
Vertex Fault Tolerant Additive Spanners

Merav Parter ∗

June 9, 2015

Abstract

A fault-tolerant structure for a network is required to continue functioning following the
failure of some of the network’s edges or vertices. In this paper, we address the problem of
designing a fault-tolerant additive spanner, namely, a subgraph H of the network G such that
subsequent to the failure of a single vertex, the surviving part of H still contains an additive
spanner for (the surviving part of) G, satisfying dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + β
for every s, t, v ∈ V . Recently, the problem of constructing fault-tolerant additive spanners
resilient to the failure of up to f edges has been considered [9]. The problem of handling
vertex failures was left open therein. In this paper we develop new techniques for constructing
additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is
an FT-spanner with additive stretch 2 and O(n5/3) edges. Our second result is an FT-spanner
with additive stretch 6 and O(n3/2) edges. The construction algorithm consists of two main
components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying
procedure suitably adapted to failure prone settings. Finally, we also describe two constructions
for fault-tolerant multi-source additive spanners, aiming to guarantee a bounded additive stretch
following a vertex failure, for every pair of vertices in S×V for a given subset of sources S ⊆ V .
The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges).

1 Introduction

An (α, β)-spanner H of an unweighted undirected graph G is a spanning subgraph satisfying for
every pair of vertices s, t ∈ V that dist(s, t,H) ≤ α · dist(s, t,G) + β. When β = 0, the spanner
is termed a multiplicative spanner and when α = 1 the spanner is additive. Clearly, additive
spanners provide a much stronger guarantee than multiplicative ones, especially for long distances.
Constructions of additive spanners with small number of edges are currently known for β = 2, 4, 6
with O(n3/2), Õ(n7/5) and O(n4/3) edges respectively [1, 2, 5, 12, 15, 16]. This paper considers
a network G that may suffer a single vertex failure event, and looks for fault tolerant additive
spanners that maintain their additive stretch guarantee under failures. Formally, a subgraph H ⊆
G is a β-additive FT-spanner iff for every (s, t) ∈ V × V and for every failing vertex v ∈ V ,
dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + β. As a motivation for such structures, consider a situation
where it is required to lease a subnetwork of a given network, which will provide short routes from
every source s and every target t with additive stretch 2. In a failure-free environment one can
simply lease a 2-additive spanner H0 of the graph with Θ(n3/2) edges. However, if one of the
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vertices in the graph fails, some s − t routes in H0 \ {v} might be significantly longer than the
corresponding route in the surviving graph G \ {v}. Moreover, s and t are not even guaranteed to
be connected in H0 \ {v}. One natural approach towards preparing for such eventuality is to lease
a larger set of links, i.e., an additive FT-spanner.

The notion of fault-tolerant spanners for general graphs was initiated by Chechik at el. [11]
for the case of multiplicative stretch. Specifically, [11] presented algorithms for constructing an f -
vertex fault tolerant spanner with multiplicative stretch (2k− 1) and O(f2kf+1 ·n1+1/k log1−1/k n)
edges. Dinitz and Krauthgamer presented in [14], a randomized construction attaining an improved
tradeoff for vertex fault-tolerant spanners, namely, f -vertex fault tolerant k-spanner with Õ(f2 ·
n1+2/(k+1)) edges. Constructions of fault-tolerant spanners with additive stretch resilient to edge
failures were recently given by Braunschvig at el. [9]. They establish the following general result.
For a given n-vertex graph G, let H1 be an ordinary additive (1, β) spanner for G and H2 be a
(α, 0) fault tolerant spanner for G resilient against up to f edge faults. Then H = H1 ∪ H2 is a
(1, β(f)) additive fault tolerant spanner for G (for up to f edge faults) for β(f) = 2f(2β+α−1)+β.
Note that since in general the degree of a vertex in the graph might be as large as Θ(n), using
the construction of [9] by removing all edges incident to the failing vertex, might result with an
additive stretch of Θ(n). Fixing the number of edge faults to f = 1, yields constructions with an
additive stretch of 14 with O(n3/2 edges and an additive stretch of 38 with O(n4/3) edges. When
fixing the number of edges in H to be O(n3/4) edges and the number of edge faults to f = 1 yields
α = 5 and β = 6. Hence, in particular, there is no construction for additive stretch < 14 and o(n2)
edges. In addition, note that these structures are resilient only to edge failures as the techniques
of [9] cannot be utilized to protect even against a single vertex failure event. Indeed, the problem
of handling vertex failures was left open therein.

In this paper, we make a first step in this direction and provide additive FT-structures resilient
to the failure of a single vertex (and hence also edge) event. Our constructions provide additive
stretch 2 and 6 and hence provide an improved alternative also for the case of a single edge failure
event, compared to the constructions of [9].

The presented algorithms are based upon two important notions, namely, replacement paths
and the path-buying procedure, which have been studied extensively in the literature. For a source
s, a target vertex t and a failing vertex v ∈ V , a replacement path is the shortest s − t path
Ps,t,v that does not go through v. The vast literature on replacement paths (cf. [7, 17, 23, 25])
focuses on time-efficient computation of the these paths as well as their efficient maintenance in
data structures (a.k.a distance oracles).

Fault-resilient structures that preserve exact distances for a given subset of sources S ⊆ V
have been studied in [20], which defines the notion of an FT-MBFS structure H ⊆ G containing the
collection of all replacement paths Ps,t,v for every pair (s, t) ∈ S×V for a given subset of sources S
and a failing vertex v ∈ V . Hence, FT-MBFS structures preserve the exact s− t distances in G \ {v}
for every failing vertex v, for every source s ∈ S.

It is shown in [20] that for every graph G and a subset S of sources, there exists a (poly-time
constructible) 1-edge (or vertex) FT-MBFS structure H with O(

√
|S| · n3/2) edges. This result is

complemented by a matching lower bound showing that for sufficiently large n, there exist an n-
vertex graph G and a source-set S ⊆ V , for which every FT-MBFS structure is of size Ω(

√
|S| ·n3/2).

Hence exact FT-MBFS structures may be rather expensive. This last observation motivates the
approach of resorting to approximate distances, in order to allow the design of a sparse subgraph
with properties resembling those of an FT-MBFS structure.

2



The problem of constructing multiplicative approximation replacement paths P̃s,t,v (i.e., such

that |P̃s,t,v| ≤ α · |Ps,t,v|) has been studied in [3, 10, 6]. In particular its single source variant has
been studied in [4, 21, 8]. In this paper, we further explore this approach. For a given subset of
sources S, we focus on constructions of subgraphs that contain an approximate BFS structure with
additive stretch β for every source s ∈ S that are resistant to a single vertex failure.

Indeed, the construction of additive sourcewise FT-spanners provides a key building block of ad-
ditive FT-spanner constructions (in which bounded stretch is guaranteed for all pairs). We present
two constructions of sourcewise spanners with different stretch-size tradeoffs. The first construction
ensures an additive stretch 4 with O(n·|S|+(n/|S|)3) edges and the second construction guarantees
additive stretch 8 with O(n · |S|+ (n/|S|)2). As a direct consequence of these constructions, we get
an additive FT-spanner with stretch 6 and O(n3/2) edges and an additive sourcewise FT-spanner
with additive stretch 8 and O(n4/3) for at most O(n1/3) sources.

Additive spanners for specified pairs or sources where the objective is to construct a subgraph
H ⊆ G that satisfies the bounded additive stretch requirement only for a subset of pairs, are given
in [22, 18, 13, 19].

Contributions. This paper provides the first constructions for additive spanners resilient upon a
single vertex failure. In addition, it provides the first additive FT-structures with stretch guarantee
as low as 2 or 6 and with o(n2) edges.

Our constructions employ a modification of the path-buying strategy, which was originally de-
vised in [5] to provide 6-additive spanners with O(n4/3) edges. Recently, the path-buying strategy
was employed in the context of pairwise spanners [13].

The adaptation of the path-buying strategy to the vertex failure setting has been initiated in
[21] for the case of a single-source s and a single edge failure event. In this paper, we extend this
technique in two senses: (1) dealing with many sources and (2) dealing with vertex failures. In
particular, [21] achieves a construction of single source additive spanner with O(n4/3) edges resilient
to a single edge failure. In this paper, we extend this construction to provide a multiple source
additive spanners resilient to a single vertex failure, for O(n1/3) sources, additive stretch 8 and
O(n4/3) edges. In summary, we show the following.

Theorem 1.1 (2-additive FT-spanner) For every n-vertex graph G = (V,E), there exists a
(polynomially constructible) subgraph H ⊆ G of size O(n5/3) such that dist(s, t,H\{v}) ≤ dist(s, t,G\
{v}) + 2 for every s, t, v ∈ V .

Theorem 1.2 (4-additive sourcewise FT-spanner) For every n-vertex graph G = (V,E) and
a subset of sources S ⊂ V , there exists a (polynomially constructible) subgraph H ⊆ G of size
O(|S| ·n+(n/|S|)3) such that dist(s, t,H \{v}) ≤ dist(s, t,G\{v})+4 for every s ∈ S and t, v ∈ V .

Taking |S| = O(
√
n), Thm. 1.2 can be shown to yield the following.

Theorem 1.3 (6-additive FT-spanner) For every n-vertex graph G = (V,E), there exists a
(polynomially constructible) subgraph H ⊆ G of size O(n3/2) such that dist(s, t,H\{v}) ≤ dist(s, t,G\
{v}) + 6 for every s, t, v ∈ V .

Theorem 1.4 (8-additive sourcewise FT-spanner) For every n-vertex graph G = (V,E) and
a subset of sources S ⊂ V where |S| = O(n1/3), there exists a (polynomially constructible) subgraph
H ⊆ G of size O(n4/3) such that dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + 8 for every s ∈ S and
t, v ∈ V .
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Techniques. Our main technical contribution is in adapting the path-buying technique to the
fault-tolerance setting. The high-level idea of the basic path-buying procedure (without faults) is
as follows. In an initial clustering phase, a suitable clustering of the vertices is computed, and an
associated subset of edges is added to the spanner. Then comes a path-buying phase, where they
consider an appropriate sequence of paths, and decide whether or not to add each path into the
spanner. Each path P has a cost, given by the number of edges of p not already contained in the
spanner, and a value, measuring P ’s help in satisfying the considered set of constraints on pairwise
distances. The considered path P is added to the spanner iff its value is sufficiently larger than
its cost. In our adaptation to the FT-setting, an FT-clustering graph is computed first, providing
vertices with a sufficiently high degree two clusters to which it belongs. Every cluster consists
of a center vertex v connected via a star to a subset of its heavy neighbors. In our design not
all replacement paths are candidates to be bought in the path-buying procedure. Let π(s, t) be
an s − t shortest-path between a source s and a clustered vertex t. We divide the failing events
on π(s, t) into two classes depending on the position of the failing vertex on π(s, t) with respect
to the least common ancestor (LCA) `(s, t) of t’s cluster members in the BFS tree rooted at s.
Specifically, a vertex fault π(s, t) that occurs on `(s, t) is handled directly by adding the last edge
of the corresponding replacement path to the spanner. Vertex failures that occur strictly below
the LCA, use the shortest-path π(s, x) between s and some member x in the cluster of t such that
the failing vertex v does not appear on thr π(s, x) path. The approximate replacement path will
follow π(s, x) and then use the intercluster path between x and t. The main technicality is when
concerning the complementary case when that failing event occurs strictly above `(s, t). These
events are further divided into two classes depending on the structure of their replacement path.
Some of these replacement paths would again be handled directly by collecting their last edges into
the structure and only the second type paths would be candidates to be bought by the path-buying
procedure.

2 Preliminaries

Notation. Throughout, we assume that the shortest-paths in the given graph G = (V,E) are
unique. Specifically, the shortest path ties are broken in a consistent manner so that the subpath
of a shortest-path is a shortest path itself. For a subgraph G′ ⊆ G, let π(u, v,G′) denote the u− v
shortest-path in G′.

Given a graph G = (V,E), a vertex pair s, t and an edge weight function W : E(G) → R+,
let SP (s, t,G,W ) be the set of s − t shortest-paths in G according to the edge weights of W .
Throughout, we make use of (an arbitrarily specified) weight assignment W that guarantees the
uniqueness of the shortest paths1. Hence, SP (s, t,G′,W ) contains a single path for every s, t ∈ V
and for every subgraph G′ ⊆ G, we override notation and let SP (s, t,G,W ) be the unique s − t
path in G according to W . When the shortest-path are computed in G, let π(s, t) = SP (s, t,G,W ).
To avoid cumbersome notation, we may omit W and simply refer to π(s, t) = SP (s, t,G,W ). For
a subgraph G′ ⊆ G, let V (G′) (resp., E(G′)) denote the vertex set (resp. edge set) in G′.

For a given source node s, let T0(s) =
⋃
t∈V π(s, t) be a shortest paths (or BFS) tree rooted at

s. For a set S ⊆ V of source nodes, let T0(S) =
⋃
s∈S T0(s) be a union of the single source BFS

trees. For a vertex t ∈ V and a subset of vertices V ′ ∈ V , let T (t, V ′) =
⋃
u∈V ′ π(u, t) be the union

of all {t} × V ′ shortest-paths (by the uniqueness of W , T (t, V ′) is a subtree of T0(t)). Let Γ(v,G)

1The role of the weights W is to perturb the edge weights by letting W (e) = 1+ε for a random infinitesimal ε > 0.
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be the set of v’s neighbors in G. Let E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident to
v in the graph G and let deg(v,G) = |E(v,G)| denote the degree of node v in G. For a given
graph G = (V,E) and an integer ∆ ≤ n, a vertex v is ∆-heavy if deg(v,G) ≥ ∆, otherwise it is
∆-light. When ∆ is clear from the context, we may omit it and simply refer to v as heavy or light.
For a graph G = (V,E) and a positive integer ∆ ≤ n, let V∆ = {v | deg(v,G) ≥ ∆} be the set
of ∆-heavy vertices in G. (Throughout, we sometimes simplify notation by omitting parameters
which are clear from the context.) For a subgraph G′ = (V ′, E′) ⊆ G (where V ′ ⊆ V and E′ ⊆ E)
and a pair of vertices u, v ∈ V , let dist(u, v,G′) denote the shortest-path distance in edges between
u and v in G′. For a path P = [v1, . . . , vk], let LastE(P ) be the last edge of P , let |P | denote its
length and let P [vi, vj ] be the subpath of P from vi to vj . For paths P1 and P2, denote by P1 ◦ P2

the path obtained by concatenating P2 to P1. For “visual” clarity, the edges of these paths are
considered throughout, to be directed away from the source node s. Given an s− t path P and an
edge e = (x, y) ∈ P , let dist(s, e, P ) be the distance (in edges) between s and y on P . In addition,
for an edge e = (x, y) ∈ T0(s), define dist(s, e) = i if dist(s, x,G) = i − 1 and dist(s, y,G) = i. A
vertex w is a divergence point of the s-v paths P1 and P2 if w ∈ P1 ∩P2 but the next vertex u after
w (i.e., such that u is closer to v) in the path P1 is not in P2.

Basic Tools. We consider the following graph structures.

Definition 2.1 ((α, β, S) FT-spanner) A subgraph H ⊆ G is an (α, β, S) FT-spanner structure
with respect to S if for every (s, t) ∈ S × V and every v ∈ V , dist(s, t,H \ {v}) ≤ α · dist(s, t,G \
{v}) + β .

Definition 2.2 ((α, β) FT-spanners) A subgraph H ⊆ G is an (α, β) FT-spanner if it is an
(α, β, V ) FT-spanner for G with respect to V .

Throughout, we restrict attention to the case of a single vertex fault. When α = 1, H is termed
(β, S)− additive FT-spanner. In addition, in case where S = V , H is an β-additive FT-spanner.

FT-Clustering Graph G∆. For a subset Z ⊆ V , a heavy vertex v ∈ V∆ is said to be clustered
by Z if |Γ(v,G) ∩ Z| ≥ 2. When Z is clear from the context, we simply say that v is clustered.
A subset Z ⊆ V is an FT-center set for a subset V ′ of ∆-heavy vertices, if every vertex v ∈ V ′ is
clustered by Z. The FT-center set Z is constructed in the following manner. Initially, set Z = ∅.
Let V ′ be the subset of unclustered heavy vertices by Z. Hence, initially V ′ = V∆. As long as there
exists a vertex u ∈ V \Z that has at least ∆ neighbors in V ′, add u to Z and remove the clustered
vertices of Γ(u,G)∩ V ′ from V ′. Let VC = V∆ \ V ′ be the set of clustered heavy vertices by Z. For
every clustered vertex v ∈ VC , let Z(v) = {z1(v), z2(v)} be two arbitrary neighbors of v in Z.

We then add to the graph G∆, the set of all edges incident to the unclustered vertices in V \VC ,
and in-addition connect each clustered vertex v ∈ VC to Z(v). Formally,

G∆ =
⋃
v∈VC

{(v, z1(v)), (v, z2(v))} ∪
⋃

v∈V \VC

E(v,G).

Note that every edge in G \G∆ is incident to a clustered vertex. For every center vertex z ∈ Z,
let Cz be the cluster consisting of z and all the clustered vertices it represents, i.e., Cz = {z}∪{v ∈
VC | z ∈ Z(v)}. Note that every center z is connected via a star to each of the vertices in its
cluster Cz, hence the diameter of each cluster Cz in G∆ is 2.
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For a failing vertex v and a clustered vertex t, let zv(t) ∈ Z(t) \ {v} be a cluster center of t in
G \ {v}. In particular, if z1(t) 6= v, then zv(t) = z1(t), else zv(t) = z2(t). Let Cv(t) be the cluster
centered at zv(t). Note that since every clustered vertex has two cluster centers z1(t) and z2(t),
we have the guarantee that at least one of them survives the single vertex fault event. The next
observation summarizes some important properties of the clustering graph.

Observation 2.3 (1) Every missing edge e ∈ G \G∆ is incident to a clustered vertex v.

(2) The diameter of every cluster Cz is 2.

(3) The FT-center set Z ⊆ V is of size |Z| = O(n/∆).

(4) |E(G∆)| = O(∆ · n).

Proof: Claims (1-2) are immediate. Consider claim (3). Since every center in Z has at least ∆
neighbors in V∆ and since every vertex has two neighbors in Z before removing it from V ′ it holds
that |Z| · ∆ ≤ 2n hence |Z| ≤ 2n/∆. Consider claim (4). The edges incident to light vertices is
bounded by ∆ ·n. Hence, it remains to bound the edges incident to the subset of unclustered heavy
vertices V ′ = V∆ \ VC . Note that every vertex u ∈ V \ Z has a most ∆ − 1 neighbors in V ′. In
addition, every vertex v in V ′ has at most one neighbor in Z, hence the total number of edges in
E(V ′, G) is bounded by ∆ · n. The observation follows.

Replacement Paths. For a source s, a target vertex t and a vertex v ∈ G, a replacement path
is the shortest s− t path Ps,t,v ∈ SP (s, t,G \ {v}) that does not go through v.

Observation 2.4 Every path Ps,t,v contains at most 3n/∆ ∆-heavy vertices.

Proof: Note that

3n ≥ 3 ·

∣∣∣∣∣∣
⋃

x∈Ps,t,v∩V∆

Γ(x,G \ {v})

∣∣∣∣∣∣ ≥
∑

x∈Ps,t,v∩V∆

deg(x,G \ {v}) ≥ |Ps,t,v ∩ V∆| ·∆ ,

where the second inequality follows by the fact the every vertex u ∈ V \{v} has at most 3 neighbors
on Ps,t,v. The observation follows.

New-ending replacement paths. A replacement path Ps,t,v is called new-ending if its last edge is
different from the last edge of the shortest path π(s, t). Put another way, a new-ending replacement
path Ps,t,v has the property that once it diverges from the shortest-path π(s, t), it joins π(s, t) again
only at the final vertex t. It is shown in [20] that for a given graph G and a set S of source vertices,
a structure H ⊆ G containing a BFS tree rooted at each s ∈ S plus the last edge of each new-ending
replacement path Ps,t,v for every (s, t) ∈ S × V and every v ∈ V , is an FT-MBFS structure with
respect to S. Our algorithms exploit the structure of new-ending replacement paths to construct
(β, S)-additive FT-spanners. Essentially, a key ingredient in our analysis concerns with collecting
the last edges from a subset of new-ending replacement paths as well as bounding the number of
new-ending paths Ps,t,v whose detour segments intersect with π(s′, t) \ {t} for some other source
s′ ∈ S.
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The basic building block. Our constructions of β-additive FT-spanners, for β ≥ 2, consist of
the following two building blocks: (1) an FT-clustering graph G∆ for some parameter ∆, and (2)
an (β − 2, Z)-additive FT-spanner Hβ−2(Z) where Z is an FT-center set (i.e., cluster centers) for
the vertices.

Lemma 2.5 Let β ≥ 2 and H = G∆ ∪ Hβ−2(Z) where Z is an FT-center set for the clustered
heavy vertices VC . Then H is an β additive FT-spanner.

Proof: Consider vertices u1, u2, u3 ∈ V . Let P ∈ SP (u1, u2, G \ {u3}) be the u1 − u2 replacement
path in G \ {u3} and let (x, y) be the last missing edge on P that is not in H (i.e., closest to u2).
Since G∆ ⊆ H, by Obs. 2.3(1), y is a clustered vertex. Let z = zu3(y) be the cluster center of y in
G \ {u3}, and consider the following u1− u2 path P3 = P1 ◦P2 where P1 ∈ SP (u1, z,H \ {u3}) and
P2 = (z, y)◦P [y, u2]. Clearly, P3 ⊆ H\{u3}, so it remains to bound its length. Since Hβ−2(Z) ⊆ H,
it holds that |P1| ≤ dist(u1, z,G \ {u3}) + β − 2. Hence,

dist(u1, u2, H \ {u3}) ≤ |P3| = |P1|+ |P2|
≤ dist(u1, z,G \ {u3}) + β − 2 + dist(y, u2, G \ {u3}) + 1

≤ dist(u1, y,G \ {u3}) + dist(y, u2, G \ {u3}) + β

≤ |P |+ β = dist(u1, u2, G \ {u3}) + β ,

where the second inequality follows by the triangle inequality using the fact that the edge (z, y)
exists in H \ {u3}. The lemma follows.

3 Additive Stretch 2

We begin by considering the case of additive stretch 2. We make use of the construction of FT-MBFS
structures presented in [20].

Fact 3.1 ([20]) There exists a polynomial time algorithm that for every n-vertex graph G = (V,E)
and a source set S ⊆ V constructs an FT-MBFS structure H0(S) from each source si ∈ S, tolerant
to one edge or vertex failure, with a total number of O(

√
|S| · n3/2) edges.

Set ∆ = dn2/3e and let Z be an FT-center set (see Obs. 2.3(3)). Let H0(Z) be an FT-MBFS structure
with respect to the source set Z as given by Fact 3.1. Then, let H = G∆∪H0(Z). Thm. 1.1 follows
by Lemma 2.5, Obs. 2.3 and Fact 3.1.

4 Sourcewise additive FT-spanners

In this section, we present two constructions of (4, S) and (8, S) additive FT-spanners with respect
to a given source set S ⊆ V . The single source and single edge failure case (where |S| = 1) is
considered in [21], which provides a construction of a single source FT-spanner resilient against
single edge failure with O(n4/3) edges. The current construction deals with single vertex failures
and increases the stretch to 8 while providing a bounded stretch for O(n1/3) sources with the same
order of edges, O(n4/3).
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4.1 Sourcewise spanner with additive stretch 4

Theorem 4.1 There exists a subgraph H4(S) ⊆ G with O(|S| · n + (n/|S|)3) edges satisfying
dist(s, t,H4(S) \ {v}) ≤ dist(s, t,G \ {v}) + 4 for every (s, t) ∈ S × V and v ∈ V .

The following notation is useful in our context. Let C = {Cz | z ∈ Z} be the collection of
clusters corresponding to the FT-centers Z. For a source s ∈ S and a cluster Cz ∈ C rooted at
FT-center z ∈ Z, let LCA(s, Cz) be the least common ancestor (LCA) of the cluster vertices of Cz
in the BFS tree T0(s) rooted at s. Let π(s, Cz) be the path connecting s and LCA(s, Cz) in T0(s).

4.1.1 Algorithm Cons4SWSpanner for constructing H4(S) spanner

Step (0): Replacement-path definition. For every (s, t) ∈ S × V and every v ∈ V , let
Ps,t,v = SP (s, t,G \ {v},W ).

Step (1): Clustering. Set ∆ = |S| and let Z ⊆ V be an FT-center set of size O(n/∆) (see Obs.
2.3(3)). Let VC be the subset of heavy clustered vertices. C = {Cz | z ∈ Z} be the collection of
|Z| clusters. For a clustered vertex t, let C1(t), C2(t) be its two clusters in C corresponding to the
centers z1(t) and z2(t) respectively. The initial spanner is then given by H̃0 = T0(S) ∪G∆.

Step (2): Shortest-path segmentation. For every (s, t) ∈ S×VC , the algorithm uses the first
cluster of t, C1(t), to segment the path π(s, t). Define

πfar(s, t) = π(s, `(s, t)) \ {`(s, t)} and πnear(s, t) = π(`(s, t), t) \ {`(s, t)},

where `(s, t) = LCA(s, C1(t)) is the LCA of the cluster C1(t) in the tree T0(s). Hence, π(s, t) =
πfar(s, t) ◦ `(s, t) ◦ πnear(s, t). The algorithm handles separately vertex faults in the near and far
segments. Let V near(s, t) = V (πnear(s, t)) and V far(s, t) = V (πfar(s, t)).

Step (3): Handling faults in the cluster center and the LCA. Let

Elocal(t) = {LastE(Ps,t,v) | s ∈ S, v ∈ {z1(t), LCA(s, C1(t))}} and Elocal =
⋃
t∈VC

Elocal(t),

be the last edges of replacement-paths protecting against the failure of the primary cluster center
z1(t) and the least common ancestor LCA(s, C1(t)).

Step (4): Handling far vertex faults V far(s, t). Consider the s− t new-ending replacement-
paths Ps,t,v of a clustered vertex t. Let bs,t,v be the unique divergence point of Ps,t,v from π(s, t) (the
uniquness of the divergence point is guaranteed by the uniquness of the shortest-paths, as shown in
the analysis). Let Ds,t,v = Ps,t,v[bs,t,v, t] denote the detour segment and let D−s,t,v = Ds,t,v \ {bs,t,v}
denote the detour segment excluding the divergence point. For every clustered vertex t, let Pfar(t)
be the collection of new-ending2 s − t paths protecting against vertex faults in the far segments,
i.e., Pfar(t) = {Ps,t,v | s ∈ S, LastE(Ps,t,v) /∈ T0(S) and v ∈ V far(s, t)}.

2actually, it would be sufficient to consider only the paths whose last edge is missing in the current spanner.
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The algorithm divides this set into two subsets Pfardep (t) and Pfarindep(t) depending on the struc-

ture of the partial detour segment D−s,t,v. A new-ending path Ps,t,v is dependent if D−s,t,v intersects
π(s′, t) \ {t} for some s′ ∈ S, i.e., for a dependent path Ps,t,v, it holds that

V (D−s,t,v) ∩ V (T (t, S)) 6= {t} . (1)

Otherwise, it is independent. Let

Pfardep (t) = {Ps,t,v ∈ Pfar(t) | V (D−s,t,v) ∩ V (T (t, S)) 6= {t}}

be the set of all S × {t} dependent paths and let Pfarindep(t) = Pfar \ Pfardep (t) be the set of

independent paths.

Step (4.1): Handling dependent new-ending paths. The algorithm simply takes the last
edges Efardep(t) of all dependent replacement paths where Efardep(t) = {LastE(P ) | P ∈ Pfardep (t)}.
Let Efardep =

⋃
t∈VC E

far
dep(t).

In the analysis we show that dependant paths have a special structure which imposes a con-
straints on the cardinality of Efardep(t).

Step (4.2): Handling independent new-ending paths. The algorithm employs a modified
path-buying procedure on the collection Pfarindep =

⋃
t∈VC P

far
indep(t) of new-ending independent

paths. The paths of Pfarindep are considered in some arbitrary order. A path P ∈ Pfarindep is

bought, if it improves the pairwise cluster distances in some sense. Starting with

G0 = T0(S) ∪G∆ ∪ Elocal ∪ Efardep , (2)

at step τ ≥ 0, the algorithm is given Gτ ⊆ G and considers the path Pτ = Ps,t,v. Let e = (x, y)
be the first edge on Pτ which is not in E(Gτ ) (where x is closer to s). Note that since G∆ ⊆ G0,
both x and t are clustered. Recall that for a clustered vertex u and a failing vertex v, Cv(u) is
the cluster of u centered at zv(u) ∈ Z(u) \ {v}. For every cluster C, let Vf (C) be the collection of
vertices appearing on the paths π(s, C) = π(s, LCA(s, C)) for every s ∈ S excluding the vertices of
the cluster. That is,

Vf (C) =
⋃
s∈S

V (π(s, C)) \ C. (3)

Let C1,τ = Cv(x) be the cluster of x in G∆ \ {v} and C2,τ = Cv(t) be the cluster of t in G∆ \ {v}.
The path Pτ is added to Gτ resulting in Gτ+1 = Gτ ∪ Pτ , only if

dist(x, t, Pτ ) < dist(C1,τ , C2,τ , Gτ \ Vf (Cv(t))). (4)

Let τ ′ = |Pfarindep| be the total number of independent paths considered to be bought by the

algorithm. Then, the algorithm outputs H4(S) = Gτ ′ . This completes the description of the
algorithm.
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Analysis. Throughout, we restricted attention to s − t replacement paths of clustered vertices
t ∈ VC . Let bs,t,v be the first divergence point of Ps,t,v and π(s, t).

Lemma 4.2 For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ T0(S), it holds that: (a)
v ∈ V (π(s, u)). (b) V (Ps,t,v[bs,t,v, u]) ∩ V (π(s, u)) = {bs,t,v, u}.

Proof: Begin with (a). Assume towards contradiction otherwise. By the uniqueness of the weight
assignment W , we get that Ps,t,v[s, u] = SP (s, u,G \ {v},W ) = π(s, u). We therefore get a contra-
diction to the fact that LastE(Ps,t,v) not in T0(S). We next prove (b) and show that the divergence
point bs,t,v is unique. By the definition of bs,t,v, it occurs on π(s, t) above the failing vertex v. Since
by Lemma 4.2, v ∈ V (π(s, u)), it also holds that bs,t,v ∈ V (π(s, u)). Assume towards contradiction
that there exists an additional point

w ∈ (V (Ps,t,v[bs,t,v, u]) ∩ V (π(s, u))) \ {bs,t,v, u}.

There are two cases to consider (b1) v ∈ V (π(bs,t,v, w)), in such a case, v /∈ V (π(w, u)) and hence
π(w, u) = SP (w, u,G\{v},W ) = Ps,t,v[w, u], contradicting the fact that LastE(Ps,t,v[s, u]) /∈ T0(S).
(b2) v ∈ V (π(w, u)). In such a case, v /∈ V (π(bs,t,v, w)) and hence π(bs,t,v, w) = SP (bs,t,v, w,G \
{v},W ) = Ps,t,v[bs,t,v, w], contradicting the fact that bs,t,v is a divergence point from π(s, t). The
lemma holds.

The next lemma shows that a new-ending Ps,t,v path whose last edge is not in G0 (see Eq. (2)),

protecting against faults in the near segment, has a good approximate replacement path P̃s,t,v in
G0.

Lemma 4.3 If LastE(Ps,t,v) /∈ G0 and v ∈ V near(s, t), then dist(s, t,G0 \ {v}) ≤ dist(s, t,G \
{v}) + 4.

Proof: Since v ∈ V near(s, t), i.e., the failing vertex occurs strictly below LCA(s, C1(t)) on π(s, t),
there exists a vertex w ∈ C1(t) such that v /∈ V (π(s, w)) (hence in particular w 6= v). See Fig.
1. Since LastE(Ps,t,v) /∈ Elocal, it holds that v 6= z1(t). Consider the following s − t path
P = π(s, w) ◦ [w, z1(t), t]. Clearly, P ⊆ (T0(S) ∪ G∆) \ {v}. By the triangle inequality, as the
diameter of the cluster C1(t) is 2, it holds that

dist(s, t, (T0(S) ∪G∆) \ {v}) ≤ dist(s, w,G) + 2 ≤ dist(s, t,G) + 4 ≤ dist(s, t,G \ {v}) + 4 .

The lemma follows.

The following auxiliary lemma is useful. It considers a new-ending path Ps,t,v where D−s,t,v =
Ds,t,v \ {bs,t,v} and (x, y) is the first missing edge in Ps,t,v \G0 (where x is closer to s).

Lemma 4.4 For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ G0, it holds that: (a)
Cv(u) = C1(u). (b) Ps,t,v[x, t] ⊆ D−s,t,v.

Proof: Begin with (a). By the definition of the weight assignment W , it holds that Ps,t,v[s, u] =

Ps,u,v = SP (s, u,G \ {v},W ). Since LastE(Ps,t,v[s, u]) /∈ Elocal, it holds that v 6= z1(u), con-
cluding that zv(u) = z1(u) and hence Cv(u) = C1(u). Claim (a) follows. Consider claim (b). Let
b = bs,t,v. We show that x 6= b, which implies the claim. By Lemma 4.2, v ∈ V (π(s, y)). Since b ap-
pears above v on π(s, t), b is a common vertex in both π(s, t) and π(s, y). Hence, the s− y shortest
path has the following form: π(s, y) = π(s, b) ◦ π(b, v) ◦ π(v, y). Since b 6= v 6= y, dist(b, y,G) ≥ 2,
and hence also dist(b, y,G \ {v}) ≥ 2, concluding that b 6= x. The lemma follows.
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Figure 1: Handling near vertex faults. Schematic illustration of an approximate replacement path
in (T0∪G∆)\{v}. Shown is an π(s, t) whose failing vertex v occurs strictly below the least common
ancestor LCA(s, C1(t)). The alternative replacement path exploits the surviving π(s, w) ⊆ T0(S)
path for w ∈ C1(t) and the intracluster path connecting w and v through z = zv(t).

Corollary 4.5 Let t ∈ VC . For every Ps,t,v ∈ Pfarindep(t), Ps,t,v[x, t]∩ Vf (Cv(t)) = ∅ where x is the

first vertex of D−s,t,v.

Proof: Since Ps,t,v is independent, by Eq. 1, D−s,t,v ∩ T (t, S) = {t}. Since t ∈ Cv(t), by Eq. (3),

t /∈ Vf (Cv(t)) and hence D−s,t,v ∩ Vf (Cv(t)) = ∅. The corollary follows Lemma 4.4(b).

Correctness analysis of H4(S). We now show that H4(S) is a (4, S) FT-spanner.

Lemma 4.6 H4(S) is a (4, S) FT-spanner.

Proof: Fix a source s ∈ S and let H = H4(S). We then show that for every pair (t, v) ∈ V × V it
holds that

dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + 4 . (5)

To show this, define et,v to be the last edge of Ps,t,v = SP (s, t,G\{v},W ) that is missing in H and
let d(t, v) = dist(s, et,v, Ps,t,v) be the distance of et,v from s on Ps,t,v, for every pair (t, v) ∈ V × V .
The proof is shown by induction on d(t, v). For d(t, v) = 0, Ps,t,v ⊆ H and Eq. (5) holds vacuously.
Assume that the claim holds for all (t, v) pairs with d(t, v) ≤ d− 1 and consider some pair (t0, v0)
pair with d(t0, v0) = d. Let et0,v0 = (u, t′) be the last missing edge on Ps,t0,v0 . We distinguish
between two cases.
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Case (1) d(t′, v0) ≤ d− 1. Let P ′′ ∈ SP (s, t′, H \ {v0}). By induction assumption, it holds that

|P ′′| ≤ dist(s, t′, G \ {v0}) + 4 (6)

= |Ps,t0,v0 [s, t′]|+ 4.

We now consider the following s − t0 replacement path Q = P ′′ ◦ Ps,t0,v0 [t′, t0]. By definition of
(t′, v0) (last missing edge on Ps,t′,v0), Q ⊆ H \ {v0}. In addition,

|Q| = |P ′′|+ |Pt0,v0 [t′, t0]| ≤ |Ps,t0,v0 [s, t′]|+ 4 + |Ps,t0,v0 [t′, t0]|
= |Ps,t0,v0 |+ 4 = dist(s, t0, G \ {v0}) + 4 ,

where the inequality follows by Eq. (6), and Eq. (5) holds as required.

Case (2) d(t′, v0) ≥ d. In this case, since |Ps,t′,v0 | = |Ps,t0,v0 |, d(t′, v0) = d. Hence, the last
edge of Ps,t′,v0 is not in H. Since π(s, t′) ⊆ H, we have that the failing vertex v0 occurs on the
shortest-path π(s, t′). Since the last edge of Ps,t′,v0 = Ps,t0,v0 [s, t′] is missing in H, by the fact that
the clustering graph G∆ is in H, by Obs. 2.3(1), it holds that t′ is a clustered vertex. By step (2),
since Elocal ⊆ H, it holds that v0 /∈ {z1(t′), LCA(s, C1(t′))}. Combining with Lemma 4.3, it holds
that v0 /∈ V near(s, t′). Hence, v0 ∈ V far(s, t′). We next claim that Ps,t′,v0 is an independent path.

This holds since the last edges of t0’s dependant replacement paths Efardep(t0) were added to H in

step (4.1). Thus Ps,t′,v0 is an independent path and hence it was considered to be bought in the
path-buying procedure of Step (4.2). If the algorithm bought Ps,t′,v0 , Eq. (5) holds. So, it remains
to consider the case where the algorithm did not buy this path. Let τ be the iteration at which
Pτ = Ps,t′,v0 was considered to be purchased in the path-buying procedure. Let Gτ be the current
spanner in iteration τ . Let x be the vertex incident to the first missing edge on Pτ \ E(Gτ ).

Let C0 = Cv0(t′) be the cluster of t′ in G∆ \{v0}. Since LastE(Pτ ) /∈ Elocal, by Lemma 4.4(a)
C0 = C1(t′) and zv0(t′) = z1(t′). By definition,

v0 ∈ V far(s, t′) = π(s, C0) \ {LCA(s, C0)}.

Hence, the failing vertex is not in the cluster C0, i.e., v0 /∈ C0 and by Eq. (3),

v0 ∈ Vf (C0). (7)

Since Pτ was not bought by the algorithm, by Eq. (4), we have that

dist(Cv0(x), C0, Gτ \ Vf (C0)) ≤ dist(x, t′, Pτ ). (8)

Let w1 ∈ Cv0(x) and w2 ∈ C0 be an arbitrary closest pair in Gτ \ Vf (C0) from the clusters Cv0(x)
and C0 respectively satisfying that dist(w1, w2, Gτ \ Vf (C0)) = dist(Cv0(x), C0, Gτ \ Vf (C0)).

Let z1 (resp., z2) be the cluster center of Cv0(x) (resp., C0). Consider the following s − t′

replacement path in H \ {v0}, P5 = P1 ◦ P2 ◦ P3 ◦ P4 where P1 = Pτ [s, x], P2 = [x, z1, w1] and
P3 ∈ SP (w1, w2, Gτ \ Vf (C0)) and P4 = [w2, z2, t

′]. For an illustration see Fig. 2. We first claim
that P5 ⊆ H \ {v0}. Since x is incident to the first missing edge on Pτ , P1 is in H \ {v0}. By Eq.
(7), v0 ∈ Vf (C0) and since w1, w2 ⊆ Gτ \ Vf (C0) it also holds that w1, w2 6= v0. Finally note that
Gτ , G∆ ⊆ H, hence P2, P4 ⊆ H \ {v0}. We next bound the length of P5.

dist(s, t′, H \ {v0}) ≤ |P5| ≤ dist(s, x,G \ {v0}) + 2 + dist(w1, w2, Gτ \ Vf (C0)) + 2

= dist(s, x,G \ {v0}) + dist(Cv0(x), C0, Gτ \ Vf (C0)) + 4

≤ dist(s, x,G \ {v0}) + dist(x, t′, Pτ ) + 4 (9)

= |Ps,t′,v|+ 4 = dist(s, t′, G \ {v0}) + 4,
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where Eq. (9) follows by Eq. (8). Eq. (5) holds for the pair (t′, v0), and hence also for the pair
(t′, v0) (as (u, t′) is the last missing edge on Ps,t0,v0 . The claim holds.
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Figure 2: Schematic illustration of the path-buying procedure of Alg. Cons4SWSpanner. Shown
is an s − t path Pτ = Ps,ti,v0 considered to be bought in time τ . The green paths correspond to
shortest-paths in T0(s) and the red edges correspond to missing edges on Pτ \ E(Gτ ). The first
missing edge on Pτ \ E(Gτ ) is incident to x. If Pτ was not bought, then there exists a short route
between a pair of vertices w1 and w2 belonging to Cv0(x) and Cv0(ti) (respectively) in H \ {v0}.

Size analysis of H4(S). We proceed with the size analysis. Consider Step (3). Since Elocal(t)
includes for every source s ∈ S at most two last edges of the s − t replacement-paths protecting
against the failing of z1(t) and LCA(s, C1(t)), it holds that

Observation 4.7 For every t ∈ VC , |Elocal(t)| = O(|S|), hence |Elocal| = O(|S| · n).

Bounding the number of last edges in Efardep(t). We now turn to bound the number of edges

added due to step (4.1), i.e., the last edges of new-ending dependent paths Ps,t,v protecting against

the faults in the far segment πfar(s, t). To bound the number of edges in Efardep(t), consider the

partial BFS tree rooted at t, T (t, S) ⊆ T0(t), whose leaf set is contained in the vertex set S where
T (t, S) =

⋃
s∈S π(s, t). It is convenient to view this tree as going from the leafs towards the root,

where the root t is at the bottom and the leafs are on the top of the tree. Let V + = S ∪ {u ∈
T (t, S) | deg(u, T (t, S)) ≥ 3}, be the union of S and the vertices with degree at least 3 in the tree
T (t, S). We have that |V +| < 2|S|. A pair of vertices x, y ∈ V + is adjacent if their shortest-path
π(x, y) is contained in the tree T (t, S) and it is free from any other V + vertex, i.e, π(x, y) ⊆ T (t, S)
and π(x, y) ∩ V + = {x, y}. Let Π(V +) = {π(x, y) | x, y ∈ V + and x, y are adjacent } be the
collection of paths between adjacent pairs.
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Observation 4.8 (1) T (t, S) = Π(V +). (2) Π(V +) consists of at most 2|S|+ 1 paths π(x, y) (i.e.,
there are at most 2|S|+ 1 adjacent pairs).

To bound |Efardep(t)|, we first claim that every two dependent replacement paths with the same

divergence point have the same last edge.

Lemma 4.9 For every two dependent paths Ps1,t,v1 , Ps2,t,v2 ∈ Pfardep (t), if bs1,t,v1 = bs2,t,v2 then

LastE(Ps1,t,v1) = LastE(Ps1,t,v2).

Proof: Let b = bs1,t,v1 = bs2,t,v2 . Since b ∈ V (π(s1, t)) ∩ V (π(s2, t)) it holds that π(si, t) =
π(si, b) ◦ π(b, t) for i ∈ {1, 2}. In addition, since Psi,t,vi [si, b] = π(si, b) for i ∈ {1, 2}, it holds that
both failing vertices v1 and v2 occur in the common segment π(b, t). Recall that Psi,t,vi is a new-
ending path, hence by the definition of the divergence point b (see Lemma 4.2(b)), it holds that
V (Psi,t,vi [b, t])∩V (π(b, t)) = {b, t} and hence both detours are free from the failing vertices. Hence,
Ps1,t,v1 [b, t] = Ps2,t,v2 [b, t] = SP (b, t, G \ {v1, v2},W ). We get that LastE(Ps1,t,v1) = LastE(Ps2,t,v2)
as needed.

Since our goal is to bound the number of last edges of the new ending dependent paths Pfardep (t),

to avoid double counting, we now restrict attention to Qfar(t), a collection of representative paths
in Pfardep (t) each ending with a distinct new edge from Efardep(t). Formally, for each new edge

e ∈ Efardep(t), let P (e) be an arbitrary path in Pfardep (t) satisfying that LastE(P (e)) = e. Let

Qfar(t) = {P (e), e ∈ Efardep(t)} (hence |Qfar(t)| = |Efardep(t)|). From now on, we aim towards

bounding the cardinality of Qfar(t). Let DP = {bs,t,v | Ps,t,v ∈ Qfar(t)} be the set of divergence

points of the new ending paths in Qfar(t). By Lemma 4.9, it holds that in order to bound the
cardinality of Pfardep (t), it is sufficient to bound the number of distinct divergence points. To do

that, we show that every path π(x, y) of two adjacent vertices x, y ∈ V +, contains at most one
divergence point in DP \ V +.

Lemma 4.10 |π(x, y) ∩ (DP \ V +)| ≤ 1 for every π(x, y) ∈ Π(V +).

Proof: Assume, towards contradiction, that there are two divergence points bs1,t,v1 and bs2,t,v2 on
some path π(x, y) for two adjacent vertices x, y ∈ V +. For ease of notation, let Pi = Psi,t,vi , bi =
bsi,t,vi , Di = Dsi,t,vi and D−i = Di \ {bi} for i ∈ {1, 2}. Without loss of generality, assume the
following: (1) y is closer to t than x and (2) b2 is closer to t than b1. By construction, the
vertices s1 and s2 are in the subtree T (x) ⊆ T (t, S). For an illustration see Fig. 3. We now
claim that the failing vertices v1, v2 occur in the interior of π(y, t). Since D−1 and D−2 are vertex
disjoint with π(y, t) \ {t}, it would imply that both detour segments D1 and D2 are free from
the failing vertices and hence at least one of the two new edges LastE(P1), LastE(P2) could have
been avoided. We now focus on v1 and show that v1 ∈ V (π(y, t)), the exact same argumentation
holds for v2. Since P1 is a new-ending dependent path, by Eq. (1), there exists some source
s3 ∈ S \ {s1} satisfying that

(
D−1 ∩ π(s3, t)

)
\ {t} 6= ∅. Let w ∈

(
V (D−1 ) ∩ V (π(s3, t))

)
\ {t} be the

first intersection point (closest to s1). See Fig. 3 for schematic illustration. We first claim that
s3 is not in T (x) where T (x) is the subtree of T (t, S) rooted at x. To see why this holds, assume,
towards contradiction, that s3 ∈ T (x). It then holds that the replacement path P1 has the following
form P1 = π[s1, x] ◦ π(x, b1) ◦ P1[b1, w] ◦ P1[w, t]. Recall, that since b1 ∈ DP \ V +, b1 6= x and also
b1 6= w. Since P1[x,w] goes through b1, by the optimality of P1, it holds that

dist(x,w,G \ {v1}) > dist(b1, w,G \ {v1}) . (10)
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On the other hand, the path π(s3, t) has the following form: π(s3, t) = π(s3, w)◦π(w, x)◦π(x, b1)◦
π(b1, t). Hence, π(w, b1) goes through x. Since the failing vertex v1 ∈ V (π(b1, t)) is not in π(w, b1),
by the optimality of π(w, b1), we get that dist(w, b1, G \ {v1}) > dist(x,w,G \ {v1}), leading to
contradiction with Ineq. (10). Hence, we conclude that s3 /∈ T (x) (in particular this implies that
s3 6= s2). Note that π(w, t) is a segment of π(s3, t) and hence it is contained in the tree T (t, S). Since
P1 is a new-ending path (i.e., LastE(P1) /∈ T (t, S)), we have that P1[w, t] 6= π(w, t) are distinct w−t
paths. We next claim that the failing vertex v1 must occur on π(w, t) and hence also on π(s3, t).
To see this, observe that if π(w, t) would have been free from the failing vertex v1, then it implies
that π(w, t) = SP (w, t,G \ {v1},W ) = P1[w, t], contradiction as LastE(P1) 6= LastE(π(w, t)).
Finally, we show that v1 ∈ V (π(y, t)). By the above, the failing vertex v1 is common to both paths
π(s1, t) and π(s3, t), i.e., v1 ∈ V (π(s1, t))∩ V (π(s3, t)). By the definition of the path π(x, y), all its
internal vertices u have degree 2 and hence (V (π(x, y)) ∩ V (π(s3, t))) \ {y} = ∅, concluding that
v1 ∈ V (π(y, t)). By the same argumentation, it also holds that v2 is in π(y, t). As the detours
D1 and D2 are vertex disjoint with π(y, t) \ {t}, it holds that they are free from the two failing
vertices, i.e., v1, v2 /∈ D1 ∪D2. Since P1, P2 ∈ Qfar(t), it holds that LastE(P1) 6= LastE(P2), and
hence there are two b1 − t distinct shortest paths in G \ {v1, v2}, given by D1 and π(b1, b2) ◦ D2.
By optimality of these paths, they are of the same lengths. Again, we end with contradiction to
the uniqueness of the weight assignment W . The claim follows.

We now are now ready to bound |Efardep(t)|.

Lemma 4.11 For every t ∈ VC , |Efardep(t)| = O(|S|).

Proof: By Lemma 4.9 there are at most |V +| replacement paths with divergence point in V +. By
Lemma 4.10, there is at most one divergence point on each segment π(x, y) of an adjacent pair
(x, y). Note that the divergence points DP are in the tree T (t, S) and that the internal segments
of π(x, y), π(x′, y′) for x, x′, y, y′ ∈ V + are vertex disjoint. Combining with Obs. 4.8(2), we get
|Efar(t)| = |Qfar(t)| = O(|S|). The lemma follows.

We complete the size analysis and proves Theorem 4.1, by bounding the number of edges added
by the path-buying procedure of Step (4.2).

Bounding the number of edges added due to the path-buying procedure. Finally, it
remains to bound the number of edges added due to the path-buying procedure of step (4.2). Let
B ⊆ Pfarindep(t) be the set of paths bought in the path-buying procedure of Step (4.2). For every

ordered pair of clusters C1, C2 ∈ C, let B(C1, C2) ⊆ B be the set of paths that were added since
they improved the distance of C1 and C2, that is

B(C1, C2) = {Pτ ∈ B | C1,τ = C1 and C2,τ = C2}

Clearly, B =
⋃
C1,C2∈C B(C1, C2). We next use the fact that the diameter of each cluster C ∈ C is

small, to bound the cardinality of the set B(C1, C2).

Lemma 4.12 |B(C1, C2)| ≤ 5 for every C1, C2 ∈ C.

Proof: Fix C1, C2 ∈ C and order the paths of B(C1, C2) according to the time step they were
added to the spanner B(C1, C2) = {Pτ1 , . . . , PτN } and τ1 < τ2 < . . . < τN where N = |B(C1, C2)|.
Since Pτk ∈ Pfarindep, it is a new-ending path, i.e., LastE(Pτk) /∈ G0. Let Pτk = Psk,tk,vk and
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Figure 3: Schematic illustration of new-ending dependent paths. Shown is the tree T (t, S) with the
root t at the bottom and leaf set is contained in the set of sources S. (a) The two replacement paths
have the same divergence point b, hence one of the new last edges is redundant. (b) A new-ending
s1 − t dependant path Ps1,t,v1 with a divergence point b1 ∈ V (π(x, y)) intersects with π(s3, t) at
the vertex w /∈ {b1, t}. Since Ps1,t,v is a new-ending path (i.e., its last edges is not on T (t, S)), the
failing vertex v must occur on the path π(w, t). Hence v1 ∈ V (π(s1, t))∩V (π(s3, t)), implying that
v1 ∈ V (π(y, t)). Since this holds for any new-ending path with a divergence point in π(x, y), we
get that only one new edge from all these paths is needed.

Dτk = Dsk,tk,vk denote the detour segment of this path. Hence, each Pτk protects against the
failing of vk. Let xk be the vertex adjacent to the first missing edge on Pτk . Hence, C1 = Cvk(xk)
and C2 = Cvk(tk) for every k ∈ {1, . . . , N} and also Vf (Cvk(tk)) = Vf (C2) for every k ∈ {1, . . . , N}.
Since T0(S) ⊆ G0, the missing edges of Pτk are restricted to the detour segment Dτk .

In addition, since Pτk ∈ Pfarindep, it holds that the failing vertex vk occurs on the far segment

πfar(sk, tk) and in particular, vk /∈ C2 (i.e., vk occurs strictly above the least common ancestor
LCA(sk, C2) and since all cluster members appear on T0(sk) in the subtree rooted at LCA(sk, C2),
the far segment πfar(sk, tk) is free from cluster members). We therefore have

{v1, . . . , vN} ⊆ Vf (C2) . (11)

Note that each path Pτk protects against the failing of the single vertex vk, however, since each Pτk
belongs to B(C1, C2), Eq. (11) holds.

Note that π(sk, C2) ⊆ π(sk, tk) and hence it is contained in T (tk, S) for every k ∈ {1, . . . , N}.
By the definition of independent paths (see Eq. (1) for the definition of dependent paths), we have
that

D−sk,tk,vk ∩ T (tk, S) = {tk} . (12)

Consequently, by Lemma 4.4(b),

Pτk [xk, tk] ⊆ D−τk ⊆ G \ Vf (C2) . (13)

where the last inclusion holds by the fact that tk /∈ Vf (C2) and Vf (C2) ⊆
⋃
s∈S π(s, C2) ⊆⋃

s∈S π(s, tk) = T (tk, S). Let zi ∈ Z be the cluster center of Ci for i ∈ {1, 2}. We therefore
have that z1 = zv1(x1) = . . . = zvN (xN ) and z2 = zv1(t1) = . . . = zvN (tN ) and hence z2 6= vk for
every k ∈ {1, . . . , N}. Hence,

z1, z2 /∈ {v1, . . . , vN}. (14)
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For every k ∈ {1, . . . , N}, denote

Xk = dist(xk, tk, Gτk+1
\ Vf (C2)).

We now show that Xk < Xk−1 for every k ∈ {2, . . . N}.
Since the path Pτk is purchased at time τk, we have that

Xk ≤ dist(xk, tk, Pτk \ Vf (C2)) (15)

= dist(xk, tk, Pτk) (16)

< dist(C1, C2, Gτk \ Vf (C2)) (17)

≤ Xk−1 , (18)

where Eq. (15) follows by the fact that Pτk ⊆ Gτk+1
, Eq. (16) follows by Eq. (13). Eq. (17) follows

by the fact that Pτk was bought and by Eq. (4), and Eq. (18) follows by the fact that xk−1 ∈ C1

and tk−1 ∈ C2.
Therefore, we have that

XN ≤ X1 − (N − 1) . (19)

Conversely, we have that

XN ≥ dist(xN , tN , G \ {v1, . . . , vN}) (20)

≥ dist(x1, t1, G \ {v1, . . . , vN})− 4 (21)

= dist(x1, t1, Pτ1)− 4 = dist(x1, t1, Pτ1 \ Vf (C2))− 4 (22)

≥ X1 − 4 , (23)

where Eq. (20) follows as GτN+1 ⊆ G and by Eq. (11), {v1, . . . , vN} ⊆ Vf (C2). To see Eq. (21),
we need to prove the existence of the intracluster paths R1 = [x1, z1, xN ] and R2 = [t1, z2, tN ] in
G\{v1, . . . , vN} where z1 (resp., z2) is the cluster center of C1 (resp., C2). By definition, x1, xN ∈ C1

and t1, tN ∈ C2. Hence, z1 (resp., z2) is a common neighbor of both x1 and xN (resp., t1 and tN ).
By (14), z1, z2 /∈ {v1, . . . , vN}.

In addition, by Eq. (13), xk, tk ∈ G \ Vf (C2) for every k ∈ {1, . . . , N} and by Eq. (11), it also
holds that xk, tk /∈ {v1, . . . , vN} for every k ∈ {1, . . . , N}. Hence, R1 and R2 exist in G\{v1, . . . , vN}
and Eq. (21) follows by the triangle inequality. Eq. (22) follows by Eq. (13) and Eq. (11). Finally,
Eq. (23) follows by the fact that Pτ1 was added at step τ1, hence Pτ1 ⊆ Gτ2 . We get that N ≤ 5.
Lemma 4.12 follows.

We are now ready to bound the number of edges added in the path-buying phase.

Lemma 4.13 |H4(S) \G0| = O((n/|S|)3).

Proof: By Obs. 2.3(2) and Obs. 2.4, every path Pτk contains at most O(n/∆) edges in G \ G∆.
Hence,

|E(Gτ ′ \G0)| = O(n/∆) · |B| (24)

= O(n/∆) ·
∑

C1,C2∈C
|B(C1, C2)| (25)

≤ O(n/∆) · |C|2 = O((n/∆)3) . (26)

where the last equality follows by the fact that |C| = O(n/∆). Taking ∆ = |S| establishes the
lemma.
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4.2 Sourcewise spanner with additive stretch 8

In this section, we present Alg. Cons8SWSpanner for constructing a sourcewise additive FT-spanner
with additive stretch 8. The size of the resulting spanner is smaller (in order) than the H4(S)
spanner of Alg. Cons4SWSpanner, at the expense of larger stretch. The algorithm is similar in
spirit to Alg. Cons4SWSpanner and the major distinction is in the path-buying procedure of step
(4.2).

Lemma 4.14 There exists a subgraph H8(S) ⊆ G with O(|S|·n+(n/|S|)2) edges s.t. dist(s, t,H8(S)\
{v}) ≤ dist(s, t,G \ {v}) + 8 for every (s, t) ∈ S × V and every v ∈ V .

4.2.1 Algorithm Cons8SWSpanner for constructing H8(S) spanner

Step (0-4.1): Same as in Alg. Cons4SWSpanner. Let Elocal, Efardep be the set of last edges

obtained at the end of step (3) and set (4.1) respectively. Let Pfarindep be the set of new-ending

independent paths.

Step (4.2): Handling independent new-ending paths. Starting with G0 as in Eq. (2), the
paths of Pfarindep are considered in an arbitrary order. At step τ , we are given Gτ ⊆ G and consider

the path Pτ = Ps,t,v. Let Dτ = Pτ \ π(s, t) be the detour segment of Pτ (since π(s, t) ⊆ T0(S) is in
G0, all missing edges of Pτ occur on its detour segment).

To decide whether Pτ should be added to Gτ , the number of pairwise cluster “distance im-
provements” is compared to the number of new edges added due to Pτ . To do that we compute
the set ValSet(Pτ ) containing all pairs of clusters that achieves a better distance if Pτ is bought.
The value and cost of Pτ are computed as follows. Let Val(Pτ ) = |ValSet(Pτ )| be the number of
distance improvements as formally defined later. We next define a key vertex φτ ∈ VC on the path
Pτ .

Definition 4.15 Let φs,t,v (or φτ for short) be the last vertex on Pτ (closest to t) satisfying that:
(N1) LastE(Pτ [s, φτ ]) /∈ Gτ , and (N2) v ∈ V near(s, φτ ) = π(`, φτ ) \ {`} where ` = LCA(s, Cv(φτ )).
If there is no vertex on Pτ that satisfies both (N1) and (N2), then let φτ be the first vertex incident to
the first missing edge on Pτ \E(Gτ ) (i.e., such that Pτ [s, φτ ] is the maximal prefix that is contained
in Gτ ).

Let Qτ = Pτ [φτ , t] and define Cost(Pτ ) = |E(Qτ ) \ E(Gτ )| be the number of edges of Qτ that
are missing in the current subgraph Gτ . Thus Cost(Pτ ) represents the increase in the size of the
spanner Gτ if the procedure adds Qτ . Our algorithm attempts to buy only the suffix Qτ of Pτ when
considering Pτ . We now define the set ValSet(Pτ ) ⊆ C × C which contains a collection of ordered
cluster pairs. Let C1,τ = Cv(φτ ) and C2,τ = Cv(t) be the clusters of φτ and t in G∆ \ {v}. Let
κ = Cost(Pτ ). The candidate Pτ is said to be cheap if κ ≤ 4, otherwise it is costly. The definition
of ValSet(Pτ ) depends on whether or not the path is cheap. In particular, if Pτ is cheap, then let
ValSet(Pτ ) = {(C1,τ , C2,τ )} only if

dist(φτ , t, Pτ ) < dist(C1,τ , C2,τ , Gτ \ Vf (C2,τ )) , (27)

where Vf (C2,τ ) is as given by Eq. (3), and let ValSet(Pτ ) = ∅ otherwise. Alternatively, if Pτ is
costly, we do the following.
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Definition 4.16 Let Us,t,v = {u3`+1 | ` ∈ {0, . . . , b(κ − 1)/3c}} ⊆ Qτ be some representative
endpoints of missing edges on Qτ satisfying that

LastE(Qτ [φτ , u`]) /∈ Gτ for every u` ∈ Us,t,v and dist(u`, u`′ , Qτ ) ≥ 3

for every u`, u`′ ∈ Us,t,v.

Define

ValSet1(Pτ ) = {(C1,τ , C`) | C` = Cv(u`), u` ∈ Us,t,v (28)

and dist(φτ , u`, Pτ ) < dist(C1,τ , C`, Gτ \ Vf (C`))}

and

ValSet2(Pτ ) = {(C`, C2,τ ) | C` = Cv(u`), u` ∈ Us,t,v (29)

and dist(u`, t, Pτ ) < dist(C`, C2,τ , Gτ \ Vf (C2,τ ))}

Let ValSet(Pτ ) = ValSet1(Pτ ) ∪ ValSet2(Pτ ). The subpath Qτ is added to Gτ resulting in Gτ+1

only if
Cost(Pτ ) ≤ 4 · Val(Pτ ) , (30)

where Val(Pτ ) = |ValSet(Pτ )|. (Note that when Pτ is cheap, Eq. (30) holds iff Eq. (27) holds.)
The output of Alg. Cons8SWSpanner is the subgraph H8(S) = Gτ ′ where τ ′ = |Pfarindep|. This

completes the description of the algorithm.

Analysis. Throughout the discussion, a path Ps,t,v is a new-ending path, if LastE(Ps,t,v) /∈ G0

(see Eq. (2)). Hence, we consider only Ps,t,v ∈ Pfarindep(t) paths for clustered vertices t ∈ VC .

For a new-ending path Ps,t,v, recall that bs,t,v is the unique divergence point of Ps,t,v and π(s, t)
and let Ds,t,v be the detour segment, i.e., Ds,t,v = Ps,t,v[bs,t,v, t] and D−s,t,v = Ds,t,v \ {bs,t,v}. Let
Qs,t,v = Ps,t,v[φs,t,v, t] be the path segment that was considered to be bought in step (4.2) (see Def.
4.15).

Observation 4.17 Qs,t,v ⊆ D−s,t,v.

Proof: Let x be the first vertex incident to a missing-edge on Ps,t,v (such that Ps,t,v[s, x] is the
maximal prefix that is contained in G0). Since φs,t,v occurs not before x on Ps,t,v the observation
follows by Lemma 4.4(b).

The main essence of the path-buying procedure (in the fault-free setting) is that the number of
distance improvements between any fixed pair of clusters with bounded diameter is bounded. This
essential argument fails to hold when the distances are measured in different subgraphs. Since in
the FT setting the candidate path to be bought, Ps,t,v, should be compared against some alternative
path in the current spanner H ′ \ {v}, the distances between clusters might be evaluated in distinct
subgraphs. Hence, the main challenge in adapting the path-buying scheme to the FT setting is in
showing that due to the special structure of the independent paths Ps,t,v, the distance improvements
between any pair of clusters C1 and C2 that are incident on Ps,t,v can be carried out in the “same”
subgraph, i.e., a subgraph that depends only on the clusters C1 and C2 and independent of the
source s and the failing vertex v. The independence of the source s is given by the fact that the
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paths are independent and hence their internal detour segments does not intersects any π(s′, t)
path, for s′ ∈ S. The independence of the failing vertex v is due to the fact that all failing events
occur above the least common ancestor of the cluster members in the BFS tree rooted at s. The
next lemma formalizes some of the above intuition and provide the key properties that enables the
definition of the graph in which the path Ps,t,v would be evaluated in our path-buying scheme.

Lemma 4.18 Let Ps,t,v ∈ Pfarindep(t) be a new-ending replacement path. Then for every uk ∈
Us,t,v ∪ {t} with Ck = Cv(uk) it holds that:
(a) Ck = C1(uk).
(b) V (Ps,t,v[bs,t,v, uk]) ∩ V (T (uk, S)) = {bs,t,v, uk}.
(c) Qs,t,v[φs,t,v, uk] ∩ Vf (Ck) = ∅.
(d) v ∈ Vf (Ck).

Proof: We begin with (a). By the uniqueness of the weight assignment W , Ps,t,v[s, uk] = Ps,uk,v =
SP (s, uk, G \ {v},W ). By the uniqueness of the divergence point bs,t,v and in particular by Lemma
4.2(b),

bs,t,v = bs,uk,v . (31)

Since LastE(Ps,uk,v) /∈ Elocal, it follows that uk ∈ VC , v 6= z1(uk). Hence zv(uk) = z1(uk) and
(a) holds.

Consider (b). By the definition of the set Us,t,v (see Def. 4.16), it holds LastE(Ps,uk,v) /∈ G0.
Since uk ∈ Qs,t,v occurs strictly after φs,t,v, by the Def. 4.15, it holds that uk did not satisfy property

(N2). Hence, since LastE(Ps,uk,v) /∈ Elocal, v /∈ {z1(uk), LCA(s, Ck)} and hence v ∈ V far(s, uk).

As LastE(Ps,uk,v) /∈ Efardep(uk), we get that Ps,uk,v is a new-ending independent path. By Eq. (1),

V (Ps,uk,v[bs,uk,v, uk]) ∩ V (T (uk, S)) = {bs,uk,v, uk}. Hence (b) holds by Eq. (31).
We now turn to consider claim (c). By Eq. (3), Vf (Ck) ⊆ T (uk, S). Since Cv(uk)∩Vf (Ck) = ∅,

it holds that uk /∈ Vf (Ck), and hence by combining with claim (b), we get that Ps,uk,v[bs,uk,v, uk] ∩
Vf (Ck) = {bs,uk,v}. Since by Obs. 4.17, φs,t,v 6= bs,uk,v, hence Qs,t,v[φs,t,v, uk] ∩ Vf (Ck) = ∅. Claim
(c) holds.

Consider claim (d). By the above, v occurs on the far segment π(s, Ck) \ {LCA(s, Ck)}, hence
v /∈ Ck. Since (π(s, Ck) \ Ck) ⊆ Vf (Ck), (d) holds.

The next observation is useful in our analysis.

Observation 4.19 If φs,t,v satisfies (N1) and (N2), then there exists a vertex x ∈ Cv(φs,t,v) satis-
fying that v /∈ V (π(s, x)).

Proof: Let Pτ = Ps,t,v and φτ = φs,t,v. By the uniqueness of the weight assignment W , Pτ [s, φτ ] =
Ps,φτ ,v = SP (s, φτ , G \ {v},W ). Since φτ satisfies (N2), it holds that the failing vertex v occurs
on πnear(s, φτ ), strictly below (i.e., closer to φτ ) the least common ancestor LCA(s, Cv(φτ )) on
π(s, φτ ). Hence, there must exist a vertex x ∈ Cv(φτ ) such that v /∈ V (π(s, x)) (otherwise, if v is
shared by π(s, u) for all cluster members u, then we end with contradiction to the definition of the
least common ancestor LCA(s, Cv(φτ ))).

We proceed by showing correctness.

Theorem 4.20 H8(S) is a (8, S) FT-spanner.
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Proof: Let H = H8(S). It is required to show that dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + 8 for
every (s, t) ∈ S × V and v ∈ V . By the analysis of Alg. Cons4SWSpanner (Lemma 4.6), it remains
to consider the case of independent new-ending paths where Ps,t,v ∈ Pfarindep(t) for t ∈ VC .

Let τ be the iteration at which Pτ = Ps,t,v was considered to be added to the spanner at step
(4.2), and let κ = Cost(Pτ ) denote its cost. Let φτ be as defined in Def. 4.15 and recall that
Qτ = Pτ [φτ , t] is the candidate suffix to be bought by the procedure. (In particular, Cost(Pτ )
counts the number of edges on Qτ \ E(Gτ ).)

Case (1): Qτ was bought. If φτ did not satisfy either properties (N1) or (N2), then Pτ [s, φτ ] ⊆
Gτ . Since Pτ = Pτ [s, φτ ] ◦Qτ and Qτ was added to the spanner, we get that Pτ ⊆ H \ {v}.

It remains to consider the complementary case where φτ satisfies both (N1) and (N2). By Obs.
4.19, we get that there exist x ∈ Cv(φτ ) satisfying that v /∈ V (π(s, x)).

Consider the path P = π(s, x)◦ (x, zv(φτ ), φτ ). By definition, P ⊆ H \{v} and by the existence
of the intracluster path connecting x and φτ in G \ {v}, it holds that |P | = dist(s, x,G \ {v}) + 2 ≤
dist(s, φτ , G \ {v}) + 4. Hence, letting P ′ = P ◦Qτ (where Qτ = Pτ [φτ , t]), since Qτ ⊆ H \ {v}, it
holds that P ′ ⊆ H \ {v} and |P ′| ≤ |Pτ |+ 4, as required.

Case (2): Qτ was not bought. Let x ∈ Cv(φτ ) be defined as follows. If φτ satisfies both
properties (N1) and (N2) of Def. 4.15, then using Obs. 4.19, let x ∈ Cv(φτ ) be the vertex satisfying
that v /∈ V (π(s, x)). Otherwise, if φτ did not satisfy (N1) or (N2) (or both), let x = φτ . Note that
in any case, it holds that x, φτ ∈ Cv(φτ ). We have the following.

Lemma 4.21 Ps,x,v ⊆ H \ {v}.

Proof: If x = φτ , then it implies that φτ did not satisfy both of the properties (N1,N2). By Def.
4.15, in such a case φτ is the vertex incident to the first missing edge on Ps,t,v \ E(Gτ ) and hence
Ps,t,v[s, x] = Ps,x,v ⊆ Gτ \ {v}.

Otherwise, if x 6= φτ , then x ∈ Cv(φτ ) and by the selection of x, v /∈ V (π(s, x)). Hence,
Ps,x,v = π(s, x) ⊆ H \ {v}.

Recall that C1,τ = Cv(φτ ) and C2,τ = Cv(t). In addition, since v ∈ V far(s, t), it holds that
v ∈ Vf (C2,τ ).

Case (2.1): Pτ is cheap. Since Qτ was not added, Eq. (27) did not hold and hence

dist(φτ , t, Pτ ) ≥ dist(C1,τ , C2,τ , Gτ \ Vf (C2,τ )) . (32)

Let w1 ∈ C1,τ and w2 ∈ C2,τ be a closest pair satisfying that dist(w1, w2, Gτ \ Vf (C2,τ )) =
dist(C1,τ , C2,τ , Gτ \ Vf (C2,τ )). Since the failing vertex v is in Vf (C2,τ ), both auxiliary vertices
w1 and w2 are in G\{v}. Consider the following s− t path: P = P0 ◦P1 ◦P2 ◦P3 where P0 = Ps,x,v,
P1 = [x, zv(φτ ), w1], P2 ∈ SP (w1, w2, Gτ \ Vf (C2,τ )), and P3 = [w2, zv(t), t]. For an illustration see
Fig. 4. By Lemma 4.21, P0 ⊆ H\{v}. Note that since x,w1 ∈ Cv(φτ ), the path P1 exists in H\{v}.
Combining with the definitions of the vertices zv(x), zv(t), w1, w2, it holds that P ⊆ H \ {v}. So, it
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remains to bound the length of the path.

dist(s, t,H \ {v}) ≤ |P0|+ |P1|+ |P2|+ |P3|
= dist(s, x,G \ {v}) + dist(w1, w2, Gτ \ Vf (C2,τ )) + 4

≤ dist(s, φτ , G \ {v})
+ dist(w1, w2, Gτ \ Vf (C2,τ )) + 6 (33)

≤ dist(s, φτ , G \ {v}) + dist(φτ , t, Pτ ) + 6 = |Pτ |+ 6, (34)

where Eq. (33) follows by the fact that x, φτ ∈ Cv(φτ ) and since G∆ ⊆ H, it holds that the
intracluster path R = [x, zv(φτ ), φτ ] exists in G \ {v}, Eq. (34) follows by Eq. (32).

Case (2.2): Pτ is costly. Let Us,t,v = {u1, . . . , uκ′} ⊆ Qτ for κ′ = bκ/3c ≥ 1 be as defined by
Def. 4.16. Since by Obs. 2.3, the diameter of each cluster is 2, each uk ∈ Us,t,v belongs to a distinct
cluster Ck = Cv(uk) ∈ C. Hence there are at least κ′ distinct clusters on Qτ .

A cluster Ck = Cv(uk) is a contributor if adding Qτ to Gτ improves either the C1,τ−Ck distance
(i.e., (C1,τ , Ck) ∈ ValSet1(Pτ )) or the C2,τ − Ck distance (i.e., (Ck, C2,τ ) ∈ ValSet2(Pτ )) in the
corresponding appropriate graph. Otherwise, Ck is neutral. There are two cases to consider. If
all clusters are contributors (i.e., there is no neutral cluster) then all the κ′ clusters contribute to
Val(Pτ ) (either with C1,τ or with C2,τ or both). It then holds that Val(Pτ ) ≥ κ′ ≥ Cost(Pτ )/4.
Hence, by Eq. (30), we get a contradiction to the fact that the suffix Qτ was not added to Gτ .

In the other case, there exists at least one neutral cluster C` such that

dist(C1,τ , Ck, Ĥ1) ≤ dist(φτ , uk, Pτ ) and (35)

dist(Ck, C2,τ , Ĥ2) ≤ dist(uk, t, Pτ ) ,

where Ĥ1 = Gτ \Vf (Ck) and Ĥ2 = Gτ \Vf (C2,τ ). Let w1 ∈ C1,τ and w2 ∈ Ck be the pair of vertices

satisfying dist(w1, w2, Ĥ1) = dist(C1,τ , Ck, Ĥ1). In addition, let y1 ∈ Ck and y2 ∈ C2,τ be the pair

satisfying dist(y1, y2, Ĥ2) = dist(Ck, C2,τ , Ĥ2).
Let Q1 = [x, zv(φτ ), w1], Q2 = [w2, zv(uk), y1] and Q3 = [y2, zv(t), t] be the intracluster paths in

C1,τ , Ck and C2,τ respectively. Note that by definition x,w1 ∈ Cv(φτ ).
Since by Lemma 4.18(d), v ∈ Vf (Ck) ∩ Vf (C2,τ ), it also holds that Q1, Q2, Q3 ⊆ H \ {v}. Let

P ′ = P0 ◦Q1 ◦ P1 ◦Q2 ◦ P2 ◦Q3 where P0 = Ps,x,v, P1 ∈ SP (w1, w2, Ĥ1) and P2 ∈ SP (y1, y2, Ĥ2).
By Lemma 4.21, P0 ⊆ H \ {v} and by the above explanation, P ′ ⊆ H \ {v}. So, it remains to
bound the length of the s− t path P ′.

dist(s, t,H \ {v}) ≤ |P ′| = |P0|+ |P1|+ |P2|+ 6

= dist(s, x,G \ {v}) + dist(w1, w2, Ĥ1) + dist(y1, y2, Ĥ2) + 6

≤ dist(s, φτ , G \ {v}) + dist(w1, w2, Ĥ1) + dist(y1, y2, Ĥ2) + 8

= dist(s, φτ , G \ {v}) + dist(C1,τ , Ck, Ĥ1)

+ dist(Ck, C2,τ , Ĥ2) + 8

≤ dist(s, φτ , G \ {v}) + dist(φτ , uk, Pτ ) + dist(uk, t, Pτ ) + 8

= |Ps,t,v|+ 8 ,

where the first inequality follows by the fact that x, φτ ∈ Cv(φτ ) and hence the intraclusrer path
R = [x, zv[φτ ], φτ ] exists in G \ {v} and last inequality follows Eq. (35). The lemma follows.
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Figure 4: Schematic illustration of the path-buying procedure of Alg. Cons8SWSpanner. The
horizontal path is Pτ = Ps,t,v whose segment Qs,t,v = Ps,t,v[φs,t,v, t] was considered to be bought
at time τ . The green paths correspond to the shortest paths in T0(s). Red edges correspond to
missing edges on Ps,t,v \ E(Gτ ). The vertex φs,t,v satisfies properties (N1) and (N2), hence it is
incident to a missing edge and the failing vertex v occurs on π(s, φs,t,v) strictly below the LCA
vertex LCA(φs,t,v) = LCA(s, Cv(φs,t,v)). The vertex x ∈ Cv(φs,t,v) satisfies that v /∈ V (π(s, x)). The
s − t replacement path in H \ {v} is given by traveling from s to x on π(s, x) and then use the
closest vertex pairs w1, w2 and y1, y2.

23



Finally, we turn to bound the size of H = H8(S). By the size-analysis of Alg. Cons4SWSpanner,
it remains to bound the number of edges added due to the path-buying procedure of step (4.2). Let
B ⊆ Pfarindep be the set of paths corresponding to the path segments that were bought in the path-

buying phase. For every ordered pair of clusters, C1, C2 ∈ C let B(C1, C2) = {Pτ ∈ B | (C1, C2) ∈
ValSet(Pτ )}. Clearly, B =

⋃
C1,C2∈C B(C1, C2). We next claim that since the diameter of each

cluster is small, it holds that the cardinality of each subset B(C1, C2) is small as well.

Lemma 4.22 |B(C1, C2)| ≤ 5 for every C1, C2 ∈ C.

Proof: Fix C1, C2 ∈ C and let B(C1, C2) = {Pτ1 , . . . , PτN } be sorted according to the time τk
their segment Qτ was added to the spanner, for every k ∈ {1, . . . , N} where N = |B(C1, C2)|. Let
Pτk = Psk,tk,vk . Let pk, qk ∈ Pτk be the endpoints of Qτ such that pk is closer to the source sk, and
Cvk(pk) = C1 and Cvk(qk) = C2.

Recall that φτk is the first vertex of Qτk (see Def. 4.15). Let C` = Cvk(u`) be the cluster of u` for
every u` ∈ Usk,tk,vk (see Def. 4.16). By Obs. 2.3, it holds that C` 6= C`′ for every u`, u`′ ∈ Usk,tk,vk .

Recall that for every u` ∈ Usk,tk,vk , Ps,u`,v = Ps,t,v[s, u`]. Since LastE(Ps,u`,v) /∈ Elocal, it
holds that v /∈ {z1(u`), LCA(s, C1(u`))}. Combining that with the fact that u` ∈ Usk,tk,vk did

not satisfy property (N2) (see Def. 4.15 and Def. 4.16), we conclude that vk ∈ V far(sk, u`). Since
qk ∈ Usk,tk,vk ∪ {tk}, using Lemma 4.18(d), it holds that

vk ∈ Vf (C2) for every k ∈ {1, . . . , N} , (36)

and by Lemma 4.18(c),
Pτk [pk, qk] ⊆ Qτk [pk, qk] ⊆ G \ Vf (C2) . (37)

Since C1 = Cvk(pk) and C2 = Cvk(qk), for every k ∈ {1, . . . , N}, it holds that zv1(p1) = ... =
zvN (pN ) and also zv1(q1) = ... = zvN (qN ). Hence, letting z1 = zv1(p1) and z2 = zv1(q1), it holds
that

z1, z2 /∈ {v1, . . . , vN}. (38)

Denote
Xk = dist(pk, qk, Gτk+1

\ Vf (C2)).

We now show that Xk < Xk−1 for every k ∈ {2, . . . N}.
Each time a path segment Qτk is purchased at time τk, it implies that

Xk ≤ dist(pk, qk, Pτk \ Vf (C2)) (39)

= dist(pk, qk, Pτk) (40)

< dist(C1, C2, Gτk \ Vf (C2)) (41)

≤ Xk−1 , (42)

where Eq. (39) follows by the fact that Pτk [pk, qk] ⊆ Qτk ⊆ Gτk+1
, Eq. (40) follows by Eq. (37),

Eq. (41) follows by the fact that Qτk was bought and by Eqs. (28) and (29), and Eq. (42) follows
by the fact that pk−1 ∈ C1 and qk−1 ∈ C2.

Therefore, we have that
XN ≤ X1 − (N − 1) . (43)

24



Conversely, we have that

XN ≥ dist(pN , qN , G \ {v1, . . . , vN}) (44)

≥ dist(p1, q1, G \ {v1, . . . , vN})− 4 (45)

= dist(p1, q1, Pτ1)− 4 = dist(p1, q1, Pτ1 \ Vf (C2))− 4 (46)

≥ X1 − 4 , (47)

where Eq. (44) follows as GτN+1 ⊆ G and by Eq. (36), {v1, . . . , vN} ⊆ Vf (C2). To see Eq. (45),
note that p1, pN ∈ C1 and q1, qN ∈ C2 and by Obs. 2.3(2) the diameter of the cluster is 2. It
remains to show that the intracluster paths R1 = [p1, z1, pN ], R2 = [q1, z2, qN ] exist in the surviving
graph G \ {v1, . . . , vN}. This holds since by Eq. (38), z1, z2 /∈ {v1, . . . , vN}, and by Eq. (36) and
(37). Eq. (46) follows by Eq. (37). Finally, Eq. (47) follows by the fact that Pτ1 [p1, q1] ⊆ Qτ1 was
added at step τ1, hence Pτ1 [p1, q1] ⊆ Gτ2 . By combining with Eq. (43), we get that N ≤ 5. The
lemma follows.

claim the following.

Lemma 4.23 |E(H8(S))| = O(|S| · n+ n2/|S|2).

Finally, since for every path P ∈ B, it holds that Cost(P ) ≤ 4 · Val(P ), we get that

|E(Gτ ′) \ E(G0)| =
∑
P∈B

Cost(P ) ≤ 4
∑
P∈B

Val(P ) ≤ 4
∑

C1,C2∈C
|B(C1, C2)|

≤ O(|C|2) = O((n/|S|)2) .

where the last equality follows by the fact that there are |C| = |Z| = O(n/|S|) clusters. The claim
follows.

Additive stretch 6 (for all pairs). Set ∆ =
√
n and let Z ⊆ S be a collection of

√
n cluster

centers and G∆ be the corresponding clustering graph. By Obs. 2.5, H = H4(Z)∪G∆ is a 6 additive
FT-spanner. By Theorem 4.1, |E(H4(Z))| = O(n3/2) and by Obs. 2.3(4), |E(G∆)| = O(n3/2),
hence Thm. 1.3 follows.

The achieved bounds should be compared with the single source additive FT-spanner H4({s})
of [21] and the (all-pairs, non FT) 6-additive spanner, both with O(n4/3) edges.

5 Discussion

The current work provides the first upper bounds for handling vertex faults in additive spanner
constructions. Unfortunately, currently there is no lower bound for this setting. Specifically, even
for the basic case of additive stretch 2, there is no lower bound of Ω(n3/2+ε) for any ε > 0. In
[21], there is a lower bound construction for the single source FT-additive spanners. Extending
this lower bound for (all pairs) FT-additive spanners remains open. Turning to the upper bound
side, there are two main challenges. The first involves the construction of FT structures with
nonconstant additive stretch (e.g., polylogarithmic or sublinear in the distances). The second
involves the extension of the presented constructions to support the case of multiple vertex faults.
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