
MST in Log-Star Rounds of Congested Clique

Mohsen Ghaffari
MIT

ghaffari@mit.edu

Merav Parter
MIT

parter@mit.edu

ABSTRACT
We present a randomized algorithm that computes a Mini-
mum Spanning Tree (MST) in O(log∗ n) rounds, with high
probability, in the Congested Clique model of distributed
computing. In this model, the input is a graph on n nodes,
initially each node knows only its incident edges, and per
round each two nodes can exchange O(logn) bits.

Our key technical novelty is an O(log∗ n) Graph Connec-
tivity algorithm, the heart of which is a (recursive) forest
growth method, based on a combination of two ideas: a
sparsity-sensitive sketching aimed at sparse graphs and a
random edge sampling aimed at dense graphs.

Our result improves significantly over the O(log log logn)
algorithm of Hegeman et al. [PODC 2015] and theO(log logn)
algorithm of Lotker et al. [SPAA 2003; SICOMP 2005].

1. INTRODUCTION AND RELATED WORK
Congested Clique is a basic model of distributed comput-

ing that was introduced by Lotker, Patt-Shamir, Pavlov,
and Peleg [LPPSP03]. Since its introduction, this model has
received extensive attention and it is receiving increasingly
more, recently [PST11,DLP12,BHP12,Len13a,DKO14,Nan14,
HPS14, HP14, CHKK+15, HPP+15, BFARR15, Gha16]. In
this model, initially each of the n nodes knows only its
incident edges in the graph G = (V,E), communications
happen in synchronous rounds, and per round, each two
nodes exchange O(logn) bits. Note that unlike the classical
CONGEST model [Pel00], here even non-adjacent nodes of
G can communicate. While at first glance this seems un-
orthodox, there are at least two strong motives for studying
this complete communication model:

The Practical Motivation, Overlay Networks and Large-
Scale Graph Processing : The traditional viewpoint in dis-
tributed network algorithms was that processors running the

This work was partially funded by the following grants:
AFOSR FA9550-13-1-0042, NSF CCF-1461559, CCF-
1217506, CCF-0939370.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16, July 25-28, 2016, Chicago, IL, USA
c© 2016 ACM. ISBN 978-1-4503-3964-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933103

algorithm reside in network nodes and two processors can
communicate only if their nodes are adjacent. This implic-
itly assumes that the whole network, or a connected sub-
graph of it, runs the algorithm. In many practical cases,
this would not be realistic, e.g., most high-level protocols
running on the Internet do not control such a subgraph. A
more common scenario is that of overlay networks, where
a number of processors spread over the whole network are
running the distributed algorithm. These processors are not
necessarily adjacent in the base network but are instead con-
nected via an overlay that provides point-to-point commu-
nications between any two of them.

Congested Clique also relates to two models of processing
large-scale graphs, the k-machine model [KNPR15] and the
MapReduce model [DG08,KSV10,HP15].

The Theoretical Motivation, Taking Locality Out of
the Picture: Two central challenges in distributed com-
puting are congestion and locality [Pel00]. Studying these
challenges together, as is necessary in the CONGEST model,
creates a complex mix. From a theoretician’s perspective, a
natural step towards understanding these two issues is to de-
couple them, i.e., to first understand each of them separately.
The LOCAL model [Lin92,Pel00], which is by now quite well-
studied, is a perfect model in taking the congestion out of
the picture and focusing on locality. The Congested Clique
model can be viewed as the complement, which instead takes
locality out and focuses on congestion. For instance, the
usual locality-based Ω(D) lower bound of the CONGEST
model—where D denotes the network diameter—disappears
in the Congested Clique model.

MST in Congested Clique: At the center of the study
of the Congested Clique model is the problem of comput-
ing a Minimum Spanning Tree (MST); in fact the model
started with this problem [LPPSP03]. It is easy to see that
the 1926 approach of Boruvka [NMN01] can be adapted to
solve MST in O(logn) rounds of this model. While intro-
ducing the model, the main result of Lotker et al. [LPPSP03]
was to show that MST can be solved faster, particularly in
O(log logn) rounds. Progress was scarce afterward, for more
than a decade, until recently when Hegeman et al. [HPP+15]
presented an O(log log logn) algorithm. Considering these
gradually shrinking bounds, there has been a growing antic-
ipation in the community that the optimal bound should be
much smaller. Though, the question of improving the bound
remained “tantalizing” [HPP+15] and open.

Our Result: In this paper, we show that MST can indeed
be solved significantly faster:

http://dx.doi.org/10.1145/2933057.2933103

Theorem 1.1. There is a randomized algorithm in
the Congested Clique model that computes a minimum
spanning tree in O(log∗ n) rounds, with high probability.

The time complexity of our algorithm improves gracefully
when larger messages are allowed. If the message size is
Θ(b logn), then the round complexity becomes O(log∗ n −
log∗ b). Thus, the round complexity is O(1) rounds for
b = log log . . . logn for c time iterated logarithm, for any
constant c ≥ 1. Contrasting this with a result of Hegeman
et al. [HPP+15], it can be phrased as improving the mes-
sage size of O(1)-round algorithms from O(log4 n) to almost
O(logn). Our connectivity algorithm also leads to improve-
ments in several other problems, using standard connections:

Corollary 1.2. In the congested clique model, (1) there are
randomized algorithms that solve the following verification
problems in O(log∗ n) rounds with high probability1: Bipar-
titeness verification, cut verification, s-t connectivity and cy-
cle containment. (2) There is an O(log ∆ + log∗ n) round
randomized MIS algorithm.

1.1 Our Approach, in a Nutshell
The main technical novelty in our result is an O(log∗ n)

Graph Connectivity algorithm. The extension from this to
MST is based on a mostly known method and will be de-
scribed in Section 3.

The heart of our connectivity algorithm is growing a max-
imal forest. To explain this forest growth, suppose that the
graph is connected; the method generalizes to disconnected
graphs as we describe later. The key in our forest growth is
an O(1)-round algorithm with the following guarantee:

Forest Growth: The forest grows from O(n
log2 x

) to
n
x

components, in O(1) rounds, w.h.p.

To get a maximal forest, we apply this forest growth for
O(log∗ n) iterations, where in the ith iteration we set x =
2 ↑↑ Θ(i). Here, 2 ↑↑ k denotes a power tower with base 2
and height k [Knu76].

The Algorithm’s Intuition: To explain the intuition be-
hind this O(1)-round forest growth algorithm, we next dis-
cuss two opposite extremes of the scenario we can face: a
dense and a sparse scenario. In reality, we will not be in ei-
ther of these extremes per se. Nonetheless, the algorithm is
an interpolation of the two solutions and we will prove that it
always enjoys the fast growth. (I) Dense Scenario: Sup-
pose that each of the current components is incident on at
least x6 outgoing edges. We make each component select
a uniformly random outgoing edge, to be added to the for-
est. One can prove that due to the high density, once these
randomly selected edges are added to the forest, w.h.p., the
number of connected components is at most n/x. Roughly
speaking, the reason is that each new component will (be
expected to) have at least x nodes.

(II) Sparse Scenario: Suppose that each of the current
components is incident on at most x6 outgoing edges, and
assume that this remains true even as we merge compo-
nents. For this case, our solution makes use of a simple lin-
ear sketching that we designed for this particular case. We

1As standard, the term high probability indicates a proba-
bility exceeding 1− 1/nc, for an arbitrary constant c ≥ 2.

note that this is in part inspired by the work of Hegeman et
al. [HPP+15] whose approach was, in a nutshell, as follows:
grow forest components using Lotker et al’s [LPPSP03] algo-
rithm till there are O(n/ poly(logn)) components, and then
use O(poly(logn))-bit `0-sampler sketches, following Ahn et
al. [AGM12], to finish the problem in O(1) extra rounds2.

In our solution, a key point is to design a sparsity-sensitive
linear sketching which allows us to reduce the sketch size
when the graph is sparse. Particularly, considering that each
component is assumed to have at most x6 outgoing edges,
we compute L = Θ(log x) many special linear sketches in
each component, where each sketch has size O(log x logn)
bits. We discuss these sketches shortly. Then, we gather
all these sketches—which is a total of O(n

log2 x
) · O(log x) ·

O(log x logn) = O(n logn) bits—in a leader node, in O(1)
rounds. The leader then simulates Θ(log x) iterations of
Boruvka’s component-merging algorithm locally using these
sketches. At the end of these locally-computed merges, the
forest has at most n/x components.

Our sketches are very simple. Each sketch is composed of
10 log x rows, and each row has Θ(logn) bits. To compute
the ith row, we do as follows: mark each edge with proba-
bility 1/2i. Then, the ith row in the sketch of each node v
is the bit-wise XOR of the identifiers3 of the marked edges
incident on v. The sketch of a component is defined to be
the bit-wise XOR of the sketches of its nodes.

The intuition for this sketch design is as follows: We argue
that for each component C, with constant probability, a
sketch of C provides an edge going out of C. Notice that
the edges internal to C do not affect the sketch of C, because
even if such an edge is marked, it gets added twice to the
XOR, once from each endpoint, and thus gets canceled out.
Let k be the number of edges with exactly one endpoint
in C. Note that due to the sparsity assumption, we have
k ∈ [1, x6]. In the ith row of the sketch of C, where i =
dlog ke, the probability that exactly one outgoing edge of C
is marked for this row is at least a constant. If that happens,
the ith row is simply the identifier of one outgoing edge,
i.e., the sketch of C provides an edge going out of C. Now
this happens for each component with constant probability.
Thus, if the leader adds all the outgoing edges extracted
from the first sketch of all components, w.h.p., the number
of components decreases by a constant factor.

The leader can continue this process locally for all L sketches.
When two components merge, the sketch of the resulting
merged component is simply the XOR of their sketches.
Hence, the leader can locally compute the new component
sketches and continue. Repeating this for L iterations, once
for each sketch, reduces the number of connected compo-
nents to n/2Θ(L) = n/x.

2. CONNECTIVITY IN O(log∗N) ROUNDS
In this section, we describe our graph connectivity algo-

rithm, which leads to the following result:

2Sketching based solutions for the connectivity problems
were also employed for the centralized dynamic setting
[KKM13] and in the k-machine model [PRS15].
3We will assign certain Θ(logn)-bit random identifiers to
the edges. These ids will let us determine w.h.p. if a row
is exactly only one identifier, or the XOR of two or more
identifiers. This will be discussed in Section 2.2.3.

Theorem 2.1. There exists a randomized algorithm in the
congest clique model that identifies the connected compo-
nents in the graph G in O(log∗ n) communication rounds,
with high probability4.

This algorithm computes a maximal forest F of G, by
starting with the trivial forest F = (V, ∅) with no edges,
and gradually adding edges of G to F—which thus merges
some connected components of F with each other—until F
is maximal. For the sake of analysis, we call each connected
component C of F growable if it is not equal to the compo-
nent of G that contains C, i.e., if C has at least one outgoing
edge to vertices in other components and hence it can still
grow. In the algorithm, each component C of F is either ac-
tive or inactive, and the algorithm ensures that a component
becomes inactive only if it is not growable anymore.

The key in our method is an algorithm called ReduceCC(x),
which reduces the number of active connected components of
F from O(n/ log2 x) to n/x, in O(1) rounds. The connectiv-
ity algorithm is simply made ofO(log∗ n) calls to ReduceCC(x),
where in the ith call we set x = 2 ↑↑ Θ(i). In the sequel, we
describe and analyze the Algorithm ReduceCC(x).

2.1 The Algorithm’s Outline
Our approach for growing the forest is, to some extent,

in the spirit of Boruvka’s 1926 algorithm. Let us briefly re-
call Boruvka’s algorithm. This algorithm works in O(logn)
iterations, where in each iteration, from each growable com-
ponent, we pick an outgoing edge. We then add all these
outgoing edges to the forest, while ignoring cycle-creating
edges. Each such iteration reduces the number of growable
components by a 2 factor. Hence, after O(logn) iterations,
we reach to a maximal forest.

As mentioned above, to reduce the number of active com-
ponents from n to 0 in O(log∗ n) rounds, our task boils
down to reducing the number of active components from
O(n/ log2 x) to n/x within O(1) rounds. To achieve this,
our approach has two main forest growth steps, as well as a
simple clean up step. First, we reduce the number of active
components whose number of outgoing edges is at most x6.
We call these components low-degree components. Then,
the second forest growth step is aimed mainly at high-degree
components, those (new components) with at least x6 out-
going edges. After this, we perform a clean up step that
deactivates some components that are not growable. At the
end, we get that the number of active connected compo-
nents decreases to at most n/x. We next briefly explain
these three steps. A more detailed description follows.

To reduce the number of growable low-degree components
to at most n/x, we would like to locally simulate Θ(log x)
iterations of Boruvka’s algorithm at a given leader node u∗.
The main challenge in doing so is that a priori a node v
cannot predict the sequence of the components to which it
might belong throughout the process of component merging.
Thus v does not know which of its edges will be outgoing for
these components. To overcome this, we will design and use
a special linear sketching procedure that handles all compo-
nents with at most x6 outgoing edges.

Our key observation is as follows: an outgoing edge of a
low-degree component can be computed by letting each node

4We remark that, by slight adjustments, one can make the
message complexity of this algorithm be O(npoly(logn)).
Details are deferred to the full version.

sketch the identifiers of its incident edges into O(log x logn)
bits. Since there are O(n/ log2 x) active components, we in
fact have sufficient capacity to send Θ(log x) such sketches
per component to the leader u∗; this will be proven formally.
The leader then will use these sketches to locally simulate
Θ(log x) iterations of Boruvka’s algorithm. We will show
that the number of growable low-degree components at the
end of this step, in the output decomposition C′, is at most
n/(4x).

Next, we focus on high-degree components in C′, where we
use the following simple yet powerful observation: a single
randomly sampled edge of a high-degree component of cardi-
nality at most (8x) is with a “good” probability an outgoing
edge. Thus, such an edge is likely to reduce the number of
connected components. We will show that by letting each
node send one random edge to the leader, and the leader
adding them to the forest (while ignoring cycles), the num-
ber of high-degree components gets reduced, such that we
have at most n/(2x) growable components.

The third step then identifies the non-growable compo-
nents that have less than (8x) nodes and deactivates them.
Note that there are at n/(8x) non-growable components
with more than 8x nodes. Hence, at the end of this clean up
step, what remains will be at most n/x active components.
We next provide a compact and high level description of the
algorithm, after which we discuss each of the steps in detail,
each in one of the subsequent subsections.

Algorithm ReduceCC(x)

Input: a forest F with a set C of at most O(n/ log2 x)
active components.
Output: a forest F ′ with a set Cout of at most n/x
active components.

• (S1): Handling low-degree components

– Each node v computes L = Θ(log x) many
linear sketches Sketch1(v), Sketch2(v), . . . ,
SketchL(v), where each of these sketches has
O(log x logn) bits.

– For every active connected component C ∈
C, let Sketchi(C) =

∑
v∈C Sketchi(v).

– Route the sketches Sketchi(C) of all active
components C ∈ C to the leader node u∗.

– Let u∗ locally simulates Θ(log x) rounds of
the basic connectivity algorithm, resulting
in the new component decomposition C′ =
{C′1, . . . , C′k}.

• (S2): Handling high-degree components

– Every node sends a random edge to the leader.

– The leader u∗ merges components using these
edges, resulting in the output decomposition
Cout = {C′′1 , . . . , C′′k′}.

• (S3): Clean Up

– The leader identifies and deactivates compo-
nents of Cout that are not growable and are
small—having less than 8x nodes.

𝐼𝐷1

𝐼𝐷ℓ

𝐼𝐷1 ⊕ 𝐼𝐷4 ⊕ 𝐼𝐷9 ⊕⋯⊕ 𝐼𝐷ℓ

𝐼𝐷11

𝐼𝐷2 ⊕ 𝐼𝐷5 ⊕. .⊕ 𝐼𝐷ℓ−1

𝐼𝐷6 ⊕ 𝐼𝐷12

Θ(log 𝑛) bits

𝑆𝑘𝑒𝑡𝑐ℎ𝑖(𝑣)

𝑣

Θ
(lo

g
𝑥
)
ro
w
s

…
…

𝐼𝐷2

Figure 1: An illustration of a single copy Sketchi(v) of the sketch
for vertex v. The degree of vertex v is ` ≤ x. The sketch contains
Θ(log x) rows, each contains Θ(logn) bits. For each row j, the
edges are sampled with probability 2−j , and the row contains
the bitwise XOR of these sampled edges. The row `′ = dlog `e
contains the ID of a single edge with constant probability.

2.2 Step (S1): Handling the Low-Degree Com-
ponents

2.2.1 The Algorithm of Step (S1)
Let I = {ID(e1), . . . , ID(em)} be a set of random edge

identifiers, each having Θ(logn) bits. The construction of
these edge identifiers is described in Section 2.2.3. For a
subset of edges S ⊆ E, let XOR(S) be the bitwise XOR of
the IDs of edges in S, i.e., XOR(S) = ⊕e∈S ID(e).

Sketch Description: Each sketch of node v is composed
of 10 log x rows, and each row has Θ(logn) bits. Let Ej ⊆ E
be a subset of the graph edges, where each e ∈ E is included
in Ej independently with probability 2−j . Let Ej(v) be the
subset of Ej edges that are incident on v. The jth row of
the sketch of v is the bit-wise XOR of the edge identifiers
in Ej(v). The node v computes Θ(log x) independent copies
of the sketch, where each Sketchi(v) is a matrix consists of
10 log x rows as follows

Sketchi(v) = [XOR(E1(v)), . . . ,XOR(E10 log x(v))]. (1)

See Fig. 1 for an illustration.
We remark that we will ensure that for each edge e =

(u, v), nodes u and v know consistently whether e ∈ Ei or
not. Thus, e = (u, v) either appears in both Ei(v) and Ei(u)
or in neither. This property is critical, cf. Observation 2.2.
In Section 2.2.3, we explain how to achieve this property
for all sketches using merely O(logn) bits of communication
between u and v.

Local simulation of Boruvka’s algorithm: Let C =
{C1, . . . , Ck} be the initial collection of k = O(n/ log2 x)
active connected components. For each i, the ith sketch of
a component C is defined to be the bit-wise XOR of the ith

sketches of its nodes. In Lemma 2.6, we explain the routing
that in O(1) rounds, delivers to the leader Θ(log x) sketches
Sketchi(C) per each component C in C.

Each of the Θ(log x) sketches of a given component would
be used to obtain one outgoing edge. The ith sketches
Sketchi(C) are used in the ith iteration of simulation of Boru-
vka’s algorithm, where Sketchi(C) will provide (at most) one
edge going out of C. By Lemma 2.4, the random identifiers

01111001
𝑢𝑣

𝑒3𝑒4

1101

1111

𝑆𝑘𝑒𝑡𝑐ℎ(𝑢)

𝑒4 1001

𝑒3 0111

𝑆𝑘𝑒𝑡𝑐ℎ(𝑣)

𝑒1 ⊕𝑒2

𝑒1 ⊕𝑒3

0100

1000

𝑆𝑘𝑒𝑡𝑐ℎ({𝑢, 𝑣}) =
𝑆𝑘𝑒𝑡𝑐ℎ(𝑢)⊕ 𝑆𝑘𝑒𝑡𝑐ℎ(𝑣)

𝑒1 ⊕𝑒2 ⊕ 𝑒4

𝑒1

Figure 2: A simple illustration of the sketches and the effect after
a merge.

are constructed in a way that allows the leader to determine
w.h.p. whether a row has exactly only one identifier or it is
a XOR of two or more identifiers. The leader then looks for
a row (among the 10 log x rows) in Sketchi(C) that contains
one sampled edge. If such an outgoing edge is found, then
this edge is added to the forest and the components of the
corresponding two endpoint nodes are merged into a single
component. For each j ≥ i, the jth sketch of the new com-
ponent is simply the bitwise XOR of the two components’
jth sketches. At the end of these Θ(log x) merge iterations
of Boruvka’s algorithm, let C′ be the resulting intermediate
component decomposition.

2.2.2 Analysis of Step (S1)
The following simple observation is useful in this analysis.

Observation 2.2. Let C be a connected component and
let Eout be the set of edges with exactly one endpoint in C.
Then for each i ∈ [1, 10 log x], the ith row of Sketch(C) is
simply the XOR of a subset S of edges Eout, where each edge
e ∈ Eout appears in S independently with probability 1/2i.
Particularly, the set of edges with zero or with two endpoints
in C do not affect this sketch.

We say that a component is large if it has at least 8x
nodes, and small otherwise. Also recall that a component is
called high-degree if the number of edges going out of it is at
least x6, and low-degree otherwise. Let C′ be the component
decomposition at the end of step (S1).

Lemma 2.3. W.h.p., the number of growable low-degree
components in C′ is at most n/(4x).

Proof. Given any component decomposition, let us call a
component (and thus also all of its nodes) blue if its outgoing
degree is at least 2x6, or if it contains a node/component
that was colored blue in the past component decompositions.
Otherwise, the component is called red.

We first argue that the total number of blue low-degree
components in C′ is at most n/(8x). Consider a blue com-
ponent C′ ∈ C′. There are two cases. Case 1: either C′ is
large, in which case there are at most n/(8x) such compo-
nents. Case 2: C′ is small, in which case since C′ contains
a blue node, its outgoing degree is at least 2x6− (8x)2 ≥ x6

and hence C′ is not low-degree. Therefore, the total num-
ber of blue low-degree components in C′ is at most n/(8x).

Clearly, this also means the number of such components that
are also growable is at most n/(8x).

To complete the proof, we next show that, w.h.p., the
number of the growable red low-degree components of C′ is at
most n/(8x). To prove this, we consider Θ(log x) iterations
of Boruvka’s algorithm as simulated locally by the leader u∗.
For each iteration i, let Ci be the component decomposition
at the beginning of this iteration and let yi be the number
of red growable components in Ci. The argument will be
provided in two similar parts, first when log x ≤ O(logn)
and second when log x ≥ Ω(logn). In the first case, we
argue that w.h.p. yi+1 ≤ 39yi/40. Thus, we would get that
yk ≤ n/(8x) for k = c log x for large enough constants c.
In the second case, we argue that E[yi+1] ≤ 39yi/40, and
then use the large value of x to show that after k = c log x
merges, w.h.p., yk ≤ n/(8x).

Let us focus on the case where log x ≤ O(logn) and con-
sider the ith iteration; here we want to prove that w.h.p.
yi+1 ≤ 39yi/40. Let us first examine the expected number
of outgoings edges that are decoded successfully using the ith

sketch. Consider a red growable component C in Ci and let
t be the number of its outgoing edges EOUT (C). Note that
since this is growable component and since it is red, we have
t ∈ [1, 2x6], which implies ` = dlog te ∈ [1, 10 log x]. Con-
sider the `th row of the sketch Sketchi(C). Recall that this
row is the bitwise XOR of a sampling of edges of EOUT (C),
where each edge is sampled independently with probability
2−`. Therefore, the probability that this sampling contains
exactly one edge is at least t

2` (1−1/2`)t−1 ≥ 1/10. That is,
with probability at least 1/10, this row provides the identi-
fier of one edge going out of C.

From above, we can conclude that in expectation, the
number of outgoing edges that were successfully sampled
from the sketches of growable components with only red
nodes is at least yi/10. Since yi ≥ logn, by Chernoff bound,
we get that w.h.p. the number of outgoing edges is at least
yi/20. Therefore, once we add these edges to the forest,
the number of red growable components in Ci+1 is at most
39yi/40. Notice that it is crucial in this argument that no
new red component gets introduced, meaning that each com-
ponent that is red in Ci+1 is made solely of red components
of Ci, which holds because of the way we defined colors blue
and red. Therefore, we have that w.h.p. yi+1 ≤ 39/40 · yi,
which completes the proof for the log x ≤ O(logn) case.

Let us consider the case where log x ≥ Ω(logn). Using
arguments as above, we get that E[yi+1] ≤ 39yi/40. Invok-
ing this expectation for k = c log x iterations, and noting
that log x ≥ Ω(logn), we get that E[yk] ≤ 1/n5. Hence, by
Markov’s inequality, the probability that yk ≥ 1 is at most
1/n5. That is, w.h.p, yk = 0. This completes the proof.

2.2.3 Smaller Algorithmic Details of Step (S1)

Assigning random edge identifiers: Our edge identifier
construction is based on the notion of ε-bias sets [NN93].
The construction is randomized and guarantees that, w.h.p.,
the XOR of each given subset of edges S ⊆ E, for |S| ≥ 2, is
not a legal edge identifier (i.e., is not equal to correspond to
an ID of an edge that exists). The construction of the edge
IDs is randomized and uses a seed of only O(logn) random
bits, which can be chosen by the leader and delivered to all
nodes of the network in O(1) rounds. This allows all nodes
to know the their corresponding edge IDs. Furthermore, the
leader will be able to detect whether a given O(logn) bits

corresponding to an XOR(S) is a legal ID (in which case, S
contains a single edge) or not, w.h.p.

Lemma 2.4. There is an algorithm that creates a collection
I = {ID(e1), . . . , ID(eM)} of M =

(
n
2

)
random identifiers

for edges, each of O(logn)-bits, and where each node learns
the identifiers of its incident edges, within O(1) rounds. These
identifiers are such that for each subset E′ ⊆ E, where
|E′| 6= 1, we have Pr[XOR(E′) ∈ I] ≤ 1/n10.

Proof. Let ` = O(logn) be the length of the edge identifier.
To compute I, we use an ε-bias set Sj ∈ {0, 1}M for each of
the j ∈ [`] coordinates of the edge identifiers. That is, for
each j ∈ [`], the set Sj = [b1, . . . , bM] specifies the jth bit for
the identifier of each of the possible M =

(
n
2

)
graph edges.

Next, we first define the ε-bias property of these sets, and
then explain how they can be constructed using O(log2 n)
bits of communication. Finally, we argue why the ε-bias
property guarantees that Pr[XOR(S) ∈ I] ≤ 1/n10 for each
subset S ⊆ E such that |S| 6= 1.

The randomly chosen set Sj = [b1, . . . , bM] satisfies the
ε-biased property if for each set of indices I ⊆ {1, . . . ,M}, it
holds that

Pr[⊕i∈Ibi = 1] ∈ [1/2± ε] . (2)

For our proposes, it is sufficient to set ε = 1/10. Naor
and Naor [NN93] provide a deterministic construction of an
ε-bias space with size O(M/poly(ε)). That is, they par-
ticularly provide a collection F of functions, where |F | =
O(M/poly(ε)), where each f ∈ F is a function mapping
[M] to {0, 1}, and if we pick a random function f ∈ F , we
would have Pr[⊕i∈If(i) = 1] ∈ [1/2 ± ε] for all nonempty
subsets I. The randomness in this statement is in the choice
of f ∈ F . We define the set Sj in our identifier construction
by picking simply one random function fj from F . Note
that choosing one such random function requires log |F| =
Θ(logM) = Θ(logn) bits.

Since the construction of F is deterministic, all vertices
can compute locally the family function F and the only thing
that needs to be communicated between the nodes is the ran-
dom bits used for selecting the ` random functions fj in F .
Since electing a random function in F requires Θ(log |F|)
bits, overall the total number of bits required for specify-
ing these ` = Θ(logn) functions is Θ(log2 n) bits. Clearly,
this is achievable in O(1) rounds in the Congested Clique,
e.g., by letting a leader node select the Θ(log2 n) bits using
private randomness, and then communicating them to all
nodes via the help of O(logn) relay nodes. This completes
the description of the construction of I.

Now, we argue that this construction satisfies the property
we desire from these random edge identifiers. Consider a
subset E′ ⊂ E such that |E′| 6= 1. We bound the probability
that XOR(E′) = ID(e). To do that, we distinguish between
two cases. First, assume that e ∈ E′. Then if XOR(E′) =
ID(e), it holds that XOR(T) = [0, 0, ..., 0] where T = E′ \
{e} 6= ∅. Hence, by Equation (2), we get that Pr[XOR(E′) =
ID(e)] = Pr[XOR(T) = [0, 0, ..., 0]] ≤ 0.4log n = 1/nc. Next,
consider the complementary case where e /∈ E′. In this case,
XOR(E′) = ID(e) implies that XOR(T) = [0, 0, ..., 0] where
T = E′ ∪ {e} 6= ∅ and again, by Equation (2), this happens
with probability at most 1/nc. By union bounding over all
m edges, we get that Pr[XOR(E′) ∈ I] ≤ 1/n10.

Consistent edge sampling for the sketches: Our goal
is that for each edge e = (u, v), nodes u and v will know
consistently whether the edge e is sampled or not in the
sketch. To do that, only the endpoint of the larger id, let
it be u, makes the random choices regarding whether the
edge is sampled. The node u then sends to v on their edge
(u, v) a description concerning all the indices in which the
edge (u, v) has been sampled in all of its sketches5. These
indices will be described in the message by putting a special
separation mark between two indices of the same sketch and
a different mark between indices of different sketches. We
now show that this message contains O(logn) bits:

Lemma 2.5. The message describing the indices of success-
ful samplings has O(logn) bits, w.h.p.

Proof. Consider a edge e = (u, v) and without loss of gen-
erality let u be the node with the larger identifier. Note
that overall the iterations of our connectivity algorithm, the
number of sketches computed by each node u is O(logn) +
O(log logn) + . . .+O(1) = O(logn). We now show that in-
dices of these samplings in which e is sampled can be written,
w.h.p., in O(logn) bits. That is, the message containing the
sampled indices for all these O(logn) sketches has at most
O(logn) bits, w.h.p.

Consider the ith sketch of u and let ri be the random
variable indicating the sum of indices of the rows for which
(u, v) has been sampled. Note that the sampled indices can
be described using O(ri) bits, that is, using a number of
bits is linear in the summation of the indices of the sampled
rows. We first argue that the probability distribution of this
random variable ri is upper bounded by that of a geometric
random variable. Particularly, we upper bound the proba-
bility that ri = y for each integer y ≥ 1 by a function ex-
ponentially decaying in y. Then, we invoke a concentration
of summation of geometrically distributed random variables
to conclude the proof.

Note that if ri = y, then the sum of the indices of the
sampled rows is y and the probability that the edge (u, v)
has been sampled into these particular rows is at least 2−y.
This is regardless of the particular set of indices whose sum
is y. To see this, consider an arbitrary possible set of row
indices i1, . . . , i` satisfying

∑`
j ij = y. Then, the probability

that e has been sampled to these rows is at most
∏`

j 2−ij =

2
∑`

j ij = 2−y. To bound the probability that ri = y, we
then union bound over all distinct ways of representing y as
a sum of natural numbers. By a partition number6 result of
Erdős [Erd42], there are at most 2Θ(

√
y) such options. Since

the probability that edge e is sampled for each such options
(i.e, that e was sampled to these exact rows) is bounded by

2−y, overall Pr[ri = y] ≤ 2Θ(
√
y) · 2−y ≤ 2−y/2.

Let zi be a random variable with a geometric distribu-
tion with parameter 1/2, i.e., where Pr[zi = y] = 2−y

for y ∈ N. We have Pr[ri = y] ≤ Pr[zi = y/2]. Let

Z =
∑k

i=1 zi and R =
∑k

i=1 ri where k = O(logn) is
the total number of sketches computed by u throughout
the algorithm. Hence, Pr[R ≥ 20k] ≤ Pr[Z ≥ 10k]. It

5Note that the sketch information is independent of the cur-
rent component decomposition and hence the node can com-
pute in the beginning of the algorithm all the sketches and
send to its neighbor this consistency information.
6The partition number of an integer y is the number of ways
to represent y as a summation of positive integers.

is known that the summation of geometric random vari-
ables is distributed according to a negative binomial distri-
bution and it is concentrated around its expectation. More
precisely, Pr[Z ≥ 20k] ≤ exp(−k) = 1/n5. Therefore,
Pr[R ≥ 40 logn] ≤ 1/n5, thus completing the proof.

Lemma 2.6. Consider the setting where a leader node u∗

knows a forest with O(n/ log2 x) active connected compo-
nents C = {C1, . . . , Ck}. There is an O(1)-round routing
scheme that delivers the sketches of all these components to
the leader u∗.

Proof. Recall that every node has Θ(log x) sketches, each of
size O(log x logn) bits, and that each component sketch is
simply the bit-wise XOR of the corresponding node sketches.
We next describe how to deliver these component sketches to
the leader inO(1) rounds. The leader u∗ partitions the node-
set of each active component Ci into d|Ci|/(n/k)e subsets,
each of size at most n/k. This is a total of at most 2k � n
subsets. The leader u∗ then elects a distinct relay node wi

for each subset, and sends the id of wi to all the nodes in
that subset.

Next, we deliver the component sketches from the nodes
to the leader in a two-step manner, using the help of these
relay nodes. First, all nodes send their sketches to their cor-
responding relay nodes. Then, each relay node computes the
bitwise XOR of its received sketches and forwards the result
to the leader u∗, who can readily compute the component
sketches. We next argue that each of these steps can be
performed in O(1) rounds, using Lenzen’s routing [Len13b].

Lenzen [Len13b] provides a routing scheme such that if
each node is the source for O(n) messages and each node
is the the designation for O(n) messages, then all these
messages can be routed from their sources to their desti-
nations within O(1) rounds. In the first forwarding step
above, each node needs to send O(log2 x logn) bits—which
is equivalent to O(log2 x) messages—to its relay and each
relay needs to receive at most n/k � n messages from
the nodes in its subset. Further, in the second forward-
ing step, each relay node needs to send O(log2 x) messages
to the leader u∗ and the leader needs to receive at most
2k · O(log2 x) = O(n/ log2 x) · O(log2 x) = O(n) messages
from the relays. Hence, both of these steps can be easily
performed using Lenzen’s routing.

2.3 Step (S2): Handling the High-Degree Com-
ponents

In the second step (S2), each node v randomly and uni-
formly picks one of the edges incident on v and sends this
edge to the leader u∗. The leader adds these edges to the
forest, one by one, ignoring the cycles. This results in a new
component decomposition Cout. We next show the following.

Lemma 2.7. W.h.p, the decomposition Cout contains at
most n/(2x) growable components.

Proof. First note that by Lemma 2.3, the number of grow-
able low-degree components in C′ is at most n/(4x). Hence,
the total number of components of Cout that contain at least
one growable low-degree component of C′ is at most n/(4x).
Note that if a component in Cout contains a component of
C′ that was not growable, this actually means that the two
components are the same and both are not growable. To

complete the proof, we show that the number of compo-
nents of Cout that do not contain any low-degree component
of C′ is also at most n/(4x).

Recall that for each component of Cout, we call it small
if it has less than 8x nodes, and large otherwise. Clearly,
the number of large components of Cout is at most n/(8x).
Hence, to complete the proof, what remains is to show that
in Cout, the number of small components that do not contain
a low-degree component from C′ is at most n/(8x).

To prove this, we consider the random process of adding
edges to the forest gradually, as follows: This process is
performed only for the sake of analysis. Throughout, we
maintain a counter κ, which at the end will provide an upper
bound on the number of small connected components in Cout
that do not contain a low-degree component of C′.

First, mark all low-degree components of C′ as processed,
whereas all the high-degree components of C′ are considered
unprocessed. We gradually process unprocessed components
and add the related sampled edges to the forest. For clar-
ity, we perform this in phases. In phase i ≥ 1, pick an
arbitrary unprocessed small component C and let it be the
head-component of the ith chain. We then sample an edge
– as will be described next – from the component C′ that
was joined last to this chain, where at the start, C′ is sim-
ply C. To sample an edge from C′, we pick an arbitrary
vertex v′ ∈ C′ of degree at least x5/8 – and sample one of
its edges uniformly at random. Since C′ is both small and
high-degree, such vertex v′ exists.

If this randomly sampled edge connects to an unprocessed
component C′′, then we mark C′′ as processed and add C′′

to the chain. On the other hand, if the sampled edge con-
nects C′ to a component that is already processed, then the
extension of the chain is halted and we update the counter
κ in the following manner: If the sampled edge connects C′

to a processed component within the same chain, and the
total number of nodes in the connected component created
by this chain is less than 8x, then increment the counter
κ by 1. If the sampled edge connects C′ to a component
in some previous chain, or to one of the low-degree compo-
nents, then the counter κ remains as is. At this point, phase
i ends. We continue this process until all components are
marked as processed. See Figure 3 for an illustration.

If this randomly sampled edge connects to an unprocessed
component C′′, then we mark C′′ as processed and add C′′ to
the chain. If the sampled edge connects C′ to a component
that is already processed, then the extension of the chain is
halted and we update the counter κ in the following manner:
If the sampled edge connects C′ to a processed component
within the same chain, and the total number of nodes in the
connected component created by this chain is less than 8x,
then increment the counter κ by 1. On the other hand, if the
sampled edge connects C′ to a component in some previous
chain, or to one of the low-degree components, then the
counter κ remains as is. At this point, phase i ends. We
continue this process until all components are marked as
processed. See Figure 3 for an illustration.

Since the counter is incremented only when the chain con-
sists of at most 8x nodes and when the random edge does
not connect it to a previously counted component, we get
that at the end, the number of low-cardinality components
that do not contain a low-degree component from C′ is up-
per bounded by κ. To complete the proof, we next show
that with high probability, κ ≤ n/(8x).

Figure 3: Illustration for Lemma 2.7. The figure shows the chain
created at steps i = 1, 2, 3, 4. The counter κ is increased only
when the sampled edge of the last added component is internal to
the chain and the number of vertices in the chain’s components is
small. For example, the counter is not incremented in step i = 2,
since the sampled edge hits the chain of step i = 1. In addition,
the counter is not incremented in step i = 4, because the total
number of vertices in the chain’s components is above 8x.

To prove this claim, let κi be the value of the counter at
the end of phase i and let ` be the total number of phases.
We first claim that for every i ∈ {1, . . . , `}, E[κi|κi−1] ≤
κi−1 + 1/x2. Consider the ith chain [Ci1 , . . . , Cik] gener-
ated at phase i and let vij ∈ Cij be the vertex whose edge

has been taken (i.e., the vertex with degree at least x5/8)
for every j ∈ {1, . . . k}. The probability that the counter
is increased by 1 at the end of the phase is bounded by
the probability that somewhere throughout the steps dur-
ing which the chain had at most 4x nodes, the following
happens: for at least one of the nodes vij ∈ Cij which was
sampled for an edge, the randomly selected edge had both
of its endpoints in the same chain. Throughout these steps,
for every j ∈ {1, . . . , k}, since the out-degree of the vertex
vij is greater than x5/8 − (8x)2 ≥ x5/16, the probability
that a random edge of the node vij ∈ Cij connects to some

node in
⋃j

`=1 Ci` is at most (8x)2

x5/16
≤ c · x3. Hence, by ap-

plying the union bound on all 8x “bad” events, we get that
the probability that at least one of these edges is internal
is c′ · x2. Thus, E[κi|κi−1] ≤ κi−1 + c′/x2. This implies
E[κ`] ≤ c′ · n/x2. Next, note that probabilistic events of
the counter being increased by 1 are independent among
different chains, as in the case of each chain i, the event
only depends on the random edges sampled from the com-
ponent under consideration during phase i, and this compo-
nent will not be processed again in later phases. In addi-
tion, since there are high-degree components, x6 ≤ n which
means 2n/x2 = Ω(logn). Hence, by Chernoff bound, w.h.p.,
κ` ≤ 2c′ · n/x2 ≤ n/(8x).

2.4 Step (S3): Clean Up
We now explain how in O(1) rounds, we can identify

and deactivate small connected components of Cout that
are not growable. By Lemma 2.7 the number of growable
components is at most n/(2x). Moreover, the number of
(non-growable) large components is at most n/(8x). There-
fore, once we deactivate small non-growable components,
the total number of active components would be at most

n/(8x) +n/(2x) ≤ n/x, as desired. We remark that we per-
form this clean up step only when x ≤ O(log2 n), that is, for
all iterations of our connectivity algorithm except the very
last one where we set x = (n + 1). Notice that in that last
iteration, w.h.p., after step (S1), all components are non-
growable—i.e., the forest is maximal—and thus we do not
need to continue steps (S2) and (S3).

Lemma 2.8. In O(1) rounds, we can identify and deactivate
component of F that are small and non-growable.

Proof. Note that the leader u∗ knows the whole forest F at
the end of step (S2). For each small component Ci of F—
that is, each component that has less than 8x nodes—the
leader picks one relay node wi. Then, the leader sends the
identifiers of all nodes of component Ci to the relay node wi,
simultaneously for all small components, in O(1) rounds, us-
ing Lenzen’s routing [Len13a]. Then, each relay node wi that
has received identifiers v1, . . . , v` of its corresponding com-
ponent, delivers all of these identifiers to all of them ` nodes.
That is, relay wi creates ` messages destined for each of these
nodes vi where each of the messages describes the identifiers
of v1, . . . , v`, for a total of at most (8x)2 ≤ O(log4 n) mes-
sages. We then use Lenzen’s routing [Len13a] to deliver all
these messages from relay nodes to nodes of small compo-
nents. Note that this can be done because each node needs
to send (8x)2 ≤ O(log4 n) messages and each node needs to
receive at most (8x) ≤ O(log2 n) messages. Finally, each
node in these small components that now has received the
identifiers of all its component-mates checks whether it has
an edge going out of its component and informs the leader
about this, using a single message, all of which get delivered
to the leader in one round. Hence, at the end, the leader
knows which of these small components are not growable,
and then it marks them as deactivated.

3. MST IN O(log∗N) ROUNDS
Here, we explain how using the graph connectivity algo-

rithm presented in the previous section, we can compute a
Minimum Spanning Tree (MST) of a weighted graph G =
(V,E,w) in O(log∗ n) rounds.

Technically, the solution relies on three components: (1)
a result of Karger, Klein, and Tarjan (KKT) [KKT95] that
reduces the general MST problem to MST on sparse graphs,
(2) a method of Hegeman et al. [HPP+15] which turns MST
of graphs with low sparsity into many independent instances
of the graph connectivity problem, and (3) an extension of
our connectivity algorithm from the previous section that
solves many instances of the connectivity problem simulta-
neously in O(log∗ n) rounds. In the following, we discuss
these three components.

MST Sparsification via KKT: We explain how a ran-
domized trick of Karger, Klein, and Tarjan (KKT) [KKT95]
transforms the MST problem on graph G into two MST
problems on graphs G1 and G2, each with O(n3/2) edges.

We first need some notations. For a graph G, let F be a
forest, and for two nodes u and v, let wF (u, v) be the heaviest
edge on the path connecting u and v in F ; if there is no such
path, let wF (u, v) = ∞. We call an edge e = (u, v) is F -
heavy if w(u, v) > wF (u, v), and F -light otherwise. Notice
that F -heavy edges cannot be in the MST of G.

To transform MST on G to MST on two graphs G1 and G2

with with O(n3/2) edges each, let p = 1√
n

and let G1 = G(p)

be a randomly selected subgraph of G where each G-edge is
included in G(p) independently with probability p. W.h.p.,

G1 has O(n3/2) edges. Now suppose we have already com-
puted an minimum spanning forest F of G1, let E2 be the
set of F -light edges of G, and let G2 = (V,E2). Clearly, an
MST of G2 is an MST G. The result of Karger, Klein,
and Tarjan (KKT) [KKT95] shows that G2 has at most

O(n/p) = O(n3/2) edges, w.h.p. Hence, the task of com-
puting an MST of G is reduced to computing an MST F of
G1, identifying the set E2 of F -light edges, and then com-
puting an MST of G2. Since in the Congested Clique the
forest F can be made known to all nodes in O(1) round,
the task is reduced to solving MST in two graphs each with
O(n3/2) edges, one after the other. Next we explain how to
solve each of these problems in O(log∗ n) rounds.

From Sparse MST to Many Connectivity Problems:
Consider a weighted graph G′ = (V,E′, w) with O(n3/2)
edges. Consider the ordering π of the edges E′ by increas-
ing weight. Notice that an edge e = (u, v) is in the MST of
G′ if and only if in the graph edge-induced by the set of edges
lighter than e—i.e., those appearing before e in this ordering
π—nodes u and v are in two different components. We next
show, following [HPP+15], that one can check this condi-
tion for all edges of E′ simultaneously—thus computing the
MST—by solving Θ(

√
n) graph connectivity problems.

For i from 1 to K = Θ(
√
n), define subset Ei to be the

edges with rank in [(i − 1)n + 1, in] in the aforementioned
ordering π of edges in E′. Use the Congested Clique sort-
ing result of Lenzen [Len13a] so that in O(1) rounds, each
node knows the ranking of its incident edges in the ordering.
Thus, each node knows for each of its incident edges e, to
which edge-set Ei edge e belongs. Pick K leader nodes u1,
. . . , uK , and then using Lenzen’s routing [Len13a], in O(1)
rounds, make each leader node ui know all the edges in set
Ei. Leader ui will be responsible for detecting which of the
edges in Ei belong to the MST. Let Hi = (v,∪i−1

j=1Ej). If ui

knows the connected components—or equivalently, a max-
imal forest Fi—of Hi, then it can locally identify which of
Ei edges belong to the MST, as follows: ui processes the Ei

edges one by one in the increasing weight order; each time
it adds the new edge to the forest Fi, and also to the MST
of G′, and then discards all the unprocessed Ei edges e such
that Fi + e has a loop, that is, edges e that are internal to
a component of Fi.

Thus, to solve MST ofG′, what remains is that each leader
node ui should learn the connected components (equiva-
lently, a maximal forest) of graph Hi and this should happen
for all K = Θ(

√
n) graphs Hi. This is where our O(log∗ n)

connectivity algorithm comes in, as we discuss next.

Solving Many Connectivity Problems: Here, we ex-
plain how to extend the algorithm of the previous section
to solve connectivity in many graphs simultaneously. Par-
ticularly, this extension will allow the leaders u1, u2, . . . ,
uK to know, respectively, the connected component decom-
positions of graphs H1 = (V,E1), H2 = (V,E2) . . . , HK =
(V,EK), in O(log∗ n) rounds.

Recall from Section 2 that to solve one instance of the
graph connectivity problem, our main subroutine had three
steps: (S1) a step where we deliver the sketches of com-
ponents to the leader, (S2) a step where we deliver to the
leader one randomly selected edge incident on each node,

and (S3) a clean-up step where we identify and deactivate
small connected components that cannot grow.

Clearly, the step (S2) can be performed in parallel for all
the K graphs H1, H2, . . . , Hk, in just one round. This is
because, each node v can directly send one message to each
leader ui, describing the (at most) one edge in Hi incident
on v that it sampled. We next explain how steps (S1) and
(S3) can also be performed in O(1) rounds, simultaneously
for all graphs Hi.

In the next lemma, we show that step (S1) can be per-
formed in O(1) rounds, simultaneously for all the K graphs
Hi. This is by a simple extension of Lemma 2.6, as follows:

Lemma 3.1. Consider the setting where each leader node
ui knows a forest Fi with at most k = O(n/ log2 x) active
connected components in graph Hi. There is an O(1)-round
routing scheme that, for all i ∈ [1,K], simultaneously deliv-
ers the sketches of all components of Fi to the leader ui.

Proof. The approach is mostly the same as in Lemma 2.6.
Here we just point out the simple changes that need to be
made. As in Lemma 2.6, each leader ui partitions the node-
set of each of the active connected components of Fi into
subsets of size n/k where k = Θ(n/ log2 x). This breaks
the forest Fi into at most 2k subsets. Leader ui picks (at
most) 2k relay nodes w1, w2, . . . , w2k, one for each of these
subsets. In fact, we can allow all the leaders to pick the
same 2k relay nodes, particularly the 2k nodes with smallest
IDs (although the assignments will be different). Then each
leader ui delivers the ID of relay node wj to the nodes in the
jth subset in the partition of Fi. We can do this at the same
time for all the K leaders because to deliver these relay node
IDs, each node v needs to receive one ID from each leader
ui, and it can directly receive it from the leader.

Now, each node v sends its sketch for each graph Hi to
its corresponding relay node. This requires v to send out
a total of K · Θ(log2 x) ≤ Θ(

√
n log2 n) � n messages and

it requires each relay node to receive at most K · n/k =
Θ(
√
n log2 n) � n messages. Hence, the step of delivering

sketches from nodes to relays can be done in O(1) rounds,
using Lenzen’s routing [Len13b].

Finally, we need to deliver the sketches from the relay
nodes to the leaders. This requires each relay to send at most
Θ(K log2 x) ≤ Θ(

√
n log2 n) � n messages and each leader

to receive at most 2k ·Θ(log2 x) = O(n/ log2 x) ·Θ(log2 x) =
O(n) messages. Thus, this again be done in O(1) rounds
using Lenzen’s routing [Len13b].

We remark how Lemma 2.5 extends to solving K con-
nectivity problems simultaneously. Recall that Lemma 2.5
discusses how two nodes u and v connected by an edge
e = (u, v) ∈ G can know consistently whether e is sam-
pled in each of the sketch subsets or not, simply by O(logn)
bits of communication. Instead of repeating this for the K
graph connectivity problems we want to solve, we make the
O(logn) bits describe the sampling outcomes in the union
graph ∪i∈[K]Hi, and then u and v can use the edge e for the
computation of each graph Hi, considering whether e ∈ Hi

or not. That is, we use the same O(logn) bits of randomness
for all the connectivity problems. This makes the execu-
tion of these graph connectivity problems probabilistically
dependent. However, since we know that each of them suc-
ceeds with high probability, and since they run independent
of each other, we do not need any independence; we can do

a simple union bound and say that, with high probability,
all the graph connectivity instances succeed.

Finally, it remains to explain how Lemma 2.8 can be ex-
tended to perform step (S3) for all the graphs:

Lemma 3.2. In O(1) rounds, simultaneously we can iden-
tify and deactivate components of the forests F1, F2, . . . , Fk

of graphs H1, H2, . . . , Hk that are small and non-growable.

Proof. The procedure for each graph is the same as in Lemma
2.8. The only point to note is that, all these messages can
be routed simultaneously using Lenzen’s routing. Particu-
larly, each relay node will need to receive at most K(8x) ≤
K ·O(log2 n) ≤ O(

√
n log2 n) messages from the correspond-

ing leaders and each relay node will need to send at most
K(8x)2 ≤ O(

√
n log4 n) messages to the nodes. Both of

these bounds are much smaller than n and thus, Lenzen’s
routing [Len13a] can route all these messages simultaneously
in O(1) rounds.

4. REFERENCES
[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew

McGregor. Analyzing graph structure via
linear measurements. In Proc. of ACM-SIAM
Symp. on Disc. Alg. (SODA), pages 459–467,
2012.

[BFARR15] Florent Becker, Antonio Fernandez Anta, Ivan
Rapaport, and Eric Reémila. Brief
announcement: A hierarchy of congested
clique models, from broadcast to unicast. In
the Proc. of the Int’l Symp. on Princ. of Dist.
Comp. (PODC), PODC ’15, pages 167–169.
ACM, 2015.

[BHP12] Andrew Berns, James Hegeman, and
Sriram V Pemmaraju. Super-fast distributed
algorithms for metric facility location. In
Automata, Languages, and Programming,
pages 428–439. Springer, 2012.

[CHKK+15] Keren Censor-Hillel, Petteri Kaski, Janne H.
Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the
congested clique. In the Proc. of the Int’l
Symp. on Princ. of Dist. Comp. (PODC),
pages 143–152. ACM, 2015.

[DG08] Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing on
large clusters. Communications of the ACM,
51(1):107–113, 2008.

[DKO14] Andrew Drucker, Fabian Kuhn, and Rotem
Oshman. On the power of the congested
clique model. In the Proc. of the Int’l Symp.
on Princ. of Dist. Comp. (PODC), pages
367–376. ACM, 2014.

[DLP12] Danny Dolev, Christoph Lenzen, and Shir

Peled. âĂIJtri, tri againâĂİ: Finding triangles
and small subgraphs in a distributed setting.
In Distributed Computing, pages 195–209.
Springer, 2012.

[Erd42] Pául Erdos. On an elementary proof of some
asymptotic formulas in the theory of
partitions. Annals of Mathematics, pages
437–450, 1942.

[Gha16] Mohsen Ghaffari. An improved distributed
algorithm for maximal independent set. In
Proc. of ACM-SIAM Symp. on Disc. Alg.
(SODA), 2016.

[HP14] James W Hegeman and Sriram V Pemmaraju.
Lessons from the congested clique applied to
MapReduce. In the Proceedings of the
International Colloquium on Structural
Information and Communication Complexity,
pages 149–164. Springer, 2014.

[HP15] James W Hegeman and Sriram V
Pemmaraju. Lessons from the congested
clique applied to mapreduce. Theoretical
Computer Science, 608:268–281, 2015.

[HPP+15] James W. Hegeman, Gopal Pandurangan,
Sriram V. Pemmaraju, Vivek B.
Sardeshmukh, and Michele Scquizzato.
Toward optimal bounds in the congested
clique: Graph connectivity and MST. In the
Proc. of the Int’l Symp. on Princ. of Dist.
Comp. (PODC), pages 91–100. ACM, 2015.

[HPS14] James W Hegeman, Sriram V Pemmaraju,
and Vivek B Sardeshmukh.
Near-constant-time distributed algorithms on
a congested clique. In Distributed Computing,
pages 514–530. Springer, 2014.

[KKM13] Bruce M Kapron, Valerie King, and Ben
Mountjoy. Dynamic graph connectivity in
polylogarithmic worst case time. In
Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete
Algorithms, pages 1131–1142. SIAM, 2013.

[KKT95] David R Karger, Philip N Klein, and
Robert E Tarjan. A randomized linear-time
algorithm to find minimum spanning trees.
Journal of the ACM (JACM), 42(2):321–328,
1995.

[KNPR15] Hartmut Klauck, Danupon Nanongkai, Gopal
Pandurangan, and Peter Robinson.
Distributed computation of large-scale graph
problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 391–410. SIAM, 2015.

[Knu76] Donald Ervin Knuth. Mathematics and
computer science: coping with finiteness.
Science (New York, NY),
194(4271):1235–1242, 1976.

[KSV10] Howard Karloff, Siddharth Suri, and Sergei
Vassilvitskii. A model of computation for
mapreduce. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete
Algorithms, pages 938–948. Society for
Industrial and Applied Mathematics, 2010.

[Len13a] Christoph Lenzen. Optimal deterministic
routing and sorting on the congested clique.
In the Proc. of the Int’l Symp. on Princ. of
Dist. Comp. (PODC), pages 42–50, 2013.

[Len13b] Christoph Lenzen. Optimal deterministic
routing and sorting on the congested clique.
In the Proc. of the Int’l Symp. on Princ. of
Dist. Comp. (PODC), pages 42–50, 2013.

[Lin92] Nathan Linial. Locality in distributed graph
algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LPPSP03] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir,
and David Peleg. MST construction in
O(log logn) communication rounds. In the
Proceedings of the Symposium on Parallel
Algorithms and Architectures, pages 94–100.
ACM, 2003.

[Nan14] Danupon Nanongkai. Distributed
approximation algorithms for weighted
shortest paths. In Proc. of the Symp. on
Theory of Comp. (STOC), 2014.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena
Nešetřilová. Otakar boruvka on minimum
spanning tree problem translation of both the
1926 papers, comments, history. Discrete
Mathematics, 233(1):3–36, 2001.

[NN93] Joseph Naor and Moni Naor. Small-bias
probability spaces: Efficient constructions and
applications. SIAM journal on computing,
22(4):838–856, 1993.

[Pel00] David Peleg. Distributed Computing: A
Locality-sensitive Approach. Society for
Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[PRS15] Gopal Pandurangan, Peter Robinson, and
Michele Scquizzato. Almost optimal
distributed algorithms for large-scale graph
problems. arXiv preprint arXiv:1503.02353,
2015.

[PST11] Boaz Patt-Shamir and Marat Teplitsky. The
round complexity of distributed sorting. In
the Proc. of the Int’l Symp. on Princ. of Dist.
Comp. (PODC), pages 249–256, 2011.

	Introduction and Related Work
	Our Approach, in a Nutshell

	Connectivity in O(log* n) Rounds
	The Algorithm's Outline
	Step (S1): Handling the Low-Degree Components
	The Algorithm of Step (S1)
	Analysis of Step (S1)
	Smaller Algorithmic Details of Step (S1)

	Step (S2): Handling the High-Degree Components
	Step (S3): Clean Up

	MST in O(log*n) rounds
	References

