
Bypassing Erdős’ Girth Conjecture: Hybrid
Stretch and Sourcewise Spanners

Merav Parter

The Weizmann Institute of Science, Rehovot, Israel. merav.parter@weizmann.ac.il ?

Abstract. An (α, β)-spanner of an n-vertex graph G = (V,E) is a sub-
graph H of G satisfying that dist(u, v,H) ≤ α ·dist(u, v,G)+β for every
pair (u, v) ∈ V × V , where dist(u, v,G′) denotes the distance between u
and v in G′ ⊆ G. It is known that for every integer k ≥ 1, every graph G
has a polynomially constructible (2k − 1, 0)-spanner of size O(n1+1/k).
This size-stretch bound is essentially optimal by the girth conjecture.
Yet, it is important to note that any argument based on the girth only
applies to adjacent vertices. It is therefore intriguing to ask if one can
“bypass” the conjecture by settling for a multiplicative stretch of 2k− 1
only for neighboring vertex pairs, while maintaining a strictly better mul-
tiplicative stretch for the rest of the pairs. We answer this question in the
affirmative and introduce the notion of k-hybrid spanners, in which non
neighboring vertex pairs enjoy a multiplicative k-stretch and the neigh-
boring vertex pairs enjoy a multiplicative (2k − 1) stretch (hence, tight
by the conjecture). We show that for every unweighted n-vertex graph G
with m edges, there is a (polynomially constructible) k-hybrid spanner
with O(k2 · n1+1/k) edges. This should be compared against the current
best (α, β) spanner construction of [5] that obtains (k, k − 1) stretch
with O(k · n1+1/k) edges. An alternative natural approach to bypass the
girth conjecture is to allow ourself to take care only of a subset of pairs
S × V for a given subset of vertices S ⊆ V referred to here as sources.
Spanners in which the distances in S×V are bounded are referred to as
sourcewise spanners. Several constructions for this variant are provided
(e.g., multiplicative sourcewise spanners, additive sourcewise spanners
and more).

1 Introduction

1.1 Motivation

Graph spanners are sparse subgraphs that faithfully preserve the pairwise dis-
tances of a given graph and provide the underlying graph structure in com-
munication networks, robotics, distributed systems and more [26]. The notion

? Recipient of the Google European Fellowship in distributed computing; research sup-
ported in part by this Fellowship. Supported in part by the Israel Science Foundation
(grant 894/09), United States-Israel Binational Science Foundation (grant 2008348),
Israel Ministry of Science and Technology (infrastructures grant), and Citi Founda-
tion.

ar
X

iv
:1

40
4.

68
35

v1
 [

cs
.D

S]
 2

7
A

pr
 2

01
4

of graph spanners was introduced in [24,25] and have been studied extensively
since. Spanners have a wide range of applications from distance oracles [30,8],
labeling schemes [9] and routing [13] to solving linear systems [17] and spectral
sparsification [19].

Given an undirected unweighted n-vertex graph G = (V,E), a subgraph H of
G is said to be a k-spanner if for every pair of vertices (u, v) ∈ V ×V it holds that
dist(u, v,H) ≤ k ·dist(u, v,G). It is well known that one can efficiently construct
a (2k − 1)-spanner with O(n1+1/k) edges, even for weighted graphs [4,6]. This
size-stretch ratio is conjectured to be tight based on the girth1 conjecture of
Erdős [18], which says that there exist graphs with Ω(n1+1/k) edges and girth
2k + 1. If one removes an edge in such a graph, the distance between the edge
endpoints increases from 1 to 2k, implying that any α-spanner for α ≤ 2k − 1
has Ω(n1+1/k) edges. This conjecture has been resolved for the special cases of
k = 1, 2, 3, 5 [32].

Although the girth conjecture exactly characterizes the optimal tradeoff be-
tween sparseness and multiplicative stretch, it applies only to adjacent vertices
(i.e., removing an edge (u, v) from a large cycle causes distortion to the edge
endpoints). Indeed, Elkin and Peleg [15] showed that the girth bound (on multi-
plicative distortion) fails to hold even for vertices at distance 2. This limitation
of the girth argument motivated distinguishing between nearby vertex pairs and
“sufficiently distant” vertex pairs. This gave raise to the development of (α, β)-
spanners which distort distances in G up to a multiplicative factor of α and an
additive term β [15]. Formally, for an unweighted undirected graph G = (V,E),
a subgraph H of G is an (α, β)-spanner iff dist(u, v,H) ≤ α · dist(u, v,G) + β
for every u, v ∈ V . Note, that an (α, β)-spanner makes an implicit distinction
between nearby vertex pairs and sufficiently distant vertex pairs. In particular,
for “sufficiently distant” vertex pairs the (α, β)-spanner behaves similar to a
pure multiplicative spanner, whereas for the remaining vertex pairs, the span-
ner behaves similar to an additive spanner [21]. The setting of (α, β)-spanners
has been widely studied for various distortion-sparseness tradeoffs [16,31,15,5].
For example, [15] gave a construction for (k − 1, 2k − O(1))-spanners with size
O(k ·n1+1/k), with a number of refinements for short distances, and showed that
for any k ≥ 2 and ε > 0, there exist (1 + ε, β)-spanners with size O(β · n1+1/k),
where β depends on ε and k but independent on n, implying that the size can be
driven close to linear in n and the multiplicative stretch close to 1, at the cost
of a large additive term in the stretch. Thorup and Zwick designed (1 + ε, β)-
spanners with O(k ·n1+1/k) edges, with a multiplicative distortion that tends to
1 as the distance increases [31].

The best (α, β) spanner construction is due to [5] which achieves stretch of
(k, k− 1) with O(k ·n1+1/k) edges, hence providing multiplicative stretch 2k− 1
for neighboring vertices (which is the best possible by Erdős’ conjecture) and a
multiplicative stretch at most 3k/2 for the remaining pairs.

Although (α, β)-spanners make an (implicit) distinction between “close” and
“distant” vertex pairs, as the girth argument holds only for vertices at dis-

1 The girth is the smallest cycle length.

tance 1, it seems that a tighter bound on the behavior of spanners may be
obtained. In particular, it seems plausible that the multiplicative factor of k
using O(n1+1/k) edges, is not entirely unavoidable for non-neighboring vertex
pairs, while providing multiplicative stretch of 2k− 1 for the neighboring vertex
pairs. The current paper confirms this intuition by introducing the notion of
k-hybrid spanners, namely, subgraphs H ⊆ G that obtain multiplicative stretch
2k−1 for neighboring vertices, i.e., dist(u, v,H) ≤ (2k−1)·dist(u, v,G) for every
(u, v) ∈ E(G) and multiplicative stretch k for the remaining vertex pairs, i.e.,
dist(u, v,H) ≤ k · dist(u, v,G) for every (u, v) /∈ E(G). Hence, hybrid spanners
seem to pinpoint the minimum possible relaxation of the stretch requirement in
spanners graphs so that the girth conjecture lower bound can be bypassed. The
presented k-hybrid spanner with O(k2 · n1+1/k) edges can be contrasted with
several existing spanner constructions, e.g, k-spanners with O(n1+2/(k+1)) edges
(in which multiplicative stretch k is guaranteed also to neighboring pairs), the
Ω(k ·n1+1/k) lower-bound graph construction for (2k−1)-additive spanners, and
to the (k, k − 1) spanner construction of [5] with O(k2 · n1+1/k) edges.

An alternative approach to bypass the conjecture is by focusing on a subset
of pairs in V × V . Following [10,27,12,20], we relax the requirement that small
stretch in the subgraph must be guaranteed for every vertex pair from V × V .
Instead, we require it to hold only for pairs of vertices from a subset of V × V .
Specifically, given a subset of vertices S ⊆ V , referred to here as sources, our
spanner H aims to bound only the distances between pairs of vertices from S×V .
For any other pair outside S × V , the stretch in H can be arbitrary.

On the lower bound side, Woodruff [33] proved, independently of the Erdős’
conjecture, the existence of graphs for which any spanner of size Ω(k−1n1+1/k)
has an additive stretch of at least 2k−1. Although sourcewise additive spanners
have been studied by [27,12,20], currently there are no known lower bound con-
structions for this variant. We generalize Woodruff’s construction to the source-
wise setting, providing a graph construction whose size has a smooth dependence
with the number of sources.

1.2 Related Works

The notion of a sparse subgraph that preserves distances only for a subset of
the V ×V pairs has been initiated by Bollobás, Coopersmith and Elkin [9], who
studied pairwise preservers, where the input is a graph G = (V,E) along with
a subset of vertex pairs P ⊆ V × V and the problem is to construct a sparse
subgraph H such that the u−v distance for each (u, v) ∈ P is exactly preserved,
i.e., dist(u, v,H) = dist(u, v,G) for every (u, v) ∈ P. They showed that one can
construct a pairwise preserver with O(min{|P| ·

√
n, n ·

√
|P|}) edges. At the end

of their paper, they raised the question of constructing sparser subgraphs where
distances between pairs in P are approximately preserved, or in other words, the
problem of constructing sparse P-spanners. Pettie [27] studied a certain type of
P-spanners, namely, additive sourcewise spanners. In this setting, one is given
an unweighted graph G = (V,E) and a subset of vertices S ⊆ V , termed as
sources, whose size is conveniently parameterized to be |S| = nε, and the goal is

to construct a sparse spanner H that maintains an additive approximation for
the S × V distances. He showed a construction of O(log n)-additive sourcewise
spanners of size O(n1+ε/2). Cygan et al. recently showed a stretch-size bound
for 2k-additive sourcewise spanners with O(n1+(εk+1)/(2k+1)) edges. The specific
case of k = 1 has been studied recently by [20], providing a 2-additive sourcewise

spanner with Õ(n5/4+ε/4) edges where |S| = nε.
Upper bounds for spanners with constant stretch are currently known for but

a few stretch values. A (1, 2) spanner with O(n3/2) edges is presented in [2], a
(1, 6) spanner with O(n4/3) edges is presented in [5], and a (1, 4) spanner with
O(n7/5) edges is presented in [11]. The latter two constructions use the path-
buying strategy, which is adopted in our additive sourcewise construction. Dor
et al. [14] considered additive emulators, which may contain additional (possibly
weighted) edges. They showed a construction of 4-additive emulator withO(n4/3)
edges. Finally, a well known application of α-spanners is approximate distance
oracles [30,23,8,7,22]. The sourcewise variant, namely, sourcewise approximate
distance oracle was devised by [28]. For a given input graph G = (V,E) and
a source set S ⊆ V , [28] provides a construction of a distance oracle of size
O(n1+ε/k) where ε = log |S|/ log n such that given a distance query (s, v) ∈ S×V
returns in O(k) time a (2k − 1) approximation to dist(s, v,G).

1.3 Contributions

In this paper we initiate the study of k-hybrid spanners which seems to pinpoint
the minimal condition for bypassing Erdős’ Girth Conjecture. In addition, we
also study the sourcewise variant of multiplicative spanners, additive spanners
and additive emulators. The main results are summarized below.

Theorem 1 (Hybrid spanners). For every integer k ≥ 2 and unweighted
undirected n-vertex graph G = (V,E), there exists a (polynomially constructible)
subgraph of size O(k2 · n1+1/k) that provides multiplicative stretch 2k − 1 for
every pair of neighboring vertices u and v and a multiplicative stretch k for the
rest of the pairs. (By Erdős’ conjecture, providing a multiplicative stretch of k
for all the pairs requires Ω(n1+2/(k+1)) edges.)

Theorem 2 (Sourcewise spanners). For every integer k ≥ 2, and an un-
weighted undirected n-vertex graph G = (V,E) and for every subset of sources
S ⊆ V of size |S| = O(nε), there exists a (polynomially constructible) subgraph
of size O(k2 · n1+ε/k) that provides multiplicative stretch 2k − 1 for every pair
of neighboring vertices (u, v) ∈ S × V and a multiplicative stretch of 2k − 2 for
the rest of the pairs in S × V . This subgraph is referred to here as sourcewise
spanner.

Theorem 3 (Lower bound for additive sourcewise spanners and emu-
lators). For every integer k ∈ [2, O(log n/ log log n)] and ε ∈ [0, 1], there exists
an n-vertex graph G = (V,E) and a subset of sources S ⊆ V of size |S| = O(nε)
such that any (2k − 1)-additive sourcewise spanner (i.e., subgraph that main-
tains a (2k − 1)-additive approximation for the S × V distances) has at least

Ω(n1+ε/k/k) edges. The lower bound holds for additive emulators up to order
O(k). For 2-additive sourcewise emulators there is a matching upper bound.

Theorem 4 (Upper bound for additive sourcewise spanners). Let k ≥ 1
be an integer. (1) For every unweighted undirected n-vertex graph G = (V,E)
and for every subset of sources S ⊆ V , |S| = O(nε), there exists a (polynomially

constructible) 2k-additive sourcewise spanner with Õ(k ·n1+(ε·k+1)/(2k+2)) edges.
(2) For |S| = Ω(n2/3), there exists a 4-additive sourcewise spanner with O(n1+ε/2)
edges (by the lower bound of Thm. 3, any 3-additive sourcewise spanner requires
Ω(n1+ε/2) edges).

The time complexities of all our upper bound construction are obviously
polynomial; precise analysis is omitted from this extended abstract.

1.4 Preliminaries

We consider the following graph structures.

(α, β)-spanners. For a graph G = (V,E), the subgraph H ⊆ G is an (α, β)-
spanner for G if for every (u, v) ∈ V × V ,

dist(u, v,H) ≤ α · dist(u, v,G) + β . (1)

(α, 0)-spanners (resp., (1, β)-spanners) are referred to here as α-spanners (resp.,
β-additive spanners).

Hybrid spanners. Given a graph G = (V,E), a subgraph H ⊆ G is a k-hybrid
spanner iff for every (u, v) ∈ V × V it holds that

dist(u, v,H) ≤

{
(2k − 1) · dist(u, v,G), if (u, v) ∈ E(G);

k · dist(u, v,G), otherwise.
(2)

Sourcewise spanners. Given an unweighted graph G = (V,E) and a subset
of vertices S ⊆ V , a subgraph H ⊆ G is an (α, β, S)-spanner iff Eq. (1) is
satisfied for every 〈s, v〉 ∈ S × V . When β = 0 (resp., α = 1), H is denoted by
(α, S)-sourcewise spanner (resp., (β, S)-additive sourcewise spanner).

Emulators. Given an unweighted graph G = (V,E), a weighted graph H =
(V, F) is an (α, β)-emulator ofG iff dist(u, v,G) ≤ dist(u, v,H) ≤ α·dist(u, v,G)+
β for every (u, v) ∈ V × V . (1, β)-emulators are referred to here as β-additive
emulators. For a given subset of sources S ⊆ V , the graph H = (V, F) is a
(β, S)-additive sourcewise emulator if the S × V distances are bounded in H by
an additive stretch of β.

1.5 Notation

For a subgraph G′ = (V ′, E′) ⊆ G (where V ′ ⊆ V and E′ ⊆ E) and a pair of
vertices u, v ∈ V ′, let dist(u, v,G′) denote the shortest-path distance in edges
between u and v in G′. Let Γ (v,G) = {u | (u, v) ∈ E(G)} be the set of

neighbors of v in G. For a subgraph G′ ⊆ G, let |G′| = |E(G′)| denote the
number of edges in G′. For a path P = [v1, . . . , vk], let P [vi, vj] be the subpath
of P from vi to vj . For paths P1 and P2, let P1 ◦P2 denote the path obtained by
concatenating P2 to P1. Let SP (s, vi, G

′) be the set of s−vi shortest-paths in G′.
When G′ is the input graph G, let π(x, y) ∈ SP (x, y,G) denote some arbitrary
x − y shortest path in G, hence |π(x, y)| = dist(x, y,G). For a subset V ′ ⊆ V ,
let dist(u, V ′, G) = minu′∈V ′ dist(u, u′, G). Similarly, for subsets V1, V2 ⊆ V ,
dist(V1, V2, G) = minv1∈V1,v2∈V2 dist(v1, v2, G). When the graph G is clear from
the context, we may omit it and simply write Γ (u),dist(u, v),dist(u, V ′) and
dist(V1, V2).

A clustering C = {C1, . . . , C`} is a collection of disjoint subsets of vertices,
i.e., Ci ⊆ V for every Ci ∈ C and Ci ∩ Cj = ∅ for every Ci, Cj ∈ C. Note
that a clustering is not necessarily a partition of V , i.e., it is not required that⋃
i Ci = V . A cluster C ∈ C is said to be connected inG if the induced graphG[C]

is connected. For clusters C and C ′, let E(C,C ′) = (C×C ′)∩E(G) be the set of
edges between C and C ′ in G. For notational simplicity, let E(v, C) = E({v}, C).
A vertex v is incident to a cluster C if E(v, C) 6= ∅. In a similar manner, two
clusters C and C ′ are adjacent to each other if E(C,C ′) 6= ∅.

Organization. We start with upper bounds. Sec. 2 describes the construction
of k-hybrid spanners. Sec. 3.1, presents the construction of (α, S) sourcewise
spanners. Then, Sec. 3.2 presents a lower bound construction for (β, S) source-
wise additive spanners and emulators. Finally, Sec. 3.3 provides an upper bound
for (2k, S)-additive sourcewise spanners for general values of k. In addition, it
provides a tight construction for (2, S)-additive sourcewise emulators.

2 Hybrid spanners

In this section, we establish Thm. 1. For clarity of presentation, we describe
a randomized construction whose output spanner has O(k2 · n1+1/k) edges in
expectation. Using the techniques of [5], this construction can be derandomized
with the same bound on the number of edges.

Theorem 5. Let k ≥ 2 be an integer. For every unweighted n-vertex graph
G = (V,E) with m edges, a k-hybrid spanner H ⊆ G with O(k2 · n1+1/k) edges
can be constructed in O(k2 ·m) time.

The algorithm. We begin by describing a basic procedure Cluster, slightly adapted
from [5], that serves as a building block in our constructions. For an input un-
weighted graph G = (V,E), a stretch parameter k and a density parameter µ,
Algorithm Cluster iteratively constructs a sequence of k+1 clusterings C0, . . . , Ck
and a clustering graph Hk ⊆ G. Each clustering Cτ consists of mτ = n1−τ ·µ

disjoint subsets of vertices, Cτ = {Cτ1 , . . . , Cτmτ }. Each cluster Cτj ∈ Cτ is con-
nected and has a cluster center zj satisfying that dist(u, zj , G) ≤ τ for every
u ∈ Cτj . Denote the set of cluster centers of Cτ by Zτ . These cluster centers
correspond to a sequence of samples taken from V with decreasing densities

where V = Z0 ⊇ Z1 ⊇ . . . ⊇ Zk. On a high level, at each iteration τ , a clus-
tering of radius-τ clusters is constructed and its shortest-path spanning for-
est (spanning all the vertices in the clusters), as well as an additional subset
of edges Qτ adjacent to unclustered vertices, are chosen to be added to the
spanner Hτ . We now describe the algorithm Cluster(G, k, µ) in detail. Assume
some ordering on the vertices V = {v1, . . . , vn}. Initially, the cluster centers are
Z0 = V = {v1, . . . , vn}, where each vertex forms its own cluster of radius 0,
hence C0 = {{v} | v ∈ V } and the spanner is initiated to H0 = ∅. At iteration
τ ≥ 1, a clustering Cτ is defined based on the cluster centers Zτ−1 of the previous
iteration. Let Zτ ⊆ Zτ−1 be a sample of mτ = O(n1−τ ·µ) vertices chosen uni-
formly at random from Zτ−1. The clustering Cτ is obtained by assigning every
vertex u that satisfies dist(u, Zτ , G) ≤ τ to its closest cluster center z ∈ Zτ , i.e.,
such that dist(u, z,G) = dist(u, Zτ , G). If there are several cluster centers in Zτ
at distance dist(u, Zτ , G) from u, then the closest center with the minimal index
is chosen.

Formally, for a vertex v and subset of vertices B, let nearest(u,B) be the
closest vertex to u in B where ties are determined by the indices, i.e., letting
B′ = {u1, . . . , u`} ⊆ B be the set of closest vertices to u in B, namely, satisfying
that dist(v, u1) = ... = dist(v, u`) = dist(v,B), then nearest(u,B) ∈ B′ and
has the minimal index in B′. Then u is assigned to the cluster of the center
nearest(u, Zτ). Add to Hτ the forest Fτ consisting of the radius-τ spanning
tree of each C ∈ Cτ . Note that the definition of the clusters immediately implies
their connectivity. Next, an edge set Qτ adjacent to unclustered vertices is added
to Hτ as follows. Let ∆τ denote the set of vertices that occur in each of the
clusterings C0, . . . , Cτ−1 but do not occur in Cτ . (Observe that such a vertex

may re-appear again in some future clusterings.) Formally, let V̂τ =
⋃
C∈Cτ C

be the set of vertices that occur in some cluster in the clustering Cτ . Then,

∆τ =
(⋂τ−1

j=0 V̂j

)
\ V̂τ . Note that by this definition, each vertex belongs to at

most one set ∆τ . Hence we have:

Observation 6 The sets ∆τ are disjoint.

For every vertex v ∈ ∆τ and every cluster C ∈ Cτ−1 that is adjacent to v, pick
one vertex u ∈ C adjacent to v and add the edge (u, v) to Qτ . (In other words,

an edge (u, v) is not added to Qτ for v ∈ ∆τ if either u /∈ V̂τ−1 or an edge (u′, v)
was added to Qτ where u′ and u are in the same cluster C ∈ Cτ−1.) Then add
Qτ to Hτ . This completes the description of Algorithm Cluster; a pseudocode is
given below.

Algorithm Cluster(G, k, µ).

(T1) Let H0 = ∅ and Z0 = n. Select a sample Zτ uniformly at random from
Zτ−1 with probability n−µ for τ = 1 to k (if µ = 1 and τ = k, set Zk = ∅).

(T2) For τ = 1 to k, define the clustering Cτ by adding the τ -radius neighbor-
hood for all cluster centers Zτ , i.e., every u ∈ V satisfying dist(u, Zτ) ≤ τ
is connected to nearest(u, Zτ). Let Fτ denote the τ -radius neighborhood
forest corresponding to Cτ .

(T3) For every vertex v ∈ ∆τ that was unclustered in the clustering Cτ for the
first time, let e(v, C) be an arbitrary edge from E(v, C) for every C ∈ Cτ−1.

(T4) Hτ = Hτ−1 ∪ Fτ ∪ {e(v, C) | v ∈ ∆τ , C ∈ Cτ−1}.

The first step of Algorithm ConsHybrid applies Algorithm Cluster(G, k, µ) for
µ = 1/k, resulting in the graph Hk. Note that by Thm. 3.1 of [5], Hk is a (2k−1)
spanner. Hence, the stretch for neighboring vertices is (2k − 1) as required. We
now add two edge sets to Hk in order to provide a multiplicative stretch k for
the remaining pairs. Let

t = bk/2c and t′ = k − 1− t, (3)

Note that t′ = t when k is odd and t′ = t−1 when k is even, so in general t′ ≤ t.
The algorithm considers the collection of Zt′×Zt shortest paths P = {π(zi, zj) |

zi ∈ Zt′ and zj ∈ Zt}. Starting with H = Hk, for each path π(zi, zj) ∈ P, it
adds to H the `t last edges of π(zi, zj) (closest to zi), where

`t = 7t+ 8t2 . (4)

For every pair of clusters C1, C2, let π(C1, C2) denote the shortest path in G
between some closest vertices u1 ∈ C1 and u2 ∈ C2 (i.e., dist(C1, C2, G) =
dist(u1, u2, G)). For every τ from 0 to k − 1, and for every pair C1 ∈ Cτ and
C2 ∈ Ck−1−τ , the algorithm adds to H, the ` last edges of π(C1, C2), where
` = `t for τ ∈ {t′, t} and ` = 2k− 1 otherwise. This completes the description of
Algorithm ConsHybrid, whose summary is given below.

Algorithm ConsHybrid.

(S1) Let Hk = Cluster(G, k, 1/k).
(S2) Let E2 be the edge set containing the last `t edges of the path π(zi, zj)

for every zi ∈ Zt′ and zj ∈ Zt.
(S3) Let E3 be the edges set containing, for every τ ∈ {0, . . . , k − 1}, and for

every C1 ∈ Cτ and C2 ∈ Ck−1−τ , the last ` edges of the path π(C1, C2) where
` = `t for τ ∈ {t′, t} and ` = 2k − 1 otherwise.

(S4) Let H ← Hk ∪ E2 ∪ E3.

Note that our algorithm bares some similarity to the (k, k−1) construction of [5]
but the analysis is different. The key difference between these two constructions
is that in [5] only edges (i.e., shortest-path of length 1) are added between certain
pairs of clusters. In contrast, in our construction, O(k2) edges are taken from
each shortest-path connecting the close-most vertices coming from certain subset
of clusters. This allows us to employ an inductive argument on the desired purely
multiplicative stretch, without introducing an additional additive stretch term
(for non-neighboring pairs) as in the (k, k−1) construction of [5]. Specifically, by
adding paths of length `t between center pairs in Zt′ ×Zt, a much better stretch
guarantee can be provided for (non-neighboring) Zt′ ×Zt pairs: a multiplicative
stretch k plus a negative additive term. This additive term is then increased but
in a controlled manner (due to step (S3)), resulting in a zero additive term for
any non-neighboring vertex pair in V × V .

Analysis We begin with size analysis. An edge e ∈ E(G) is missing if it is not
included in the spanner, i.e., e ∈ E(G) \E(H). We first bound the expected size
of the partial spanner Hk and the final spanner H obtained at the end of phase
(S1).

Lemma 1. (1) E(|Hk|) = O(n1+µ + k · n).
(2) E(|H|) = O(k2 · n1+1/k).

Proof: Part (1) follows by the same argumentation as in Lemma 2.9 of [5].
Consider Part (2). Since µ = 1/k, it holds that Hk obtained at the end of phase
(S1) contains O(n1+1/k) edges. We now bound the number of edges added in
phase (S2), |E2| = `t · |Zt| · |Zk−1−t|, hence |E2| = `t · n1−τ/k · n1−(k−1−τ)/k =
`t ·n1+1/k. Finally, in phase (S3), (2k−1)·|Zτ |·|Zk−1−τ | edges are added for every
τ ∈ {0, . . . , k − 1} \ {t, t′} and in addition, `t · n1−t/k · n1−t

′/k edges connecting
closest pairs in the clusters of Ct and Ct′ are added as well. Since |Zτ | = n1−τ/k

and |Zk−1−τ | = n1−(k−1−τ)/k, it holds that |E3| = O(k2 · n1+1/k).

We now turn to establish correctness. The following notation is useful in our
analysis. A vertex is `-clustered if it belongs to some C ∈ C`. For an `-clustered
vertex v, let z`(v) ∈ Z` denote the cluster center of v in C`. An edge e = (u, v)
is `-clustered if both u and v are `-clustered, otherwise it is `-unclustered. The
next lemma (see Thm. 3.1 in [5]) plays a major role in our stretch analysis.

Lemma 2. For every `-unclustered edge (u, v), it holds that dist(u, v,H) ≤ 2`−
1.

Proof: Let `′ be the minimum index such that either u or v was unclustered in
C`′ (clearly, `′ ≤ `) and without loss of generality let the unclustered vertex be
u. Then by Phase (T3), there is an edge (u,w) in H` from u to some vertex in
C`′−1(v). In addition, there is a path in H` from w to v of length at most 2(`′−1),
twice the radius of C`′−1(v). Since `′ ≤ `, it follows that dist(u, v,H) ≤ 2`− 1.

We begin by considering the stretch between pairs of cluster centers Zt′×Zt.

Lemma 3. For every pair of cluster centers zi, zj ∈ Zt′ × Zt it holds that
(1) If dist(zi, zj , G) ≤ `t, then dist(zi, zj , H) = dist(zi, zj , G).
(2) If dist(zi, zj , G) > `t, then dist(zi, zj , H) ≤ 2t · (dist(zi, zj , G) + 1)− `t.

Proof: Fix a cluster center zi ∈ Zt′ and let the cluster centers Zt = {z1, . . . , z`}
be ordered in nondecreasing distance from zi, i.e., dist(zi, z1, G) ≤ dist(zi, z2, G) ≤
. . . ≤ dist(zi, z`, G). Assume, towards contradiction, that the the claims do not
hold, and let zj be the first center in the ordering for which one of the claims
does not hold. Define DG = dist(zi, zj , G) and DH = dist(zi, zj , H). Since the
last `t edges of the path π(zi, zj) are taken into H, it holds that zj does not
satisfy claim (2) and hence

DG = |π(zi, zj)| > `t . (5)

We now distinguish between cases depending on the type of the edges missing
from π(zi, zj) in H.
Case (a): all missing edges in π(zi, zj) \H are t-unclustered. By Lemma 2 and
Eq. (5), we have that DH ≤ (2t− 1)DG < 2t ·DG − `t.
Next, consider the complementary case (b): some of the missing edges of π(zi, zj)\
H are t-clustered. Let e = (x1, x2) be the last missing edge on the path π(zi, zj)
(the edge closest to zj) which is t-clustered, hence x2 is t-clustered. Let z′ =
zt(x2) be the cluster center of x2. For an illustration, see Fig. 1. We first claim
that z′ precedes zj in the ordering. To see this, recall that the last `t edges of
the path π(zi, zj) were taken into H , thus dist(zi, x2, G) ≤ dist(zi, zj , G)− `t =
DG − `t. Since the radius of each cluster in Ct is at most t, we get that

dist(zi, z
′, G) ≤ dist(zi, x2, G) + t ≤ DG − `t + t < DG , (6)

where the strict inequality follows by Eq. (4). This strict inequality implies that
indeed z′ precedes zj in the ordering and by the definition of zj it follows that
z′ satisfies the lemma. Consider the alternative zi − zj path P = P1 ◦ P2 ◦ P3

where P1 ∈ SP (zi, z
′, H), P2 ∈ SP (z′, x2, H) and P3 ∈ SP (x2, zj , H). Since

P ⊆ H, it remains to bound its length. Since z′ is the cluster center of x2,
|P2| ≤ t. Since P3 is free from missing t-clustered edges, by Lemma 2, |P3| ≤
(2t− 1) · dist(x2, zj , G). To bound the length of P1 we distinguish between two
subcases depending on the length of π(zi, z

′). Subcase (b1): |π(zi, z
′)| ≤ `t. Then,

dist(zi, z
′, H) = dist(zi, z

′, G) and overall we have that

DH ≤ |P | = |P1|+ |P2|+ |P3| ≤ dist(zi, z
′, G) + t+ (2t− 1)dist(x2, zj , G)

≤ DG − `t + 2t+ (2t− 1) · dist(x2, zj , G) ≤ 2t · (DG + 1)− `t ,

where the second inequality follows by the second inequality of Eq. (6). This
contradicts the fact that zj violates the claim.
Subcase (b2): dist(zi, z

′, G) ≥ `t + 1. Since z′ satisfies the lemma,

dist(zi, z
′, H) ≤ 2t(dist(zi, z

′, G) + 1)− `t . (7)

Overall, we get that

DH ≤ |P | = |P1|+ |P2|+ |P3|
≤ 2t(dist(zi, z

′, G) + 1)− `t + t+ (2t− 1) · dist(x2, zj , G) (8)

≤ dist(zi, z
′, G) + (2t− 1) · dist(zi, z

′, G) + 3t− `t + (2t− 1) · dist(x2, zj , G)

≤ DG − `t + 4t+ (2t− 1) · dist(zi, z
′, G)− `t + (2t− 1) · dist(x2, zj , G) (9)

≤ DG − `t + 4t+ (2t− 1) · (dist(zi, x2, G) + t)− `t + (2t− 1) · dist(x2, zj , G)

≤ 2t ·DG − `t, (10)

where Eq. (8) follows by Eq. (7), Ineq. (9) follows by the inequality of Eq. (6)
and the penultimate inequality follows by the fact that z′ and x2 belong to the
same radius-t cluster. In contradiction to the definition of zj . Claim (2) follows.

Let Vi be the set of i-clustered vertices. We now turn to bound the stretch
between pairs of vertices in Vt′ × Vt.

𝝅(𝒛𝒊, 𝒛𝒋)

𝒛𝒊

𝒛𝒋

𝒙𝟐

𝒙𝟏

𝒛′ ≥ 𝒕

l𝒕

𝑃1

𝑃2

𝑃3

Fig. 1. Illustration of case (b) for Lemma 3(2). If not all edges on π(zi, zj) are t-
clustered, then the induction assumption for cluster centers preceding zj in the ordering
can be used; this is due to the fact that the last `t edges of π(zi, zj) were taken into
H. The dashed lines represent bypasses in H.

Lemma 4. For every non-neighboring vertex pair x1 ∈ Vt′ and x2 ∈ Vt (i.e.,
such that dist(x1, x2, G) ≥ 2), dist(x1, x2, H) ≤ k · dist(x1, x2, G).

Proof: We consider the following cases.
Case (1): dist(Ct′(x1), Ct(x2), G) ≤ `t. Then again by phase (S3), there exists
an w − z path P in H such that w ∈ Ct′(x1) and z ∈ Ct(x2) and |P | =
dist(w, z,G) ≤ dist(x1, x2, G). Hence

dist(x1, x2, H) ≤ dist(x1, w,H) + dist(w, z,H) + dist(z, x2, H)

= dist(x1, w,H) + dist(w, z,G) + dist(z, x2, H)

≤ 2t′ + dist(w, z,G) + 2t ≤ 2(k − 1) + dist(x1, x2, G) (11)

≤ k · dist(x1, x2, H) ,

where Eq. (11) follows by the fact that x1 (resp., x2) and w (resp., z) belongs
to the same cluster of diameter 2t′ (resp., 2t), and w and z are the closest pair
in Ct′(x1) and Ct(x2). Finally, the last inequality follows as dist(x1, x2, H) ≥ 2.

Case (2): dist(Ct′(x1), Ct(x2), G) > `t. Let z1 = zt′(x1) (resp., z2 = zt(x2))
be the cluster center of x1 (resp., x2) in the clustering Ct′ (resp., Ct). Since
dist(z1, z2, G) ≥ dist(Ct′(x1), Ct(x2), G) > `t, by Lemma 3, it holds that
dist(z1, z2, H) ≤ 2t · (dist(z1, z2, G) + 1)− `t. Hence,

dist(x1, x2, H) ≤ dist(x1, z1, H) + dist(z1, z2, H) + dist(z2, x2, H)

≤ 2t+ dist(z1, z2, H) + 2t′ (12)

≤ 2(k − 1) + 2t · dist(z1, z2, G) + 2t− `t (13)

≤ 2(k − 1) + 2t · (dist(x1, x2, G) + 2(k − 1))− `t (14)

≤ k · dist(x1, x2, G) ,

where Eq. (12) follows by the intercluster connections in clusters of diameter 2t
and 2t′, Eq. (13) follows by Eq. (3) and by Cl. 3, Eq. (14) follows by the triangle
inequality using the fact that z1 and x1 are in the same cluster of diameter 2t′

and z2 and x2 are in the same cluster of diameter 2t. The claim follows.

Finally, we are ready to to bound the distance for every u, v ∈ V × V . We
have the following.

Lemma 5. For every (u, v) ∈ V × V :
(1) dist(u, v,H) ≤ 2k − 1 if (u, v) ∈ E.
(2) dist(u, v,H) ≤ k · dist(u, v,G), otherwise.

Proof: Part (1) follows by the fact that Hk (the resulting subgraph of step (S1))
is a (2k − 1) spanner (see Thm. 3.1 of [5]). Consider part (2) and let π(u, v) be
the u − v shortest path in G. Clearly, if u is t′-clustered and v is t-clustered or
vice versa then the lemma follows by Lemma 4. Hence, it remains to consider
the complementary case. From now on, assume without loss of generality that
u is tu-unclustered for a fixed tu ∈ {t, t′} and define tv = k − 1 − tu (v can be
either tv-clustered or tv-unclustered). If all the edges in π(u, v) are t-unclustered
then by Lemma 2, dist(u, v,H) ≤ (2t− 1) ·dist(u, v,G) and we are done. Hence,
from now on, assume that π(u, v) contains at least two t-clustered vertices. In
the same manner, if all the edges in π(u, v) are t′-unclustered then by Lemma 2,
dist(u, v,H) ≤ (2t′−1) ·dist(u, v,G) and we are done. Therefore π(u, v) contains
at least two tu-clustered vertices and at least two tv-clustered vertices. Let x1 be
the closest tu-clustered vertex to u and let x2 be the closest tv-clustered vertex to
v. Note that by definition, u 6= x1. To prove Claim (2) of the lemma, we partition
the path π(u, v) into three segments according to x1 and x2. Let π1 = π(u, x1),
π2 = π(x1, x2) and π3 = π(x2, v). By Lemma 2, and recalling that t′ ≤ t it holds
that

dist(u, x1, H) ≤ (2t− 1) · dist(u, x1, G) (15)

and dist(x2, v,H) ≤ (2t− 1) · dist(x2, v,G).

First consider the case where π1 ◦ π2 ⊆ π(u, v) (e.g., in such a case either
x1 = x2 or x1 is strictly closer to v than x2). By Eq. (15), it holds that ev-
ery edge (y1, y2) ∈ π(u, v) is either t-unclustered or t′-unclustered and hence

dist(y1, y2, H) ≤ 2t − 1, concluding that dist(u, v,H) ≤ k · dist(u, v,G) as de-
sired. From now on, we therefore consider the case where x1 appears on π(u, v)
before x2 (i.e., closer to u) and thus u 6= x1 6= x2. We now consider the following
case analysis.

Case (a) dist(x1, x2, G) = 1 and dist(u, x2, G) ≤ 2k−1. Let j ∈ {0, . . . , k−1−tv}
be the maximum number satisfying that x2 is (tv + j)-clustered. Since x2 is tv-
clustered, there exists an j in this range. We now consider two subcases; for a
schematic illustration see Fig. 2.

Case (a1): u is (k − 1 − (tv + j))-clustered. Let k′ = (k − 1 − (tv + j)). Since
dist(u, x2, G) ≤ 2k, it also holds that dist(Ck′(u), Ctv+j(x2), G) ≤ 2k, hence by
Phase (S3), there exists a w−z path P in H where w ∈ Ck′(u) and z ∈ Ctv+j(x2)
and |P | = dist(w, z,G) ≤ dist(u, x2, G). Recall that as |P | ≤ 2k, it was taken
entirely into H. We therefore have the following.

dist(u, v,H) = dist(u, x2, H) + dist(x2, v,H)

≤ dist(u,w,H) + dist(w, z,H) + dist(z, x2, H)

+ (2t− 1) · dist(x2, v,G) (16)

≤ 2k′ + dist(w, z,G) + 2(tv + j) + (2t− 1) · dist(x2, v,G) (17)

≤ 2k′ + dist(u, x2, G) + 2(tv + j) + (2t− 1) · dist(x2, v,G) (18)

≤ 2(k − 1) + dist(u, x2, G) + (2t− 1) · dist(x2, v,G) (19)

≤ k · dist(u, x2, G) + (2t− 1) · dist(x2, v,G) (20)

≤ k · dist(u, v,G) ,

where Eq. (16) follows by Eq. (15), Eq. (17) follows by Lemma 2 and by the fact
that u is k′-clustered and x2 is tv + j clustered, Eq. (18) follows by the fact that
w and z are the closest pair in Ck′(u) and Ctv+j(x2), finally the penultimate
inequality holds as dist(u, x2, G) ≥ 2 (since u 6= x1 6= x2).

Case (a2): u is (k − 1 − (tv + j))-unclustered. Let k′ = k − 1 − (tv + j). Since
all vertices are 0-clustered, it holds that k′ ≥ 1 and hence j ≤ k − tv − 2.
By the definition of j, we have that x2 is (tv + j + 1)-unclustered (as j ≤
k − tv − 2, it holds that (tv + j + 1) ≤ k − 1). Also, recall that x1 6= u. Let
π(u, v) = [u = u0, u1, . . . , uq = v]. Since u0 is k′-unclustered, by Lemma 2, it
holds dist(u0, u1, H) ≤ 2k′ − 1. In the same manner, since x2 is (tv + j + 1)-
unclustered, it holds that dist(x1, x2, H) ≤ 2(tv+j+1)−1. Putting all together,
we have that

dist(u, v,H) = dist(u0, u1, H) + dist(u1, x1, H) + dist(x1, x2, H) + dist(x2, uq, H)

≤ 2k′ − 1 + (2t− 1) · dist(u1, x1, G) + 2(tv + j + 1)− 1 (21)

+ (2t− 1) · dist(x2, uq, G)

= 2(k − 1) + (2t− 1) · (dist(u1, x1, G) + dist(x2, uq, G))

= (k − 1) · (dist(u0, u1, G) + dist(x1, x2, G)) (22)

+ (2t− 1) · (dist(u1, x1, G) + dist(x2, uq, G) ≤ k · dist(u, v,G) ,

where Eq. (21) follows by using Lemma 2 for the k′-unclustered edge (u0, u1)
and for the (tv+j+1)-unclustered edge (x1, x2), and by plugging Eq. (15). Note
that it might be the case that x1 = u1 but by the current case it holds that
u0 6= x1 6= x2.

𝒖

𝒗

𝒙𝟐

𝒙𝟏

𝒘

𝒛

≥ 𝟐𝒌′

≥ 𝟐(𝒕𝒗 + 𝒋)

≥ l𝒕

𝒖

𝒗

𝒙𝟐

𝒙𝟏

𝒖𝟏
≥ 𝟐𝒌′ − 𝟏

≥ 𝟐(𝒕𝒗+ 𝒋) − 𝟏

≥ 𝒌 ∙ 𝒅𝒊𝒔𝒕(𝒙𝟐, 𝒗, 𝑮)

≥
𝒌
∙𝒅

𝒊𝒔
𝒕(
𝒙
𝟐
,𝒗
,𝑮
)

(a) (b)

Fig. 2. Illustration of Case (a) for Lemma 5. The dashed lines represent bypasses in
H. (a) Case (a1). Since u is k′-clustered and x2 is (tv + j)-clustered and in addition,
dist(u, v,G) ≤ `t it holds that the shortest path between the corresponding clusters
has been added to H. (b) Case (a2). Since u is k′-unclustered, its immediate edges,
specifically, (u0, u1) has small stretch in H that compensates for the extra large stretch
of the edge (x1, x2) in H.

Case (b): dist(x1, x2, G) = 1 and dist(u, x2, G) ≥ 2k. Using Part (1) of this
claim, we have that

dist(u, v,H) = dist(u, x1, H) + dist(x1, x2, H) + dist(x2, v,H) (23)

≤ (2t− 1) · dist(u, x1, G) + dist(x1, x2, H)

+ (2t− 1) · dist(x2, v,G) (24)

≤ (2t− 1) · dist(u, x1, G) + 2k − 1

+ (2t− 1) · dist(x2, v,G) (25)

≤ (2t− 1) · dist(u, v,G) + dist(u, v,G) ≤ 2t · dist(u, v,G) .(26)

where Eq. (24) follows by Eq. (15), Eq. (25) follows by Part (1) of this claim
and Eq. (26) follows by the fact that dist(u, v,G) ≥ dist(u, x2, G) ≥ 2k− 1. The
claim holds.

Case (c): dist(x1, x2, G) ≥ 2. This case follows by using Lemma 4(b) and Eq.
(15). The claim follows.

Running time. Begin with step (S1). By Theorem 3.1 of [5], Algorithm Cluster(G, k, µ)
can be implemented in O(k·m) deterministic time. Step (S2) can be implemented
in linear time (in the size of the output). Finally, step (S3) requires computing
the shortest-path distances between cluster pairs. This can be done by comput-
ing the all-pairs-shortest-paths in O(nω), where ω < 2.373 denotes the matrix
multiplication exponent. This completes the proof of Thm. 1.

3 Sourcewise spanners

In this section, we provide several constructions for sourcewise spanners and
emulators.

3.1 Upper bound for multiplicative stretch

For clarity of presentation, we describe a randomized construction whose output
spanner has O(k2 ·n1+ε/k) edges in expectation. Using [5], this construction can
be derandomized with the same bound on the number of edges. We begin by
considering Thm. 2 and show the construction of (2k− 1, S) sourcewise spanner
which enjoys a “hybrid” stretch, though in a weaker sense than in Sec. 2. Specif-
ically, we show that the neighbors of S enjoy a multiplicative stretch 2k− 1 and
the remaining pairs enjoy a multiplicative stretch of 2k − 2.

The algorithm The first phase of Algorithm ConsSWSpanner applies Algorithm
Cluster(G, k, µ) for µ = ε/k, resulting in a sequence of k+1 clusterings C0, . . . , Ck
and a cluster graph Hk ⊆ G. In the second phase of the algorithm, it considers
the collection of S×Zk−1 shortest paths P = {π(sj , zi) | sj ∈ S and zi ∈ Zk−1}.
Starting with H = Hk, for each path π(sj , zi) ∈ P, it adds to H the `k last
edges of π(sj , zi) (closest to zi). Set

`k = 2k2 + 3k and µ = ε/k . (27)

Analysis. Hereafter, we mainly focus on the clustering Ck−1 and denote a vertex
v as clustered iff v ∈ Vk−1, i.e., if v belongs to the clustering Ck−1. Recall that
each of the mk−1 = n1−(k−1)·µ clusters Ci ∈ Ck−1 is centered at some vertex
zi ∈ Zk−1, and in addition, every vertex v satisfying that dist(v, Zk−1, G) ≤ k−1
is contained in exactly one cluster Ci ∈ Ck−1 such that

dist(v, zi, G) ≤ k − 1 . (28)

An edge e = (x, y) is said to be clustered iff both its endpoints x and y are
clustered, i.e., x, y ∈ Vk−1. By Lemma 1(1), we have the following.

Observation 7 E(|H|) = O(k2 · n1+ε/k).

Next, we turn to consider correctness. Call a subgraph H ′ ⊆ G happy iff every
missing edge e = (x, y) ∈ E(G)\E(H ′) is either clustered or has stretch at most
2(k−1)−1 in H, i.e., dist(x, y,H) ≤ 2k−3. By Lemma 2, we have the following.

Observation 8 Hk is happy (i.e., for every edge e = (x, y) ∈ G \Hk, either e
is clustered or dist(x, y,Hk) ≤ 2k − 3).

We now bound the stretch on S×Zk−1, i.e., between sources and cluster centers.

Lemma 6. For every sj ∈ S and zi ∈ Zk−1:
If dist(sj , zi, G) ≤ `k then dist(sj , zi, H) = dist(sj , zi, G), else dist(sj , zi, H) ≤
2(k − 1) · (dist(sj , zi, G) + 1)− `k.

Proof: Fix sj ∈ S and let the cluster centers Zk = {z1, . . . , zm} be ordered
in nondecreasing distance from sj , i.e., dist(sj , z1, G) ≤ dist(sj , z2, G) ≤ . . . ≤
dist(sj , zm, G). (Note that the ordering of the centers plays a role only in the
analysis and not in the algorithm itself.) Assume, towards contradiction, that
the claim does not hold, and let ẑ be the first center in the ordering for which
the claim does not hold. We first claim that

DG = dist(sj , ẑ, G) = |π(sj , ẑ)| > `k , (29)

since by construction, if |π(sj , ẑ)| ≤ `k then π(sj , ẑ) is taken entirely into H
and dist(sj , ẑ, H) = dist(sj , ẑ, G), contradiction. The contradiction assumption
is therefore that DH = dist(sj , ẑ, H) satisfies DH > 2(k − 1) · (DG + 1) − `k.
We now distinguish between two cases depending on the type of missing edges
in π(sj , ẑ) \H (by the contradictory assumption such missing edges exist). Case
(a) is where none of the missing edges is clustered. By Obs. 8, we have that
DH ≤ (2k − 3) ·DG ≤ 2(k − 1) ·DG − `k, where the last inequality follows by
Eq. (29).

Next, consider the complementary case (b) where some of the missing edges
of π(sj , ẑ)\H are clustered. Let e = (x1, x2) be the last missing edge on the path
π(sj , ẑ) (the edge closest to ẑ) which is clustered, hence x2 ∈ Vk−1. Consider
the cluster center z′ of the cluster C of x2. We claim that z′ precedes ẑ in the
ordering. To see this, recall that the last `k edges of the path π(sj , ẑ) were taken
into H, thus dist(sj , x2, G) ≤ dist(sj , ẑ, G)− `k = DG− `k. Combining with Eq.
(28),

dist(sj , z
′, G) ≤ dist(sj , x2, G) + k − 1 ≤ DG − `k + k − 1 < DG , (30)

where the first inequality follows by Eq. (28) and the strict inequality follows by
Eq. (27). This strict inequality implies that indeed z′ precedes ẑ in the ordering
and by the definition of ẑ (i.e., the first center that violates the claim) it follows
that z′ satisfies the lemma.

Consider the following alternative sj− ẑ path P = P1 ◦P2 ◦P3 which consists
of three segments: a source-center path P1 ∈ SP (sj , z

′, H), an intra-cluster path
P2 ∈ SP (z′, x2, H) and P3 ∈ SP (x2, ẑ, H). Since P ⊆ H by definition, it remains
to bound its length. By Eq. (28), |P2| ≤ k − 1. By Obs. 8, since P3 is free from
missing clustered edges, |P3| ≤ (2k − 1) · dist(x2, ẑ, G). To bound the length of
P1 we distinguish between two cases depending on the size of π(sj , z

′). Case (a):
|π(sj , z

′)| ≤ `k. Then, dist(sk, z
′, H) = dist(sk, z

′, G) and overall we have that

DH ≤ |P | = |P1|+ |P2|+ |P3|
≤ dist(sj , z

′, G) + k − 1 + (2k − 3) · dist(x2, ẑ, G)

≤ DG − `k + 2(k − 1) + (2k − 3) · dist(x2, ẑ, G)

≤ 2(k − 1) · (DG + 1)− `k ,

where the third inequality follows by Eq. (30). This contradicts the assumption
that ẑ violates the claim. Case (b): dist(sj , z

′, G) ≥ `k + 1. Since z′ satisfies the
lemma,

dist(sj , z
′, H) ≤ 2(k − 1) · (dist(sj , z

′, G) + 1)− `k. (31)

Overall, we get that

DH ≤ |P | = |P1|+ |P2|+ |P3| (32)

≤ 2(k − 1) · (dist(sj , z
′, G) + 1)− `k

+ k − 1 + (2k − 3) · dist(x2, ẑ, G) (33)

= dist(sj , z
′, G) + (2k − 3) · dist(sj , z

′, G) + 3(k − 1)− `k
+ (2k − 3) · dist(x2, ẑ, G)

≤ DG − `k + k − 1 + (2k − 3) · dist(sj , z
′, G)

+ 3(k − 1)− `k + (2k − 3) · dist(x2, ẑ, G) (34)

≤ DG − `k + k − 1 + (2k − 3) · (dist(sj , x2, G) + k − 1) (35)

+ 3(k − 1)− `k + (2k − 3) · dist(x2, ẑ, G)

= 2(k − 1) ·DG − `k ,

where Eq. (33) follows by Eq. (31), Eq. (34) follows by Eq. (30), and Eq. (35)
follows by the fact that x2 and z′ are in the same cluster of diameter k − 1
(see Eq. (28)). This is again in contradiction to the definition of ẑ. The lemma
follows.

We are now ready to bound the S× V stretch also for vertices V \Zk−1. We
have the following.

Lemma 7. For every (sj , v) ∈ S · V , dist(sj , v,H) ≤ k′ · dist(sj , v,G) where
k′ = 2k − 1 if (sj , v) ∈ E(G) and k′ = 2k − 2 otherwise.

Proof: Fix sj ∈ S and assume, towards contradiction, that there exists some
vertex v ∈ V for which the claim does not hold. We distinguish between two
cases. Case (a): all the missing edges on π(sj , v) \H are unclustered. Then, by

Obs. 8, it follows that dist(sj , v,H) ≤ (2k − 3) · dist(sj , v,G). Case (b): there
exists a missing edge which is clustered. Let e = (x1, x2) be the last such missing
edge on π(sj , v) (closest to v) and let z′ be the cluster center of the cluster C of
x2. Consider an sj−v path P = P1 ◦P2 ◦P3 in H which consists of the following
three segments: P1 ∈ SP (sj , z

′, H), P2 ∈ SP (z′, x2, H) and P3 ∈ SP (x2, v,H).
Note that by Eq. (28) and Obs. 8,

|P2| ≤ k − 1 and |P3| ≤ (2k − 3) · dist(x2, v,G) . (36)

Bounding the size of P1 is more involved and requires the following case analysis
which depends on dist(sj , z

′, G).

Case a: dist(sj , z
′, G) ≤ `k. In this case, the path π(sj , z

′) was added in its
entirety to H and hence dist(sj , z

′, H) = dist(sj , z
′, G). Combining with Eq.

(36) we have that

dist(sj , v,H) ≤ |P | = |P1|+ |P2|+ |P3|
≤ dist(sj , z

′, G) + k − 1 + (2k − 3) · dist(x2, v,G) (37)

≤ dist(sj , x2, G) + (2k − 3) · dist(x2, v,G) + 2(k − 1) .

We now look at two sub-cases. Sub-case (a1): dist(sj , x2, G) ≥ 2, then
dist(sj , x2, G) + 2(k − 1) ≤ 2(k − 1) · dist(sj , x2, G) and hence by Eq. (37) we
conclude that
dist(sj , v,H) ≤ 2(k− 1) ·dist(sj , v,G) as required. The complementary sub-case
(a2) is where dist(sj , x2, G) = 1. (By definition, e = (x1, x2) is missing and
hence sj 6= x2 or dist(sj , x2, G) > 0). This sub-case now splits further. Case
(a2i): x2 6= v, i.e., dist(x2, v,G) ≥ 1, then by Eq. (37), |P | ≤ 2(k − 1) + 1 +
(2(k − 1)− 1) · dist(x2, v,G) ≤ 2(k − 1) · dist(sj , v,G). Case (a2ii): x2 = v (i.e.,
dist(x2, v,G) = 0). Then |P | ≤ dist(sj , x2, G) + 2(k− 1), in contradiction to the
fact the v violates the claim.

Case b: dist(sj , z
′, G) > `k. By Lem. 6 we have that |P1| ≤ 2(k−1)·(dist(sj , z

′, G)+
1)− `k. Overall, by plugging Eq. (36), we have that

dist(sj , v,H) ≤ |P | = |P1|+ |P2|+ |P3|
≤ 2(k − 1) · (dist(sj , z

′, G) + 1)− `k + k − 1

+ (2k − 3) · dist(x2, v,G)

≤ 2(k − 1) · (dist(sj , x2, G) + k − 1) + 3(k − 1)− `k
+ (2k − 3) · dist(x2, v,G)

≤ 2(k − 1)(dist(sj , x2, G) + dist(x2, v,G))

= 2(k − 1) · dist(sj , v,G)

where the penultimate inequality follows by Eq. (28) and the last inequality
follows by plugging Eq. (27), in contradiction to the definition of v. The lemma
follows.

We next analyze the running time and establish Thm. 5.

Running time. The operation of the algorithm is composed of k iterations. In
each iteration τ , a cluster graph is constructed in O(m) time (as in [5]). In the
second phase of the algorithm, the si − zj paths of length at most `k edges are
added to the spanner. This can viewed as constructing cluster graph of radius
`k, but in this case, the clusters may not be disjoint (i.e., a vertex v belongs to
the cluster of zj if dist(v, zj , G) ≤ `k). This can be implemented in O(`k · m)
time.

3.2 Lower bound for additive sourcewise spanners and emulators

We now turn to consider the lower bound side where we generalize the lower
bound construction for additive spanners by Woodruff [33] to the sourcewise
setting. In particular, we parameterize our bound for the S × V spanner in
terms of the cardinality of the source set S. The basic idea underlying Woodruff’s
construction is to form a dense graph G by gluing (carefully) together many small
complete bipartite graphs. For an additive stretch 2k − 1 ≥ 1, the lower bound
graph G consists of k+1 vertex levels, each with O(n/k) vertices and Ω(n1+1/k)
edges connecting the vertices of every two adjacent levels. In particular this is
obtained by representing each vertex of level i as a coordinate in Zk+1, namely,
v = (a1, . . . , ak, ak+1) and aj ∈ [1, O(n1/k)]. Woodruff showed that if one omits
in an additive spanner H ⊆ G, an O(1/k) fraction of G edges, then there exists
an x− y path P in G of length k (i.e., x is on the first level and y is on the last
level) whose all edges are omitted in H, and any alternative x − y path in H
is “much” longer than P . To adapt this construction to the sourcewise setting,
some asymmetry in the structure of the k+1 levels should be introduced. In the
following construction, the vertices of the first level correspond to the source set
S, hence this level consists of O(nε) vertices, while the remaining levels are of size
O(n/k). This is achieved by breaking the symmetry between the first coordinate
a1 and the remaining k − 1 coordinates of each vertex v = (a1, . . . , ak, ak+1).
Indeed, this careful minor adaptation in the graph definition is sufficient to
generalize the bound, the analysis follows (almost) the exact same line as that
of [33]. We show the following.

Theorem 9. Let 1 ≤ k ≤ O(ln r/ ln ln r) for some integer r ≥ 1. For every
ε ∈ [0, 1], there exists an unweighted undirected graph G = (V,E) with |V | =
Θ(rε+kr) vertices and a source set S ⊆ V of size Θ(rε) such that any (2k−1, S)-
additive sourcewise spanner H ⊆ G has Ω(r1+

ε
k) edges. Similar bounds (up to

factor O(k)) are achieved for (2k − 1, S)-additive sourcewise emulators.

Note that Thm. 9 implies Thm. 3, since n = Θ(rε + kr) and hence r1+
ε
k =

Ω(n1+
ε
k /k). Note that by setting ε = 1, we get the exact same bounds as in

Woodruff’s construction.

The construction. Let N1 = drε/ke and N2 = d(r/Nk−1
1)e. The graph G

consists of vertices composed of k + 1 vertex-levels and connected through a
series of k bipartite graphs. Each vertex v = (a1, a2, . . . , ak, ak+1) represents a
coordinate in Zk+1 where ak+1 ∈ {1, . . . , k + 1} is the level of v. The range

of the other coordinates is as follows. For every 1 ≤ j ≤ k, aj ∈ Rj , where
R1 = {1, . . . , N1} if ak+1 = 1 and R1 = {1, . . . , N2} otherwise. For j ≥ 2,
Rj = {1, . . . , N1}.
Edges in G join every level-i vertex (a1, . . . , ai−1, ai, ai+1, . . . , ak, i) to each of the
level-(i+ 1) vertices of the form (a1, . . . , ai−1, c, ai+1, . . . , ak, i+ 1) for every c ∈
{1, . . . , N2} if i = 1 and c ∈ {1, . . . , N1} for i ≥ 2. Let Li = {(a1, . . . , ak, i) | aj ∈
Rj for 1 ≤ j ≤ k} be the set of vertices on the ith level and let ni = |Li|
denote their cardinality. Then since k = O(ln r/ ln ln r) it holds that n1 = Nk

1 ≤
(r

ε
k + 1)k ≤ e(k+1)/(rε/k) = Θ(rε). and for every i ∈ {2, . . . , k + 1},

ni = N2 ·Nk−1
1 ≤ (r/Nk

1 + 1)(r
ε
k + 1)k−1 ≤ 2r1−ε/k · ek/(r

ε/k)

= r1−ε/k ·Θ(rε/k) = Θ(r) ,

Overall, the total number of vertices is |V (G)| = n1 + k · n2 = Θ(rε + k · r).
Let gi be the number of edges connecting the vertices of Li to the vertices

of Li+1. Then g1 = N2 · n1 and gi = N1 · ni for every i ∈ {2, . . . , k}, thus

g1 = g2 = . . . = gk. Hence |E(G)| =
∑k+1
i=1 gi = k · Nk

1 · N2 = Θ(k · r1+ε/k).
Let the source set S be the vertex set of the first level, i.e., S = L1, hence
|S| = n1 = Θ(rε). The analysis of the construction follows the same line as
that of [33]. For completeness, we briefly describe it. We begin by exploring the
following distortion property on some spanner ⊆ G. Consider any subgraph H
with fewer than E(G)/k = Nk

1 ·N2 = Θ(r1+ε/k) edges. We now show that there
exist vertices u ∈ L1 and v ∈ Lk+1 such that dist(u, v,H) ≥ dist(u, v,G) + 2k.
By Lemma 5 of [33], we have the following.

Lemma 8. There exist k + 1 vertices v1, . . . , vk+1 such that for each i, vi ∈ Li
and the edge (vi, vi+1) is missing in H.

Choose v1, . . . , vk as in Lemma 8. Then dist(v1, vk, G) ≤ k+ 1 since v1, . . . , vk+1

is a path in G. The following lemma shows that dist(v1, vk+1, H) is large.

Lemma 9 (Lemma 6 of [33]). Any path in G from v1 to vk+1 of length less
than 3k contains an edge (vi, vi+1) for some i ∈ {1, . . . , k}, and further this is
the only path edge on the ith level.

Proof: Let P be any path from v1 to vk+1 in G. Let i be any level i ∈ {1, . . . , k+
1}. Starting from v1, traverse the edges of P one by one. After encountering an
even number of edges in level i as we walk along P , we must be in level j such
that j ≤ i. Thus as P starts with a level-1vertex and ends with a level- (k + 1)
vertex, P must contain an odd number of edges in each level i.

Therefore, if the length of P is less than 3k, then by the pigeonhole principle
there is an i for which P contains exactly one edge in level i (since otherwise
P contains at least 3 edges in each level so |P | ≥ 3(k + 1)). Let (a, b) denote
this edge. We claim that (a, b) = (vi, vi+1). To see this, first note that the last
k− (i− 1) coordinates (not including the level coordinate) of a must agree with
those of v1 since (i) P begins at v1, (ii) all edges in P preceding (a, b) are in
level j < i, and (iii) an edge in level j, for any 1 ≤ j ≤ k, may only modify

the jth coordinate of its endpoints. Moreover, as (a, b) is the only edge in level
i, P cannot return to any level j < i. Therefore, since P ends at vk+1, the first
i− 1 coordinates of a must agree with those of vk+1. By definition then, a = vi.
As only edges on the ith level affect the ith coordinate, necessarily b = vi+1, as
otherwise another edge in level i would be needed to correct the ith coordinate
so that P could reach vk. This proves the lemma.

Corollary 1. dist(v1, vk+1, H) ≥ 3k hence dist(v1, vk+1, H) > dist(v1, vk+1, G)+
2k − 1.

Proof: By the previous lemma, any path in G of length less than 3k contains an
edge of the form (vi, vi+1), and by our choice of v1, . . . , vk, this edge is missing
in H so the path does not occur in H.

It follows that any subgraph of G with less than |E(G)|/(k+ 1) = Ω(r1+ε/k)
edges distorts some S×V pair by at least an additive 2k, so it is not a (2k−1, S)-
additive sourcewise spanner.

Theorem 10. Let 1 ≤ k ≤ O(ln r/ ln ln r) be an integer. For every ε ∈ [0, 1],
there exists an unweighted undirected graph G = (V,E) with |V | = Θ(rε + kr)
vertices and a source set S ⊆ V of size Θ(rε) such that any (2(k−1), S)-additive
emulator H = (V, F) has Ω(1/k · r1+ε/k) edges.

The graph G that achieves the lower bound is the same as in the proof of Thm. 9.
The correctness of the construction follows immediately from the proof of Thm.
8 in [33]. In short, one can show that the diameter of G is at most O(k). In
addition, note that for any edge (u, v) ∈ E(H) it is never optimal for the weight
of (u, v) to be larger than dist(u, v,G). Combining these two observation implies
that any weighted edge (u, v) in the emulator H can be replaced by at most
O(k) edges in G, corresponding to the u − v shortest-path in G. This results
in a subgraph H ′ of G which according to Thm. 9 is of size Ω(1/k · r1+ε/k).
It follows that the emulator H is sparser by a factor of at most O(k), i.e.,
|E(H)| = Ω(1/k2 · r1+ε/k), as required.

3.3 Upper bound for additive sourcewise spanners and emulators

Additive sourcewise emulators. Recall that an emulator H = (V, F) for graph
G is a (possibly) weighted graph induced on the vertices of G, whose edges are
not necessarily contained in G. In Thm. 9, we showed that every (2, S)-additive
sourcewise emulator for a subset S ⊆ V has Ω(n1+ε/2) edges, where |S| = O(nε).
We now show that this is essentially tight (up to constants).

Theorem 11. For every unweighted n-vertex graph G = (V,E) and every sub-
set S ⊆ V , there exists a (polynomially constructible) (2, S)-additive sourcewise
emulator H of size O(n1+ε/2) where ε = log |S|/ log n.

The following Fact from [12] is useful in the subsequent constructions.

Fact 12 ([12]) There is a polynomial time algorithm Cluster(G, γ) that given a
parameter γ ∈ [0, 1] and a graph G = (V,E) constructs a collection of clusters C
with at most n1−γ vertex-disjoint clusters, each of size nγ , and a subgraph GC of
G with O(n1+γ) edges such that (1) for any missing edge (u, v) ∈ E(G)\E(GC),
u and v belong to two different clusters and (2) the diameter of each cluster (i.e.,
the distance in GC between any two vertices of the cluster) is at most 2.

Proof of Theorem 11. The weighted graph emulator H = (V, F) is con-
structed as follows. Let W : F → R be the weights of H edges. Apply Fact
12 to construct a clustering C and the clustering graph GC = Cluster(G, γ) for
γ = ε/2. For every source si ∈ S and cluster Cj ∈ C, define zi,j ∈ Cj to be
the closest vertex in cluster Cj to the source si, i.e., zi,j ∈ Cj satisfies that
dist(si, zi,j , G) = dist(si, Cj , G), and add to H an edge ei,j between si and zi,j
of weight dist(si, zi,j , G). This concludes the construction of H. We first bound
the size of H. By Fact 12, GC has O(n1+ε/2) edges and there are |C| = O(n1−ε/2)
clusters. Hence, overall H consists of |E(GC)| = O(n1+ε/2) edges of weight 1 and
|S|·|C| = O(n1+ε/2) weighted edges as required. We now analyze the stretch. Con-
sider some si−vj shortest path π(si, vj). If π(si, vj) ⊆ GC , then dist(si, vj , H) =
dist(si, vj , G) and the claim holds. Else, let e = (w1, w2) be last missing edge on
π(si, vj) \GC , i.e., the edge closest to vj that does not appear in the clustering
graph GC . By Fact 12, w2 is clustered. Let C = C(w2) be the cluster of w2

and let z ∈ C be the closest vertex to si in the cluster C. By construction, H
contains an edge e′ = (si, z) of weight W (e′) = dist(si, z,G) = dist(si, C,G). Let
P1 = e′, P2 ∈ SP (z, w2, GC), P3 = π(si, vj)[w2, vj] and define the si − vj path
P = P1 ◦ P2 ◦ P3. By construction P ⊆ H. Let W (P) =

∑
e∈P W (e) be weight

length of P . Note that by Fc. 12, W (P2) ≤ 2. We then have the following.

dist(si, vj , H) ≤W (P) = W (P1) +W (P2) +W (P3) ≤ dist(si, C,G) + 2

+ dist(w2, vj , G) ≤ dist(si, w2, G) + 2 + dist(w2, vj , G)

= |π(si, vj)|+ 2 = dist(si, vj , G) + 2 .

where the last inequality follows by the fact that w ∈ C. The theorem follows.

Additive sourcewise spanners. The construction of additive sourcewise spanners
combines the path-buying technique of [5,12,20] and the 4-additive spanner tech-
niques of [11].

Theorem 13. Let k ≥ 1 be an integer. For every unweighted n-vertex graph
G = (V,E) and every subset S ⊆ V , there exists a (polynomially constructible)

(2k, S)-additive sourcewise spanner H ⊆ G of size Õ(k · n1+(kε+1)/(2k+2)) where
ε = log |S|/ log n.

We first provide some high level overview of the algorithm. Inspired by [11], the
algorithm handles separately “‘distant” vertex pairs and “nearby” vertex pairs in
S×V , where the classification is based on some distance function dist∗(s, v,G).

To provide a bounded stretch for the “distant” vertex pairs (i.e., whose shortest
path in G is long according to the function dist∗), the algorithm picks a small
sample of vertices for rooting BFS trees. It is shown that this sample covers
with high probability the neighborhood of the paths π(s, v), when s and v are
distant. Next, the path-buying procedure of [12] is applied on the collection of
the “short” s − v paths (i.e., handling the nearby vertex pairs in S × V). In
the analysis, we show that since the path-buying procedure cares only for the
“short” π(s, v) paths, the obtained spanner is sparser than that of [12].

The algorithm. We begin by briefly outline the strategy of the path buying
procedure. In an initial clustering phase, a suitable clustering of the vertices is
computed and an associated subset of edges is added to the spanner. This is
followed by a path-buying phase, which examines certain paths in sequence, and
decides whether or not to add them to the spanner. The decision is determined by
assigning each candidate path a cost, corresponding to the number of path edges
not already contained in the spanner, and a value, measuring how much adding
the path would help to satisfy the considered set of constraints on the pairwise
distances. The candidate path is added if the value to cost ratio is sufficiently
large. The path-buying strategy was employed in the context of pairwise spanners
both in [12] and [20].

The following notation is useful in our setting. A pair (si, vj) ∈ S × V is
satisfied by a subgraph H ⊆ G if dist(si, vj , H) ≤ dist(si, vj , G) + 2k. The
neighborhood of a path P is denoted by Γ (P) =

⋃
u∈P Γ (u).

Define

Y = n(kε+1)/(2k+2) and L = n log n/Y 2 . (38)

A vertex v is heavy iff deg(v,G) ≥ Y , otherwise it is light. We now classify the
si − vj paths π(si, vj) according to the number of heavy vertices that appear
on the path. For a path P , let distheavy(P) be the number of heavy vertices
in P . The path P is long if distheavy(P) ≥ L, otherwise it is short. The pair
〈si, vj〉 ∈ S × V is long (resp., short) iff π(si, vj) is long (resp., short). Define
the subgraph

E(H0) = {(u, v) ∈ E(G) | u is light } . (39)

as the set of all edges adjacent to light vertices in G. The algorithm consists of
two phases that add edges to H0. The goal of the first phase is to satisfy the
long pairs and the goal of the second phase is to satisfy the short pairs in the
final spanner.

(1) Satisfying Long Pairs. Initially set Ha = H0. Randomly select a set of
vertices Z of expected size 9Y , by choosing every vertex from V independently
at random with probability 9Y/n. For every vertex z ∈ Z, construct a BFS tree
BFS(z,G) rooted at z spanning all vertices V , and add the edges of BFS(z,G)
to Ha.

(2) Satisfying Short Pairs. This phase consists of two steps: a clustering step
and a path-buying procedure.

(2.1) Clustering. Apply the clustering procedure of Fact 12 with γ = logn Y
which constructs a clustering C = {C1, . . . , Cλ} and a clustering subgraph GC
such that |E(GC)| = O(n · Y) and λ = O(n/Y).

(2.2) Path-buying. The following path-buying procedure is very similar to the
construction of additive sourcewise spanner in [12]. The only modification is that
in the current setting, the algorithm iterates over the short pairs 〈si, vj〉 (as the
long pairs are handled in the first phase) and not over all S × V pairs as in [12].
This fact enables the slight improvement in the size of the spanner.

Define Pshort = {π(si, vj) | (si, vj) is short } as the collection of short
si − vj paths which are the candidates to be bought and added to the spanner
and initializeHb

0 ← GC∪H0. Iterate over all paths π(si, vj) ∈ Pshort. At iteration
t ≥ 0, given the current spanner Hb

t−1, consider the t’th path in Pshort, let it be
π(si, vj). Define paths π`i,j for 0 ≤ ` ≤ k, maintaining the following invariants:

(i) π`i,j is a path between si and vj of length at most dist(si, vj , G) + 2`.

(ii) any cluster C ∈ C contains at most three vertices of π`i,j ,

(iii) Cost(π`i,j) ≤ L/ϕ` where Cost(π`i,j) is the number of edges of π`i,j absent in

the current spanner Hb
t−1 and ϕ = (2L)1/k.

In the analysis, we show that for every short pair (si, vj), the algorithm buys
exactly one path π`i,j for 0 ≤ ` ≤ k, hence ensuring that the pair (si, vj) is

satisfied in Hb
t . We now describe the construction of the π`i,j paths. For ` = 0,

define π0
i,j = π(si, vj), i.e., the shortest-path in G. Observe that for j = 0,

Invariant (i) is trivially satisfied, Invariant (ii) is satisfied by Fact 12 (otherwise
π0
i,j would not be a shortest-path), and Invariant (iii) is satisfied because the

number of missing edges in Hb
0 is at most L (i.e., the pair (si, vj) is short). For a

given path π`i,j , where ` ∈ {0, . . . , k}, define the function Val(π`i,j) as the number

of clusters C ∈ C such that there exists a vertex v ∈ C ∩ π`i,j and the distance

between si and C in Hb
t−1 is strictly greater then the distance between si and

C in π`i,j , i.e., dist(si, C, π
`
i,j) < dist(si, C,H

b
t−1). Formally,

Val(π`i,j) = |{C | ∃v ∈ C ∩ π`i,j and dist(si, C, π
`
i,j) < dist(si, C,H

b
t−1)}| .

The path π`i,j is added to Hb
t−1 resulting in Hb

t iff

Cost(π`i,j) ≤ 3 · ϕ · Val(π`i,j).

In other words, if the condition above holds, then Hb
t = Hb

t−1 ∪π`i,j , the remain-
ing values of ` are ignored and the algorithm proceeds to the next short pair.
Otherwise, the path π`+1

i,j is constructed as follows. Let R be the longest suffix

of π`i,j containing exactly bCost(π`i,j)/ϕc edges the are missing in Hb
t−1. By the

maximality of R, the edge e that precedes R is missing in Hb
t−1 and hence by

Fact 12 both endpoints of e (one of which is the first vertex of R) are clustered.
Hence, at least 1+bCost(π`i,j)/ϕc ≥ Cost(π`i,j)/ϕ vertices of R are clustered. By

Invariant (ii) there are at least Cost(π`i,j)/(3ϕ) clusters in C having at least one

vertex of R. Since π`i,j was not bought, there exists a cluster C ∈ C containing

a vertex x ∈ C of R such that the distance between si and C in Hb
t−1 is at

most the distance between si and x in π`i,j . The path π`+1
i,j is constructed by

taking a shortest-path in Hb
t−1 from si to the closest vertex y ∈ C , then add a

path of length at most two between y and x (which exists since x and y belongs
to the same cluster and by Fact 12), and finally add the suffix of R starting
at x. We now claim that the path π`i,j maintains the invariants. Invariant (i)

follows immediately as the length of π`i,j was extended by at most two edges
(by the selection of y and the addition of the intercluster path of length two).
In addition note that π`+1

i,j can be easily transformed into a path which is not
longer and satisfies Invariant (ii). In particular as long as the current path con-
tains at least four vertices of the same cluster C ′ ∈ C, the path can be shorten
as follows. Let a and b be the vertices of the current path closest to si and vj
respectively, replace the a − b subpath (of length at least three) by an the in-
tercluster a − b path in GC of length at most two. Consequently, Invariant (ii)
is satisfied. Finally, note that the missing edges of π`+1

i,j \ Hb
t−1 (i.e., the edges

that contributes to Cost(π`+1
i,j)) are fully contained in R. By the definition of R,

|R| ≤ Cost(π`i,j)/ϕ
` ≤ L/(ϕ` · ϕ), Invariant (iii) is satisfied. This completes the

construction of π`+1
i,j . Let t′ = |Pshort| be the number of paths considered to be

bought. The (2k, S)-additive sourcewise spanner H is given by

H = Ha ∪Hb
t′ .

Analysis. We begin by analyzing the first phase of the algorithm and show that
the long pairs are satisfied in Ha.

Lemma 10. (1) With probability at least 1−1/n, every long pair (si, vj) ∈ S×V
is satisfied in Ha. (2) Ha has Õ(n1+(kε+1)/(2k+2)) edges in expectation.

Proof: Begin with part (1) and consider some long si − vj path π(si, vj). Since
π(si, vj) is a shortest-path in G, every vertex v ∈ π(si, vj) has at most two
neighbors in π(si, vj). Combining this with the fact that π(si, vj) contains at
least L heavy vertices whose sum of degrees is more than Y · L, we get that
|Γ (π(si, vj))| ≥ Y ·L/3. We now claim that the probability that Γ (π(si, vj))∩Z 6=
∅ is at least 1− 1/n3, as

P[Γ (π(si, vj)) ∩ Z = ∅] ≤ (1− 9Y/n)Y ·L/3 ≤ 1/n3,

which follows by Eq. (38). Part (1) of the lemma follows by applying the union
bound over all pairs of vertices (although it is sufficient to consider only the
S × V pairs). Consider part (2). The size of H0 is O(nY) as it consists of edges
adjacent to light vertices. The expected number of vertices in Z is O(Y). For
each z ∈ Z, a BFS tree of n−1 edges is added to H. Hence, the expected number
of edges in Ha is O(n · Y). Part (2) follows by plugging Eq. (38).

We now turn to consider the short pairs and analyze the second phase of the
algorithm.

Lemma 11. (1) Every short pair (si, vj) ∈ S × V is satisfied in Hb. (2) Hb

contains Õ(k · n1+(kε+1)/(2k+2)) edges.

Proof: Begin with (1). By Invariant (iii) of the path-buying procedure, we have
that Cost(πki,j) ≤ 1/2, since the Cost() function has only integral values, it has

to be that Cost(πki,j) = 0, which ensures that π`i,j is bought for some ` ≤ k for

every π0
i,j ∈ Pshort. By the above, for every short pair (si, vj), there exists some

` ∈ {0, . . . , k} such that π`i,j was bought, hence the claim holds by Invariant
(i). Consider part (2). By Fact 12, GC contains n · Y edges. Let B be the paths
bought during the path-buying procedure. It remains to bound the number of
edges added due to the paths in B. For every short pair (si, vj) let Pi,j be the path
in B, i.e., Pi,j = π`i,j for some ` ∈ {0, . . . , k} (by Part (1) above such ` exists). We
first claim that very cluster C ∈ C contributes to Val(Pi,j) of at most |S|(2k+3)
bought paths. This holds since when for si ∈ S a supported path is bought
the distance between si and C is at most 2k + 2 greater than the distance
between si and C in G: otherwise one could shorten Pi,j by more than 2k,
obtaining a contradiction with Invariant (i). Therefore the total number of edges
added during the path buying procedure is upper bounded by

∑
i,j Cost(Pi,j) ≤∑

i,j 3ϕ · Val(Pi,j) ≤ 3ϕ · (2k+ 3) · |S| · n/Y . By plugging Eq. (38) and recalling

that |S| = O(nε), the lemma follows.

Theorem 13 follows by Lemma 10 and 11.
Finally, we provide an “almost” tight construction for (4, S)-sourcewise ad-

ditive spanners for a sufficiently large subset of sources S. We use the following
fact due to [12].

Fact 14 (Additive subsetwise spanners [12]) For every unweighted n-vertex
graph G = (V,E), and a subset Z ⊆ V , there exists a (polynomially constructible)
subgraph H ⊆ G with O(n1+κ/2) edges such that dist(u, v,H) ≤ dist(u, v,G) + 2
for every (u, v) ∈ Z × Z, where κ = log |Z|/ log n (this subgraph is also known
as additive subsetwise spanner).

We have the following.

Theorem 15. For every unweighted n-vertex graph G = (V,E) and a subset
of sources S ⊆ V such that |S| = Ω(n2/3), there exists a (polynomially con-
structible) (4, S)-additive sourcewise spanner H ⊆ G with O(n1+ε/2) edges.

Proof: The algorithm is as follows. (i) Apply the clustering procedure of Fact
12 with γ = ε/2. This constructs a clustering C = {C1, . . . , Cλ} and a clustering
subgraph GC such that |E(GC)| = O(n1+ε/2) and λ = O(n1−ε/2). Let X =
{x1, . . . , xλ} be the cluster centers of C. (ii) Set Z = X ∪ S and apply the
2-additive subsetwise spanner construction of Fact 14 on Z, resulting in the
subgraph H ′. Let H = GC ∪H ′. Note that |Z| = O(nε), since ε ≥ 2/3. Hence
by Facts 12 and 14, it holds that H has O(n1+ε/2) edges. We now analyze the
S × V stretch in H. Consider some π(si, vj) path that has some missing edge in
GC , i.e., π(si, vj)\GC 6= ∅. Let e = (y1, y2) be the last missing edge on the path
(closest to vj). By Fact 12, y2 is clustered. Let x be the cluster center of C(y2).

Hence, x ∈ Z. Define P1 ∈ SP (si, x,H), P2 = (x, y2) and P3 = π(si, vj)[y2, vj].
Let P = P1 ◦ P2 ◦ P3. It then holds that P ⊆ H. By step (ii) it holds that
|P1| ≤ dist(si, x,G) + 2. We have the following.

dist(si, vj , H) ≤ |P | = |P1|+ |P2|+ |P3|
≤ dist(si, x,G) + 2 + 1 + dist(y2, vj , G)

≤ dist(si, y2, G) + 1 + 3 + dist(y2, vj , G) = |π(si, vj)|+ 4

= dist(si, vj , G) + 4 ,

where the last inequality follows by the fact the w is the cluster center of y2 and
by the triangle inequality.

4 Conclusion

In this paper, we considered the following question: what is the “minimal” modi-
fication to the standard definition of (2k−1)-spanners required in order to bypass
the barrier of Ω(n1+1/k) edges, for every integer k ≥ 1. We proposed two such
modifications. First, we make a hard distinction between pairs at distance 1 and
pairs at distance larger than 1, corresponding to the hard distinction arising from
lower bounds that are based on the girth conjecture. This results in a k-hybrid
spanner with O(n1+1/(k+1)) edges. The k-hybrid spanner can be viewed either
as a relaxation for k-spanners (i.e., relaxing the requirement of multiplicative
stretch k for neighboring vertex pairs), or alternatively as a strengthening of
(α, β)-spanners. Whereas (α, β)-spanners make a somewhat “fuzzy” distinction
between large and small distances, hybrid spanners provide a sharp distinction
between vertex pairs at distance 1 and pairs at distance larger than 1, which
corresponds to the sharp distinction arising by the girth argument. In the sec-
ond modification, we considered sourcewise spanners, where we care only for
the stretch of vertex pairs from S × V for a given subset of sources S ⊆ V . In
particular, it follows from our results that even if one considers a large subset of
sources S ⊆ V for |S| = O(n1−δ) for sufficiently small, but fixed δ, there exist a
subgraph with O(n1+(1−δ)/k) edges providing a multiplicative stretch of 2k − 1
for every pair (u, v) ∈ S×V . An interesting future direction is to study the lower
bounds for hybrid spanners and sourcewise multiplicative spanners.

Acknowledgment. I am very grateful to my advisor, Prof. David Peleg, for
many helpful discussions and for reviewing this paper. I would also like to thank
Michael Dinitz and Eylon Yogev for useful comments and discussions.

References

1. R. Agarwal and P.B. Godfrey and S. Har-Peled. Approximate distance queries and
compact routing in sparse graphs. In Proc. INFOCOM, 2011.

2. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999.

3. N. Alon and J.H. Spencer. The probabilistic method. Wiley, New York, 1992.
4. I. Althöfer, G. Das, D. Dobkin, D. Joseph and J. Soares. On sparse spanners of

weighted graphs. Networks, 9(1): 81–100, 1993.
5. S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-

spanners. ACM Trans. Algo. 7, A.5, 2010.
6. S. Baswana and S. Sen. A simple Linear Time Randomized Algorithm for Comput-

ing Sparse Spanners in Weighted Graphs. In Random Structures and Algorithms,
30(4): 532–563, 2007.

7. S. Baswana and T. Kavitha. Faster algorithms for approximate distance oracles
and all-pairs small stretch paths. In Proc. FOCS, 591–602, 2006.

8. S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in
expected O(n2) time. ACM Transactions on Algorithms (TALG), 2(4):557–577,
2006.

9. B. Bollobás, D. Coppersmith and M. Elkin. Sparse distance preservers and additive
spanners. SIAM Journal on Discrete Mathematics, 19(4): 1029–1055, 2005.

10. D. Coppersmith, M. Elkin. Sparse sourcewise and pairwise distance preservers. In
SIAM Journal on Discrete Mathematics, 20(2): 463–501, 2006.

11. S. Chechik. New Additive Spanners. In Proc. SODA, 29(5): 498–512, 2013.
12. M. Cygan, F. Grandoni and T. Kavitha. On Pairwise Spanners. In Proc. STACS,

209–220, 2013.
13. C. Gavoille and D. Peleg. Compact and localized distributed data structures.

Distributed Computing, 16(2): 111-120, 2003.
14. D. Dor, S. Halperin and U. Zwick. All-pairs almost shortest paths. SIAM on

Computing, 29(5): 1740–1759, 2000.
15. M. Elkin and D. Peleg. (1 + ε, β)-Spanner Constructions for General Graphs.

SIAM Journal on Computing, 33(3): 608–631, 2004.
16. M. Elkin. Computing almost shortest paths. ACM Transactions on Algorithms

(TALG), 1(2): 283–323, 2005.
17. M. Elkin, Y. Emek, D.A. Spielman and S.H. Teng. Lower stretch spanning trees.

In Proc. STOC, 494–503, 2005.
18. P. Erdős. Extremal problems in graph theory. In Proc. Symp. Theory of Graphs

and its Applications, page 2936, 1963.
19. M. Kapralov and R. Panigrahy. Spectral sparsification via random spanners.

ITCS, 2012.
20. T. Kavitha and N.M Varma. Small Stretch Pairwise Spanners. In ICALP, 601–612,

2013.
21. A.L Liestman and T.C. Shermer. Additive graph spanners. Networks, 23(4):

343–363, 1993.
22. M. Mendel and A. Naor. Ramsey partitions and proximity data structures. FOCS,

23(4): 109–118, 2006.
23. M. Pǎtraşcu and L. Roditty. Distance oracles beyond the Thorup-Zwick bound. In

FOCS, 815–823, 2010.
24. D. Peleg and A.A Schaffer. Graph spanners. In Journal of graph theory, 12(1):99-

116, 1989.
25. D. Peleg, J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal

on computing, 18(4): 740–747, 1989.
26. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

27. S. Pettie. Low distortion spanners. In ACM Transactions on Algorithms (TALG),
6(1), 2009.

28. L. Roditty, M. Thorup and U. Zwick. Deterministic constructions of approximate
distance oracles and spanners. In ICALP, 261–272, 2005.

29. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. In Journal of the ACM (JACM), 46(3): 362–394, 1999.

30. M. Thorup and U. Zwick. Approximate distance oracles. In Journal of the ACM
(JACM), 52(1):1–24, 2005.

31. M. Thorup, U. Zwick. Spanners and emulators with sublinear distance errors. In
SODA, 802–809, 2006.

32. R. Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, 113–116, 1991.

33. D.P Woodruff. Lower bounds for additive spanners, emulators, and more. In Proc.
47th Symp. on Foundations of Computer Science, 389–398, 2006.

	Bypassing Erdos' Girth Conjecture: Hybrid Stretch and Sourcewise Spanners

