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Abstract. In this review, we illustrate the relations between wireless
communication and computational geometry. As a concrete example, we
consider a fundamental geometric object from each field: SINR diagrams
and Voronoi diagrams. We discuss the relations between these represen-
tations, which appear in several distinct settings of wireless communica-
tion, as well as some algorithmic applications.

1 Introduction

Wireless networks are embedded in our daily lives, with an ever-growing use
of cellular, satellite and sensor networks. Subsequently, the capacity of wireless
networks, i.e., the maximum achievable rate by which stations can communicate
reliably, has received an increasing attention in recent years [15, 20, 18, 14, 7,
2, 16]. The great advantage of wireless communication, namely, the broadcast
nature of the medium, also creates its biggest obstacle – interference. When
a receiver has to decode a message (i.e., a signal) sent from a transmitter, it
must cope with all other (legitimate) simultaneous transmissions by neighboring
stations.

While the physical properties of channels have been thoroughly studied [13,
22], less is known about the topology and geometry of the wireless network struc-
ture and their influence on performance. This review concerns a novel approach
recently proposed to describe the behavior of multi-station networks, which is
based on building a reception map according to the signal-to-interference &
noise ratio (SINR) model. By now, the SINR model is the most commonly stud-
ied abstract physical model for wireless communication networks, widely used
by both the Electrical Engineering community and the algorithmic computer
science community. This physical model aims at gauging the quality of signal
reception at the receivers while faithfully representing phenomena such as atten-
uation and interference. Specifically, in this model, the signal decays as it travels
and a transmission is successful if its strength at the receiver exceeds the accu-
mulated signal strength of interfering transmissions by a sufficient (technology
determined) factor.
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The SINR model gives rise to a natural ge-
ometric object, the SINR diagram, which par-
titions the plane into a reception region H(si)
per station si ∈ S and the remaining area
H(∅) where none of the stations are heard.
Each of these n + 1 regions may possibly be
composed of several disconnected regions.

SINR diagrams have been recently studied
from topological and geometric standpoints
[6, 17, 5], and they appear to provide improved
understanding on the behavior of wireless net-
works. Specifically, these diagram have been
shown to play a central role in the devel-
opment of several approximation and online
algorithms (e.g., point location tasks, map
drawing). Such a role is analogous perhaps to the role played by Voronoi di-
agrams in the study of proximity queries and other algorithms in computational
geometry.

The ordinary Voronoi diagram on a given set of points S tessellates the
space in such a way that every location is assigned to the closest point in S,
thus partitioning the space into regions Vor(si), each consisting of the set of
locations closest to one point in S (referred to as the region’s generator).
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In this review, we focus on the analogy be-
tween these two space partitions, the SINR dia-
grams and the Voronoi diagrams. At first glance,
the connection is not immediate. SINR diagrams
are based upon the physics of the wireless commu-
nication, and geometry is only one aspect of it. In
contrast, Voronoi diagrams are mainly based on
the geometry of the point arrangement. In addi-
tion, whereas Voronoi diagrams are mostly based
on the pairwise relations between the generators
(i.e., the points of S, referred to as stations in the
wireless terminology), in an SINR diagram the re-
ception region of si is determined by a complex
relation to all other stations and cannot be repre-
sented in general as a collection of pairwise rela-
tions.

Despite these distinctions, the connections be-
tween these diagrams appear to be persistent and re-occur in several distinct
settings of wireless communications (in fact, in any setting that has been stud-
ied so-far). We also exemplify several algorithmic and theoretical applications of
these relations.

Let us remark that this review restricts attention to the static setting (i.e.,
where the locations of the network stations are fixed). Turning to the stochastic



setting, the relations between stochastic SINR diagram (formed by modeling the
SINR as a marked point process) and classical stochastic geometry models such
as PoissonVoronoi tessellations, have been studied extensively, and are out of
the scope of this review. See [8] for a detailed analysis, results and applications
of this approach.

The structure of this review is as follows. In Sec. 2 we provide a brief overview
of SINR diagrams. We then describe the connections between SINR diagrams and
Voronoi diagrams in three main settings. Sec. 3 considers the uniform power set-
ting, when all stations have the same transmission power. In Sec. 4, we consider
the general setting of non-uniform power (i.e., when the transmission powers are
arbitrary). Finally, in Sec. 5, we describe a setting in which receivers are allowed
to employ a decoding technique known as interference cancellation to improve
their reception quality. In each of these settings, the resulting SINR diagrams
turn out to correspond to some variant of Voronoi diagrams, as elaborated on
in what follows.

2 Wireless Networks and SINR

We consider a wireless network A = 〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the
dimension, S = {s1, s2, . . . , sn} is a set of transmitting radio stations embedded
in the d-dimensional space, ψ is an assignment of a positive real transmitting
power ψi to each station si, N ≥ 0 is the background noise, β ≥ 1 is a constant
that serves as the reception threshold, and α > 0 is the path-loss parameter. The
signal to interference & noise ratio (SINR) of si at point p is defined as

SINRA(si, p) =
ψi · dist(si, p)

−α∑
j 6=i ψj · dist(sj , p)−α + N

. (1)

The fundamental rule of the SINR model is that the transmission of station
si is received correctly at point p /∈ S if and only if its SINR at p reaches or
exceeds the reception threshold of the network, i.e., SINRA(si, p) ≥ β. When
this happens, we say that si is heard at p.

We refer to the set of points that hear station si as the reception region of
si, defined as

H(si,A) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} . (2)

(Note that SINR(si, ·) is undefined at points in S and in particular at si itself.)
Analogously, the set of points that hear no station si ∈ S (due to the background
noise and interference), the null region, is defined as

H(∅,A) = {p ∈ Rd − S | SINR(si, p) < β, ∀si ∈ S}.

An SINR diagram

H(A) =

( ⋃
si∈S

H(si,A)

)
∪H(∅,A)



is a “reception map” characterizing the reception regions of the stations. When
the network A is clear from the context, we may omit it, and simply write
SINR(si, p), H(si) and H(∅).

3 Uniform SINR Diagram and Voronoi Diagram

The study of SINR diagram has been initiated by Avin et al. in [6] for the
relatively simple case where all stations use the same transmission power, a.k.a,
uniform power (i.e., ψi = 1 for every station si in Eq. (1)). It has been shown
that under this setting, the SINR diagram assumes a rather convenient form. In
particular, for SINR threshold β ≥ 1, it holds that every reception region H(si)
is convex and fat (see Fig. 1(a) for schematic illustration of these notions).

(a) (b) 

Fig. 1. (a) Uniform SINR regions are “nice”: convex and fat. (b) Illustration of the
relations between uniform SINR diagram and Voronoi diagram. The reception region
H(si) is fully contained in the corresponding Voronoi region Vor(si).

Let Vor(si) be the Voronoi region of station si, defined by

Vor(si) = {p ∈ Rd | dist(si, p) ≤ dist(sj , p), , for any j 6= i} . (3)



Since all transmission powers are the same, for a receiver p that successfully
receives the transmission of si, it must hold that si is the closest station to
p among all other network stations, i.e., that p ∈ Vor(si). This condition is
not sufficient for successful reception, and hence uniform SINR diagrams can be
considered as a refinement of Voronoi diagrams. The refinement stems from that
fact that the SINR model (even in the uniform case) takes into consideration
not only the geometry but also other physical parameters such as attenuation
and fading of signals.

The following lemma from [6] formalizes this intuition by claiming that the
reception region H(si,A) is strictly contained in the corresponding Voronoi re-
gion Vor(si).

Lemma 1 (Uniform SINR Diagram and Voronoi Diagram, [6]). For
uniform network A = 〈d, S, 1,N , β ≥ 1, α〉, it holds that H(si,A) ⊆ Vor(si) for
every si ∈ S.

See Fig. 1(b). In fact, this analogy between the two diagrams becomes stronger
when the path-loss parameter α tends to infinity and there is no ambient noise
N = 0. The case of noisy SINR diagram with α→∞ and N > 0 is more involved
and can be shown to converge to alpha shapes [11].

Note that when β < 1, the inclusion between the SINR diagram and the
Voronoi diagram may no longer hold. That is, it is possible to identify points
p ∈ Rd, for which SINR(si, p) ≥ β while p /∈ Vor(si).

Algorithmic application: Point Location. In the Point Location task, one is given
an n-station wireless network A and a query point p referred to as a point-
location query. The goal is to identify which of the stations is heard at p, if any.
As it is assumed that the reception threshold satisfies β ≥ 1, if there is noise
N ≥ 0, then at most one station can be heard at p. The trivial procedure for
answering the query is to evaluate the SINR function SINR(si, p) at each of the
stations si ∈ S, which takes linear time in the number of stations n. To facilitate
multiple queries, one may want to build a data structure that can guarantee
faster response.

By exploiting the fatness and convexity of the reception regions as well as the
relation to Voronoi diagrams, [6] proposed an approximate point location scheme
that answers point location queries in O(log n) time. This scheme consists of a
preprocessing step in which the Voronoi diagram and “approximated” reception
SINR regions H̃(si) for every si ∈ S are constructed. Answering a point-location
query p then involves two main steps. First, the sole candidate station sp that
may be heard at p is identified by finding the Voronoi cell to which p belongs
(this can be done in logarithmic time). The second step then uses the approx-

imated region H̃(sp) (constructed in the preprocessing step) to decide whether
SINR(sp, p) ≥ β. For an efficient batched point location schemes, see the recent
[3].



4 Non-uniform SINR Diagram and Weighted Voronoi
Diagram

In many actual wireless communication systems, wireless communication devices
can modify their transmission power. Moreover, it has been demonstrated con-
vincingly that allowing transmitters to use different power levels increases the
efficiency of various communication patterns. It is therefore important to study
the topology of SINR diagrams with non-uniform power (i.e., when the transmis-
sion powers are arbitrary). This general setting has been considered in [17]. The
first observation of [17] is the unfortunate fact that non-uniform diagrams are
more complicated than in the uniform case. In particular, the reception regions
are no longer convex or even connected. That is, a reception region may consist
of several disconnected “reception islands”.

Non-convex 

Disconnected  

𝑠1 
 

𝑠1 
 

For example, the reception region of s1 in the figure con-
sists of two disconnected components. The loss of the nice
properties established for the uniform setting motivated the
definitions of alternative notions of weaker convexity. Another
important research direction involves bounding the maximum
number of connected components, that an n-station wireless
network may assume.

Several important properties of SINR diagrams were es-
tablished in [17]. One of the key results demonstrates that the
reception regions in Rd+1 (i.e., drawing the SINR diagram in
one dimension higher than that in which the stations are em-
bedded) are hyperbolically convex ; see Fig. 2. Hence, although
the d-dimensional map might be highly fractured, drawing the
map in one dimension higher “heals” the regions, which be-
come (hyperbolically) connected.

In the context of Voronoi diagrams, in contrast to the
uniform case, the reception regions of a non-uniform SINR
diagram are not necessarily contained in the correspond-
ing Voronoi regions. Clearly, the reception region of a very
strong station (i.e., with sufficiently large transmission power) may exceed
its corresponding Voronoi region. The asymmetry that arises by non-uniform
power assignments calls for a weighted variant of Voronoi diagram. Specifi-
cally, [17] showed that SINR diagrams with non-uniform powers are related
to multiplicatively-weighted Voronoi diagrams (see [4]).

In the (multiplicatively) weighted version of Voronoi diagram [4], every gen-
erator (i.e., station) si is given a weight wi that expresses the capability of si
to influence its neighborhood. Formally, the weighted system V = 〈S,W 〉 con-
sists of S = {s1, ..., sn}, which represents a set of n points or generators in
d-dimensional Euclidean space, and W = {w1, ..., wn}, which is an assignment
of weights wi ∈ R>0 to each point si ∈ S. The weighted voronoi diagram of



𝑠1 𝑠2 

𝐻 𝑠1  𝐻 𝑠2  

𝑠1 𝑠2 

𝑝1 

𝑝2 
(𝑏) 

(𝑎) 

Fig. 2. Reception regions are hyperbolic-convex in Rd+1. The given network consists
of two stations s1 and s2 aligned on a line (i.e., one-dimensional network). (a) The
recepetion region H(s1) of s1 is not connected in R1. (b) The reception region of s1 is
connected in R2. The hyperbolic line connecting two reception points p1 and p2 is fully
contained in the 2-dimensional reception region H(s1).

V = 〈S,W 〉 partitions the space into n regions, where

WVor(si) =

{
p ∈ Rd | wi

dist(si, p)
≥ wj

dist(sj , p)
, for any j 6= i

}
(4)

denotes the region of influence of the generator si in S, for every i ∈ {1, . . . , n}.
Note that when all the weights are the same, Eq. (4) is equivalent to Eq. (3),
i.e., the weighted Voronoi diagram is the same as the ordinary Voronoi diagram.
Unlike the ordinary Voronoi diagram, the weighted Voronoi region WVor(si) is
not necessarily connected and the diagram may consist of Ω(n2) components.

Given a non-uniform wireless networkA with transmission powers ψ1, . . . , ψn,
the corresponding weighted Voronoi system is given by setting the weight of each
station si ∈ S to

wi = ψ
1/α
i , (5)



where α is the path-loss parameter of the wireless network. This weight ad-
justment yields the next lemma, the analogue of Lemma 2 for the non-uniform
case.

Lemma 2 (non-uniform SINR Diagram and Weighted Voronoi Dia-
gram, [17]). Let A be a non-uniform network. Then H(si,A) ⊆ WVor(si)
for every si ∈ S, where the weights of the weighted Voronoi diagram are set
according to Eq. (5) (see Fig. 3).

Fig. 3. The reception regions of the non-uniform SINR diagram are strictly contained
in the corresponding weighted Voronoi regions upon setting the weights according to
Eq. (5).

Note that the weight assignment of Eq. (5) tends to 1 as the path-loss pa-
rameter α tends to infinity. Hence, the non-uniform SINR diagram converges to
the ordinary (non-weighted) Voronoi diaram as α tends to infinity. (Intuitively,
as α gets larger, the distances dominate the effect of the transmission powers.)

Similarly to the uniform case, the relation to weighted Voronoi diagram is
found to be useful for solving point location queries efficiently. We conclude this



section by providing an example in which weighted Voronoi diagrams are not
helpful, due to some fundamental differences between the two models.

Example illustrating the gap between SINR and Voronoi diagram. Establishing
a tight universal bound for the number of connected components in the SINR
diagram of an n-station network is one of the main open challenges in the study
of non-uniform SINR networks. A seemingly promising approach to studying this
question is considering it on the corresponding weighted Voronoi diagrams. Since
any non-uniform SINR region is fully contained in a corresponding weighted
Voronoi region, it seems plausible that the number of weighted Voronoi cells
(bounded by O(n2) [4]) might upper bound the number of connected components
in the corresponding SINR diagram. Unfortunately, this does not hold in general,
since it might be the case that a single weighted Voronoi component contains a
disconnected SINR region. This scenario is illustrated in the figure below and
emphasizes a fundamental gap between the SINR and Voronoi diagrams.
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The first figure depicts a non-uniform network A
with stations S = {s1, . . . , sn} and transmission pow-
ers ψ = {ψ1, . . . , ψn}. The powers are set such that
the reception region of s1 is not connected (the two
SINR reception islands of s1 are represented by the
two white circles with dashed boundaries). However,
it is connected when restricting it to a given connected
component of the weighted Voronoi region of s1. The
network A is then transformed into another network
A′ (shown in the bottom figure) by replacing each in-
terfering station si ∈ S \ {s1} by sufficiently many
copies of interfering stations Si = {s1i , . . . , smi } co-
located at the location of si, each transmitting with
power ψ′i = ψi/m. Hence, by Eq. (5), all the inter-
fering stations have a very small weight in the corre-
sponding weighted Voronoi diagram. Since the total
interference experienced by any point p ∈ H(s1,A) is
the same in both networks, the reception region of s1
is preserved (i.e., H(s1,A) = H(s1,A′)). By taking m
to be sufficiently large, the influence of s1 is increased tremendously in the corre-
sponding weighted Voronoi diagram for network A′. This results in a very large
connected weighted Voronoi region for s1, which contains the two disconnected
SINR reception components of s1.

5 SINR Diagram with Interference Cancellation and
High Order Voronoi Diagram

Finally, we turn to consider the third setting for studying wireless networks in
which the reception points are allowed to employ a decoding technique, known
as Interference cancellation (IC). IC is a relatively recent and promising method



for efficient decoding [1]. The basic idea of interference cancellation, and in
particular successive interference cancellation (SIC), is quite simple. First, the
strongest interfering signal is detected and decoded. Once decoded, this signal
can then be subtracted (“cancelled”) from the original signal. Subsequently, the
next strongest interfering signal can be detected and decoded from the now
“cleaner” signal, and so on. Optimally, this process continues until all interfer-
ences are cancelled and we are left with the desired transmitted signal, which
can now be decoded. It should be noted that without using IC, every station
can decode at most one transmission (i.e., the strongest signal it receives). In
contrast, with IC, every station can decode more transmissions, or expressed
dually, every transmitter can reach more receivers. This clearly increases the
utilization of the network. Interference cancellation is fairly well-studied from
an information-theoretic point of view [21, 9, 23, 12].

Recently, [5] studied the reception regions of a wireless network in the SINR
model with receivers that employ SIC. We next formally define the SIC-SINR
diagrams, then define a generalization of Voronoi diagram known as, high-order
Voronoi diagram, and finally describe the connection between these diagrams,
established in [5].

SIC-SINR Diagrams in Uniform Power Networks. SIC changes the basic
criterion for a successful reception, and hence it calls for new definitions of the
reception regions that form the SIC-SINR Diagrams.

Let A = 〈d, S, ψ = 1,N , β > 1, α〉 be an n-station uniform power wireless
network. For a subset S′ ⊆ S, let A(S′) = 〈d, S′, ψ = 1,N , β > 1, α〉 be the

network induced on a subset of stations S′. Let
−→
Si = {si1 , . . . , sik} ⊆ S be an

ordering of k stations.

We begin by defining the reception area H(
−→
Si) of all points that receive sik

correctly after successive cancellation of si1 , . . . , sik−1
. For every j ∈ {2, . . . , k},

let Si,j = S \ {si1 , . . . , sij−1
} be the subset of stations excluding the first j − 1

stations in the ordering
−→
Si and let S1,j = S. The reception region H(

−→
Si) is

defined by

H(
−→
Si) =

k⋂
j=1

H(sij ,A(Si,j)) , (6)

where H(sij ,A(Si,j)) is given by Eq. (2). The reception region HSIC(s1) consists
of all points that can receive the transmission of s1 by employing interference

cancellation. Hence, it is the union of all H(
−→
Si) regions for which that last station

Last(
−→
Si) is s1.

HSIC(s1) =
⋃

−→
Si | Last(

−→
Si)=s1

H(
−→
Si) . (7)

The fundamental result of [5] states that although potentially there are expo-

nentially many possible cancellation orderings
−→
Si with Last(

−→
Si) = 1, and as a

result, disconnected reception components in HSIC(s1), in fact there are only



O(n2d) orderings
−→
Si, Last(

−→
Si) = s1 with nonempty reception regions H(

−→
Si). The

final SIC-SINR diagram consists of n reception regions HSIC(s1), . . . ,HSIC(sn)
and the complementary region, the null region HSIC(∅) in which none of the
stations can be received, despite the ability to employ SIC.

SIC-SINR diagrams are related to higher order Voronoi digrams, a natural
extension of the ordinary Voronoi, briefly defined next.

Higher order Voronoi diagrams. In higher order Voronoi diagrams the cells
are generated by more than one generator. Such diagrams provide tessellations
where each region consists of the collection of points having the same k (ordered
or unordered) closest points in S, for some given integer k. The are two variants
of high order Voronoi diagrams: ordered (in which the order of the generator set
matters) and non-ordered. SIC-SINR diagrams are related to the former.

Ordered Order-k Voronoi diagram. Let
−→
Si ⊆ S be an ordered set of k

elements from S. When the k generators are ordered, the diagram becomes the
ordered order-k Voronoi diagram V〈k〉(S) [19], defined as

V〈k〉(S) = {Vor(
−→
Si)},

where the ordered order-k Voronoi region Vor(
−→
Si), |

−→
Si| = k, is defined as

Vor(
−→
Si) = {p ∈ Rd | dist(p, si1) ≤ dist(p, si2) ≤ . . .

≤ dist(p, sik) ≤ min(dist(p, S \ Si))}.

Note that each Vor(
−→
Si) is an intersection of k convex shapes and hence it is

convex as well. Schematic illustration for k = 2 is provided in Fig. 4. For example,
the region Vor(s1, s2) consists of all points whose nearest neighbor is s1 and
whose second nearest neighbor is s2. Similarly, the region Vor(s2, s1) consists
of all points whose nearest neighbor is s2 and whose second nearest neighbor is
s1.

SIC-SINR diagrams and Ordered Order-k Voronoi diagrams. The re-

lation between a nonempty reception region H(
−→
Si),

−→
Si = {si1 , . . . , sik} and an

nonempty ordered order-k polygon Vor(
−→
Si) is given in the next lemma.

Lemma 3 ([5]). H(
−→
Si) ⊆ Vor(

−→
Si), for β ≥ 1 .

This relation was used by [5] to provide the following characterization of SIC-
SINR reception regions: every region HSIC(si) is composed of a collection of
convex regions, each of which is contained in corresponding cell of the higher-
order Voronoi diagram. Fig. 5 illustrates this relation, and shows the reception
region HSIC(s1). The light grey region H(s1) corresponds to the ordinary re-
ception region with no cancellation. The black region H(s2, s3, s1) consists of
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Fig. 4. A system of 3 points s1, s2, s3 and their ordered order-2 Voronoi diagram.

all points that first decoded s2, cancelled it, then decoded s3 and cancelled it,
and finally were able to decode s1. Each of these connected reception regions
is fully contained in their corresponding high order Voronoi regions. For exam-
ple, the black region H(s2, s3, s1) is contained in the high order Voronoi region
Vor(s2, s3, s1) (i.e., the set of all points whose first nearest neighbor is s2, then
s3 and finally s1.) Finally, SIC-SINR diagrams are also shown to be related to
hyperplane arrangements [10], a plane-tessellation formed by the intersection of
the set of

(
n
2

)
hyperplane of pairs in S.

Applications. The connections to both high-order Voronoi diagram and hyper-
plane arrangements play a key role in [5] where it used to provide to (1) the
topological characterization of SIC-SINR regions and (2) algorithms for these
diagrams. Specifically, these connections are used for establishing a bound of
O(n2d+1) on the number of components in d-dimensional n-station networks.
In addition, they yeild algorithmic applications for drawing and maintaining
SIC-SINR diagram as well as for answering efficiently point-location queries.

6 Final Note: Towards Wireless Computational Geometry

A major long-term goal of the study of SINR diagrams is to develop the area
of “wireless computational geometry” in which SINR diagrams play a role that
is similar to that of Voronoi diagrams in computational geometry. Indeed, this
review aimed at highlighting the intimate connections between these models
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Fig. 5. The relation between the SIC-SINR diagram and the high-order Voronoi dia-
gram.

which encourages further study of SINR diagrams in more realistic settings (e.g.,
adding obstacles, directional antennas, etc.) and their Voronoi counterparts.
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