node u iff v = LAM(u). Putting
it in intuitive (and imprecise) words, the skeleton tree can
be obtained simply by erasing all non marked nodes, while
paths going through them are maintained and turn into vir-
tual edges. See Figure 2.

In the following, we assume that vertices have the follow-
ing knowledge about these structures:

(K1) each vertex v knows the identifier of its segment, namely
LAM(v) and HDM(v),

(K2) each vertex v knows the identifiers of the T0-edges on
the unique path from v to each of these two vertices
LAM(v) and HDM(v), and

(K3) all vertices know the full topology (vertices and edges)
of the skeleton tree TS .

We will explain later in Section 4.3 that all this knowledge
can be attained in O(D +

√
n logn) rounds. For now, we

assume this knowledge as given, and proceed to explain how
to compute the best swap edges, using these structures.

Classifying swap edges to short, mid, and long ranges:
Given a T0-edge e and a swap edge of it e′ = (u′, v′) ∈ SE(e),
we call e′ a short-range, mid-range, or long-range swap for e
if and only if, respectively, two, one or zero of the endpoints
u′ and v′ of e′ are in the same segment as e. See Figure 3
for some examples.

The best short-range swap for e is the lightest short-range
edge e′ ∈ SE(e); the best mid-range and best long-range
swaps for e are defined analogously. We compute the best
short-range, the best mid-range, and the best long-range swaps
separately. At the end, we set the best swap edge of each
T0-edge e to be simply the lightest of its best swaps in these
three categories.

Computing short-range swap edges: The computations
of short-range swaps in different segments happen indepen-
dently and in parallel, each via communicating only on the
edges of that segment. Before starting that computation of
these swap edges, we make every two neighbors exchange
their segment identifiers.

We focus on one segment Si and the T0-subtree Ti induced
by vertices of Si. Our goal is to compute the best short-range
swap edge SE∗short(e) for each tree edge e = (x, y) ∈ Ti. To
do that, we employ the algorithm described in the previous
subsection, restricted to tree Ti, as follows: Assume that all
edges of Ti are directed away from the root ri. We let ev-
ery two neighboring vertices v and u in the same segment,
connected via edge e′ = (u, v), exchange items (K2) of their
knowledge, i.e., their T0-paths to LAM(v) = LAM(u). No-
tice that this can be performed in O(

√
n logn) rounds, as

𝑒

𝑒3

𝑒2

𝑒4
𝑒1

𝑒5

Figure 3: For the T0-edge e indicated with a red color, the
edge e1 is a short-range swap, the edges e2 and e3 are mid-
range swaps, and the edges e4 and e5 are long-range swaps.

each of these paths has length O(
√
n logn). Using this in-

formation, nodes v and u can compute the unique T0-path
connecting v and u. Then, v and u include edge e′ in their
computations of swap proposals for all T0-edges on this path.
The rest of the computation for finding the best short-range
swap edge is a simple upcast, exactly as described in the
previous subsection.

Computing mid-range swap edges: Similar to the short-
range swaps, the mid-range swaps of different segments hap-
pen independently and in parallel, after nodes know the seg-
ment identifiers of their neighbors. Let us focus on one seg-
ment Si. Consider a node v ∈ Si and a neighbor of it u in
a different segment Sj , connected to v via edge e′ = (v, u).
We say that segments Si and Sj are dependent if either all
nodes of Si are in the T0-subtree below (the lowest marked
node of) Sj , or all nodes of Sj are in the T0-subtree below
Si. Otherwise, we say these two segments are independent.
We next examine these two cases separately:

• Independent Segments Si and Sj: In this case, the
LCA of v and u is above LAM(v) and e′ is a mid-range
swap edge for all edges on the T0-path connecting v to
its lowest ancestor marked ndoe LAM(v).

• Dependent Segments Si and Sj: This case breaks
into two possibilities: either Sj is a descendant of Si or
Si is a descendant of Sj . In the former possibility, the
LCA of v and u is in Si and e′ is a mid-range swap edge
for all edges on the T0-path connecting v to HDM(v).
In the latter possibility, the LCA of v and u is in Sj

and e′ is a mid-range swap edge for all edges on the
T0-path connecting v to LAM(v).

Since v knows the segment identifier of u as well as the full
skeleton tree structure TS , node v can identify in which of
the above cases we are. Furthermore, since v knows its paths

to its own LAM(v) and HDM(v), node v knows which T0-
edges of segment Si can use e′ as a mid-range swap edge. To
have the best mid-range computed, we have each such node v
put its proposals for each of the relevant T0-edges e. We then
perform one upcast in T0[Si] towards LAM(v) = LAM(Si),
thus obtaining the best mid-range swaps for which the seg-
ment endpoint of the swap edge is below the swapped edge.
Afterward, we also perform a downcast towards HDM(Si),
thus obtaining the best mid-range swaps for which the seg-
ment endpoint of the swap edge is above the swapped edge.
Each of these upcast and downcast is essentially identical
to, or reverse of, the upcast in the algorithm of the previ-
ous subsection. Hence, after at most O(

√
n logn) rounds,

all edges know their best mid-range swaps.

Computing long-range swap edges: For this part, we
use the skeleton tree. We consider O(

√
n logn) minimiza-

tion problems, one for each skeleton edge. For each edge
e′ = (u, v) ∈ G, the two endpoints u and v can easily find
the skeleton edges e for which e′ is a swap edge, that is, the
skeleton edges e which reside on the skeleton path connect-
ing the closest marked nodes of the segments of u and v.
Then, v and u include e′ in their proposal for swap edges
of e. We perform a pipelined upcast for these O(

√
n logn)

minimization problems on the BFS tree of the graph G. For
each problem, each node always maintains the lightest solu-
tion for that problem seen so far, and passes it to its parent
in the BFS tree. A final downcast then delivers these solu-
tions to all nodes. At the end, since for each physical edge
e′′ ∈ T0, the endpoints know to which virtual skeleton edge
e does edge e′′ belong, they can take the solution of the min-
imization of e as the best long range swap for e′′. Note that
in this manner, we are treating all the physical edges that
are on the same virtual skeleton edge essentially the same,
for the purpose of their long-range swaps. We next formally
argue that this indeed is correct, which means we compute
the best long-range swaps for all T0-edges.

Proposition 4.2. Let e1, e2 be two T0-edges in the same
segment and suppose that e′1 and e′2 are the best long-range
swap edges for e1 and e2, respectively. Then, the two best
long-range swap edges are the same and we have e′1 = e′2.

Proof. Notice that since e1 and e2 have long range swaps,
they both must be on the main path of their segment which
connects their lowest ancestor marked node w1 to their high-
est descendant marked node w2. Now, since e′1 is long range
swap edges for e1, it must be the case the T0-path connecting
w1 and w2 is a subpath of the T0-path connecting the two
endpoints of e′1. A similar thing is also true for e′2. Hence,
e′1 and e′2 are both long range swaps for both of e1 and e2.
Since e′1 and e′2 are the best long-range swap edges for e1
and e2, by the uniqueness of the edge weights, we then get
that e′1 = e′2.

Putting things together: At the end, for each T0-edge e,
the best swap edge e′ is the lightest of its best short-range,
mid-range, and long-range swaps. Since the endpoints of e
know the best of each category, they can easily find the best
swap edge. Finally, we can reverse the direction and time-
order of all these communications, i.e., essentially rewinding
the tape of communications backwards, and thus let the
endpoints of each best swap edge e′ know that it is the best
swap edge for some T0-edge e. The endpoints of e′ can then
add e′ to the FT-MST structure H. This completes the

Figure 4: The components in the decomposition are marked
with green curves, the sampled edges are depicted as dashed
red edges, and red boxes indicate marked nodes, i.e., the
nodes of virtual skeleton tree.

description of how we compute the swap edges, using the
skeleton structure and the segments. We next go back to
explain how we compute these structures in O(D+

√
n logn)

rounds, as claimed.

4.3 Constructing the Segments and the Skele-
ton Tree

Here, we explain how to identify the marked nodes such
that they satisfy the properties (P1) to (P3), stated in Sec-
tion 4.2. We then explain how to use these marks to identify
the segments and the skeleton tree and let each node v have
the knowledge items (K1) to (K3), stated in Section 4.2.

First, define a random subset of MST edges R ⊆ T0 by
including each T0-edge in E independently with probability
1/
√
n. First, we show that w.h.p. T0 \ R has O(

√
n logn)

connected components, each with a diameter of at most
O(
√
n logn). See Figure 4.

Lemma 4.3. W.h.p., T0 \ R has O(
√
n logn) connected

components, each with a diameter of at most O(
√
n logn).

Proof. Since every edge in T0 is added to R with prob-
ability p = 1/

√
n, by Chernoff bound, we get that |R| =

O(
√
n · logn), with high probability. Hence, the number of

connected components of T0 \R is O(
√
n · logn).

We next bound the diameter of the tree induced by the
vertices of each component Ci in T0 \ R. Consider all pairs
P of vertices u and v whose distance in the tree T0 is exactly
c · logn ·

√
n. That is letting π(u, v) be the u − v path in

T0, then P = {〈u, v〉 | |π(u, v)| = c · logn ·
√
n}. We claim

that w.h.p. R ∩ E(π(u, v)) 6= ∅ for every 〈u, v〉 ∈ P. To
see this, consider one pair u and v in P. The probability
that none of the edges on π(u, v) has been sampled into R

is (1− 1/
√
n)c·logn·

√
n = 1/nc. Hence, by union bound over

at most O(n2) pairs, we get that w.h.p the tree paths of all
pairs in P intersect R. Therefore, w.h.p., the diameter of
every component of T \R is O(

√
n logn).

We now proceed to use these components for defining the
marked nodes, the segments, and the skeleton. First, we

start with orienting the tree of each component downward,
with respect to the global root. We then use these oriented
component trees to define the marked nodes. At the end,
we use these marked nodes to construct the segments and
the skeleton tree.

Pre-processing Step 1—Defining a rooted subtree
T ′i ⊆ T for each component Ci: First, remove the edges
of R and perform a minimum ID flooding on edges of T0 \R.
Thus, within O(

√
n logn) rounds, all nodes of each compo-

nent Ci of T0 \R have the smallest ID of that component.
We next wish to define a root r′i for each component Ci. In

particular, assuming that all edges of T0 are directed away
from the global root r, the root r′i of the component Ci is the
vertex with incoming degree zero in the subtree T ′i induced
on the vertices of Ci. To let every vertex know the root
of its component, we define an intermediate virtual tree T ′

obtained by contracting every component Ci of T0 \ R into
a single vertex. By exchanging the component IDs with
the neighbors, the edges of T ′ can become global knowledge
within O(D+

√
n logn) rounds, w.h.p. This is because there

are O(
√
n logn) components (w.h.p.) and the T0-edges con-

necting vertices of different components, which are those in
R, can be communicated to the entire graph using an up-
cast on the BFS tree, in O(D +

√
n logn) rounds. Hence,

by rooting the intermediate virtual tree T ′ at the compo-
nent of the root vertex r, each vertex can know the root of
its own component, all in O(D +

√
n logn) rounds. Then,

by performing a downcast from the root of each component
on the edges of T0 \ R, in O(D +

√
n logn) rounds, we get

that each component of T0 \ R is directed outwards from
its root and each node knows its parent—that is, its unique
incoming neighbor—in this orientation.

Pre-processing Step 2—Marking nodes, inside com-
ponents Ci: First, mark each vertex that is incident on a
sampled edge in R, as well as the root r of T0. Then, we start
an upcast in each component Ci, on the tree of T0[Ci] from
the leaves towards the root. During this process, we identify
and mark nodes of T0[Ci] that are LCA of two of these sam-
pled edges (i.e., their marked nodes). Particularly, any leaf
v that is a marked node sends the identifier of its sampled
edge to its parent, indicating that v is marked. Then, when
the upcast reaches a node u, (1) if u itself is incident on a
sampled edge, then u is marked and it passes the ID of one
such sampled edge to its parent, (2) if u is not marked and
it receives only one sampled edge from its children, it simply
passes this sampled edge to its parent, and (3) if node u is
not marked but it receives two or more sampled edges from
its children, then u becomes marked and it passes only one
of these sampled edges to its parent.

Lemma 4.4. The set of marked nodes satisfy the follow-
ing properties: (P1) the root r is marked and for each node
v 6= r, there is a marked node ancestor u of v such that
distT0(u, v) ≤ O(

√
n logn), (P2) for each two marked nodes

u and v, their least common ancestor is also a marked node,
and (P3) the number of the marked nodes is O(

√
n logn).

Proof. Property (P1) follows immediately because each
component has depth at most O(

√
n logn) and the root of

each component is marked, as either it is the root of T0, or
it is incident on a sampled edge in R.

For property (P2), consider two marked nodes u and v.
If v is a descendant or ancestor of u, then their LCA is u

or v, respectively, which is marked. So suppose that v is
not a descendant or ancestor of u. Suppose that u and v
are in the same connected component. Then, all edges on
the T0-path connecting these two nodes will carry marks,
while we perform the upcast explained above. This means
that their LCA receives at least two sampled edges from
its children and thus it becomes marked, too. Now suppose
that v and u are in two different component. Then, consider
the component that includes the LCA w of these two nodes,
and the parts of the paths from w to v and from w to u
that are in this component. Clearly, these paths end at two
different sampled edges. Thus, these endpoints are marked.
This means node w is in fact the LCA of two marked nodes
in the same component. As we argued above, in this case,
we know that node w is marked.

Finally, for (P3), note that the initial set of marked nodes
is those vertices that are incident on sampled edges, and
since |R| = O(

√
n logn), the set of initial marked nodes has

size O(
√
n logn). Now, as we perform the upcast of marking,

each new node w that we mark receives at least two sampled
edges from its children, but it passes only one sampled edge
to its parent. Hence, we can charge the marking of w to
one of the sampled edges that it received but did not pass
up to its parent. This shows that the number of additional
marks that we introduce during the marking upcast is one
per sampled edge, which is at most O(

√
n logn).

Pre-processing Step 3—Defining the Segments and
the Skeleton tree TS : To define the edges of the skele-
ton tree TS , we perform an upcast inside each component,
where each marked node v that is not the root of a compo-
nent sends its ID up to its parent. We continue this upcast
and the ID gets passed on to the parent until it reaches the
lowest ancestor marked node w. Then, w knows that it is
the parent of v in the skeleton tree TS , and there is a virtual
edge between w and v in TS . Since there are O(

√
n logn)

marked nodes, there are also O(
√
n logn) such virtual edges

in the skeleton tree. We broadcast all these virtual edges
to all nodes, in O(D +

√
n logn) rounds. This ensures that

all nodes know the skeleton tree, i.e., it satisfies knowledge
item (K3) in Section 4.2. Then, by performing a down-
cast from each marked node, and after that also an upcast
from each marked node, and stopping these downcast and
upcast once they reach the first next marked node, we can
make each nodes v know the identifiers of its lowest ancestor
marked node LAM(v) and its highest descendant marked
node HDM(v). This is the segment identifier of v and thus
it satisfies knowledge item (K1). Finally, by repeating these
upcasts and downcast while also carrying the names of all
visited edges, we can make each node v know the IDs of the
edges on its paths to LAM(v) and its highest descendant
marked node HDM(v), thus satisfying (K2). This finishes
our description of the knowledge items (K1) to (K3), and
hence also the construction of the segments and the skele-
ton tree.

5. REFERENCES
[AS04] Noga Alon and Joel H Spencer. The

probabilistic method. John Wiley & Sons, 2004.

[BGLP14] Davide Bilò, Luciano Gualà, Stefano Leucci,
and Guido Proietti. Fault-tolerant
approximate shortest-path trees. In

Algorithms-ESA 2014, pages 137–148.
Springer, 2014.

[BK13] Surender Baswana and Neelesh Khanna.
Approximate shortest paths avoiding a failed
vertex: Near optimal data structures for
undirected unweighted graphs. Algorithmica,
66(1):18–50, 2013.

[CG84] FRK Chung and MR Garey. Diameter bounds
for altered graphs. Journal of Graph Theory,
8(4):511–534, 1984.

[Cou] Lecture notes on k-wise uniform (randomness)
generators.
http://pages.cs.wisc.edu/˜dieter/Courses/
2013s-CS880/Scribes/PDF/lecture04.pdf.
Accessed: 2015-02.

[CP10] Shiri Chechik and David Peleg. Rigid and
competitive fault tolerance for logical
information structures in networks. In
Electrical and Electronics Engineers in Israel
(IEEEI), 2010 IEEE 26th Convention of,
pages 000024–000025. IEEE, 2010.

[DLPP13] Ajoy K Datta, Lawrence L Larmore, Linda
Pagli, and Giuseppe Prencipe. Linear time
distributed swap edge algorithms. In
Algorithms and Complexity, pages 122–133.
Springer, 2013.

[DSHK+11] Atish Das Sarma, Stephan Holzer, Liah Kor,
Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger
Wattenhofer. Distributed verification and
hardness of distributed approximation. In
Proc. of the Symp. on Theory of Comp.
(STOC), pages 363–372, 2011.

[Elk04] Michael Elkin. Unconditional lower bounds on
the time-approximation tradeoffs for the
distributed minimum spanning tree problem.
In Proc. of the Symp. on Theory of Comp.
(STOC), pages 331–340, 2004.

[FEP+12] Paola Flocchini, T Enriquez, Linda Pagli,
Giuseppe Prencipe, and Nicola Santoro.
Distributed minimum spanning tree
maintenance for transient node failures.
Computers, IEEE Transactions on,
61(3):408–414, 2012.

[Gha15] Mohsen Ghaffari. Near-optimal scheduling of
distributed algorithms. In the Proc. of the
Int’l Symp. on Princ. of Dist. Comp.
(PODC), pages 3–12, 2015.

[GL09] Zvi Gotthilf and Moshe Lewenstein. Improved
algorithms for the k simple shortest paths and
the replacement paths problems. Information
Processing Letters, 109(7):352–355, 2009.

[GSW11] Beat Gfeller, Nicola Santoro, and Peter
Widmayer. A distributed algorithm for finding
all best swap edges of a minimum-diameter
spanning tree. Dependable and Secure
Computing, IEEE Transactions on, 8(1):1–12,
2011.

[GW12] Fabrizio Grandoni and Virginia Vassilevska
Williams. Improved distance sensitivity
oracles via fast single-source replacement
paths. In Foundations of Computer Science

http://pages.cs.wisc.edu/~dieter/Courses/2013s-CS880/Scribes/PDF/lecture04.pdf
http://pages.cs.wisc.edu/~dieter/Courses/2013s-CS880/Scribes/PDF/lecture04.pdf

(FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 748–757. IEEE, 2012.

[HS01] John Hershberger and Subhash Suri. Vickrey
prices and shortest paths: What is an edge
worth? In Foundations of Computer Science,
2001. Proceedings. 42nd IEEE Symposium on,
pages 252–259. IEEE, 2001.

[HW12] Stephan Holzer and Roger Wattenhofer.
Optimal distributed all pairs shortest paths
and applications. In the Proc. of the Int’l
Symp. on Princ. of Dist. Comp. (PODC),
pages 355–364, 2012.

[KP95] Shay Kutten and David Peleg. Fast
distributed construction of k-dominating sets
and applications. In the Proc. of the Int’l
Symp. on Princ. of Dist. Comp. (PODC),
pages 238–251, 1995.

[LMR94] Frank Thomson Leighton, Bruce M Maggs,
and Satish B Rao. Packet routing and
job-shop scheduling in O(congestion+
dilation) steps. Combinatorica, 14(2):167–186,
1994.

[MMG89] Kavindra Malik, AK Mittal, and Santosh K
Gupta. The k most vital arcs in the shortest
path problem. Operations Research Letters,
8(4):223–227, 1989.

[NR99] Noam Nisan and Amir Ronen. Algorithmic
mechanism design. In Proceedings of the
thirty-first annual ACM symposium on Theory
of computing, pages 129–140. ACM, 1999.

[NSW97] Enrico Nardelli, Ulrike Stege, and Peter
Widmayer. Low-cost Fault-tolerant Spanning
Graphs for Point Aets in the Euclidean Plane.
1997.

[Pel00] David Peleg. Distributed Computing: A
Locality-sensitive Approach. Society for
Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[Pet05] Seth Pettie. Sensitivity analysis of minimum
spanning trees in sub-inverse-ackermann time.
Algorithms and Computation, pages 964–973,
2005.

[PP13] Merav Parter and David Peleg. Sparse
fault-tolerant BFS trees. In the Proceedings of
the Annual European Symposium on
Algorithms, pages 779–790, 2013.

[PP14] Merav Parter and David Peleg. Fault tolerant
approximate bfs structures. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages
1073–1092. SIAM, 2014.

[PR99] David Peleg and Vitaly Rubinovich. A
near-tight lower bound on the time complexity
of distributed MST construction. In Proc. of
the Symp. on Found. of Comp. Sci. (FOCS),
pages 253–, 1999.

[RZ12] Liam Roditty and Uri Zwick. Replacement
paths and k simple shortest paths in
unweighted directed graphs. ACM
Transactions on Algorithms (TALG), 8(4):33,
2012.

[SSS95] Jeanette P Schmidt, Alan Siegel, and Aravind
Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM
Journal on Discrete Mathematics,
8(2):223–250, 1995.

[Tar82] Robert Endre Tarjan. Sensitivity Analysis of
Minimum Spanning Trees and Shortest Path
Trees. Inf. Process. Lett., 14(1):30–33, 1982.

[Wil11] Virginia Vassilevska Williams. Faster
replacement paths. In Proceedings of the
twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1337–1346.
SIAM, 2011.

[WY13] Oren Weimann and Raphael Yuster.
Replacement paths and distance sensitivity
oracles via fast matrix multiplication. ACM
Transactions on Algorithms (TALG), 9(2):14,
2013.

	Introduction
	Related Work
	Works Related to FT-BFS Structures
	Works related to FT-MST Structures

	Fault-Tolerant BFS
	Naive Approaches
	The Intuition of Our Approach
	Our Algorithm

	Fault-Tolerant MST
	Warm Up: FT-MST in O(DMST) rounds
	FT-MST in O(D+nlogn) rounds
	Constructing the Segments and the Skeleton Tree

	References

