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Abstract. When comparing new wireless technologies, it is common to
consider the effect that they have on the capacity of the network (de-
fined as the maximum number of simultaneously satisfiable links). For
example, it has been shown that giving receivers the ability to do in-
terference cancellation, or allowing transmitters to use power control,
never decreases the capacity and can in certain cases increase it by
Ω(log(∆ · Pmax)), where ∆ is the ratio of the longest link length to the
smallest transmitter-receiver distance and Pmax is the maximum trans-
mission power. But there is no reason to expect the optimal capacity
to be realized in practice, particularly since maximizing the capacity is
known to be NP-hard. In reality, we would expect links to behave as self-
interested agents, and thus when introducing a new technology it makes
more sense to compare the values reached at game-theoretic equilibria
than the optimum values.

In this paper we initiate this line of work by comparing various notions
of equilibria (particularly Nash equilibria and no-regret behavior) when
using a supposedly “better” technology. We show a version of Braess’s
Paradox for all of them: in certain networks, upgrading technology can
actually make the equilibria worse, despite an increase in the capacity.
We construct instances where this decrease is a constant factor for power
control, interference cancellation, and improvements in the SINR thresh-
old (β), and isΩ(log∆) when power control is combined with interference
cancellation. However, we show that these examples are basically tight:
the decrease is at most O(1) for power control, interference cancellation,
and improved β, and is at most O(log∆) when power control is combined
with interference cancellation.
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1 Introduction

Due to the increasing use of wireless technology in communication networks,
there has been a significant amount of research on methods of improving wireless
performance. While there are many ways of measuring wireless performance, a
good first step (which has been extensively studied) is the notion of capacity.
Given a collection of communication links, the capacity of a network is simply
the maximum number of simultaneously satisfiable links. This can obviously
depend on the exact model of wireless communication that we are using, but
is clearly an upper bound on the “usefulness” of the network. There has been
a large amount of research on analyzing the capacity of wireless networks (see
e.g. [15,14,2,19]), and it has become a standard way of measuring the quality of
a network. Because of this, when introducing a new technology it is interesting
to analyze its affect on the capacity. For example, we know that in certain cases
giving transmitters the ability to control their transmission power can increase
the capacity by Ω(log∆) or Ω(logPmax)) [6], where ∆ is the ratio of the longest
link length to the smallest transmitter-receiver distance, and can clearly never
decrease the capacity.

However, while the capacity might improve, it is not nearly as clear that
the achieved capacity will improve. After all, we do not expect our network to
actually have performance that achieves the maximum possible capacity. We
show that not only might these improved technologies not help, they might in
fact decrease the achieved network capacity. Following Andrews and Dinitz [2]
and Ásgeirsson and Mitra [3], we model each link as a self-interested agent and
analyze various types of game-theoretic behavior (Nash equilibria and no-regret
behavior in particular). We show that a version of Braess’s Paradox [8] holds:
adding new technology to the networks (such as the ability to control powers)
can actually decrease the average capacity at equilibrium.

1.1 Our Results

Our main results show that in the context of wireless networks, and particularly
in the context of the SINR model, there is a version of Braess’s Paradox [8]. In
his seminal paper, Braess studied congestion in road networks and showed that
adding additional roads to an existing network can actually make congestion
worse, since agents will behave selfishly and the additional options can result
in worse equilibria. This is completely analogous to our setting, since in road
networks adding extra roads cannot hurt the network in terms of the value of
the optimum solution, but can hurt the network since the achieved congestion
gets worse. In this work we consider the physical model (also called the SINR
model), pioneered by Moscibroda and Wattenhofer [23] and described more for-
mally in Section 2.1. Intuitively, this model works as follows: every sender chooses
a transmission power (which may be pre-determined, e.g. due to hardware limi-
tations), and the received power decreased polynomially with the distance from
the sender. A transmission is successful if the received power from the sender



is large enough to overcome the interference caused by other senders plus the
background noise.

With our baseline being the SINR model, we then consider four ways of
“improving” a network: adding power control, adding interference cancellation,
adding both power control and interference cancellation, and decreasing the
SINR threshold. With all of these modifications it is easy to see that the optimal
capacity can only increase, but we will show that the equilibria can become worse.
Thus “improving” a network might actually result in worse performance.

The game-theoretic setup that we use is based on [2] and will be formally
described in Section 2.2, but we will give an overview here. We start with a game
in which the players are the links, and the strategies depend slightly on the model
but are essentially possible power settings at which to transmit. The utilities
depend on whether or not the link was successful, and whether or not it even
attempted to transmit. In a pure Nash equilibrium every player has a strategy
(i.e. power setting) and has no incentive to deviate: any other strategy would
result in smaller utility. In a mixed Nash equilibrium every link has a probability
distribution over the strategies, and no link has any incentive to deviate from
their distribution. Finally, no-regret behavior is the empirical distribution of
play when all players use no-regret algorithms, which are a widely used and
studied class of learning algorithms (see Section 2.2 for a formal definition). It
is reasonably easy to see that any pure Nash is a mixed Nash, and any mixed
Nash is a no-regret behavior. For all of these, the quality of the solution is the
achieved capacity, i.e. the average number of successful links.

Our first result is for interference cancellation (IC), which has been widely
proposed as a practical method of increasing network performance [1]. The basic
idea of interference cancellation is quite simple. First, the strongest interfering
signal is detected and decoded. Once decoded, this signal can then be subtracted
(“canceled”) from the original signal. Subsequently, the next strongest interfer-
ing signal can be detected and decoded from the now “cleaner” signal, and so
on. As long as the strongest remaining signal can be decoded in the presence of
the weaker signals, this process continues until we are left with the desired trans-
mitted signal, which can now be decoded. This clearly can increase the capacity
of the network, and even in the worst case cannot decrease it. And yet due to
bad game-theoretic interactions it might make the achieved capacity worse:

Theorem 1. There exists a set of links in which the best no-regret behavior
under interference cancellation achieves capacity at most c times the worst no-
regret behavior without interference cancellation, for some constant c < 1. How-
ever, for every set of links the worst no-regret behavior under interference can-
cellation achieves capacity that is at least a constant fraction of the best no-regret
behavior without interference cancellation.

Thus IC can make the achieved capacity worse, but only by a constant factor.
Note that since every Nash equilibrium (mixed or pure) is also no-regret, this
implies the equivalent statements for those type of equilibria as well. In this
result (as in most of our examples) we only show a small network (4 links)



with no background noise, but these are both only for simplicity – it is easy to
incorporate constant noise, and the small network can be repeated at sufficient
distance to get examples with an arbitrarily large number of links.

We next consider power control (PC), where senders can choose not just
whether to transmit, but at what power to transmit. It turns out that any
equilibrium without power control is also an equilibrium with power control,
and thus we cannot hope to find an example where the best equilibrium with
power control is worse than the worst equilibrium without power control (as
we did with IC). Instead, we show that adding power control can create worse
equilibria:

Theorem 2. There exists a set of links in which there is a pure Nash equilibrium
with power control of value at most c times the value of the worst no-regret
behavior without power control, for some constant c < 1. However, for every
set of links the worst no-regret behavior with power control has value that is at
least a constant fraction of the value of the best no-regret behavior without power
control.

Note that the first part of the theorem implies that not only is there a pure
Nash with low-value (with power control), there are also mixed Nash and no-
regret behaviors with low value (since any pure Nash is also mixed and no-regret).
Similarly, the second part of the theorem gives a bound on the gap between the
worst and the best mixed Nashes, and the worst and the best pure Nashes.

Our third set of results is on the combination of power control and inter-
ference cancellation. It turns out that the combination of the two can be quite
harmful. When compared to either the vanilla setting (no interference cancel-
lation or power control) or the presence of power control without interference
cancellation, the combination of IC and PC acts essentially as in Theorem 2: pure
Nash equilibria are created that are worse than the previous worst no-regret be-
havior, but this can only be by a constant factor. On the other hand, this factor
can be super-constant when compared to equilibria that only use interference
cancellation. Let ∆ be the ratio of the length of the longest link to the minimum
distance between any sender and any receiver. 3

Theorem 3. There exists a set of links in which the worst pure Nash with both
PC and IC (and thus the worst mixed Nash or no-regret behavior) has value at
most O(1/ log∆) times the value of the worst no-regret behavior with just IC.
However, for every set of links the worst no-regret behavior with both PC and IC
has value at least Ω(1/ log∆) times the value of the best no-regret behavior with
just IC.

This theorem means that interference cancellation “changes the game”: if in-
terference control were not an option then power control can only hurt the equi-
libria by a constant amount (from Theorem 2), but if we assume that interference

3 Note that this definition is slightly different than the one used by [17,3,16] and is a
bit more similar to the definition used by [2,11]. The interested reader can see that
this is in fact the appropriate definition in the IC setting, namely, in a setting where
a receiver can decode multiple (interfering) stations.



cancellation is present then adding power control can hurt us by Ω(log∆). Thus
when deciding whether to use both power control and interference cancellation,
one must be particularly careful to analyze how they act in combination.

Finally, we consider the effect of decreasing the SINR threshold β (this value
will be formally described in Section 2.1). We show that, as with IC, there are
networks in which a decrease in the SINR threshold can lead to every equilibrium
being worse than even the worst equilibrium at the higher threshold, despite the
capacity increasing or staying the same:

Theorem 4. There exists a set of links and constants 1 < β′ < β in which the
best no-regret behavior under threshold β′ has value at most c times the value
of the worst no-regret behavior under threshold β, for some constant c < 1.
However, for any set of links and any 1 < β′ < β the value of the worst no-
regret behavior under β′ is at least a constant fraction of the value of the best
no-regret behavior under β.

Our main network constructions illustrating Braess’s paradox in the studied
settings are summarized in Fig. 1.

1.2 Related Work

The capacity of random networks was examined in the seminal paper of Gupta
and Kumar [15], who proved tight bounds in a variety of models. But only re-
cently has there been a significant amount of work on algorithms for determining
the capacity of arbitrary networks, particularly in the SINR model. This line of
work began with Goussevskaia, Oswald, and Wattenhofer [13], who gave an
O(log∆)-approximation for the uniform power setting (i.e. the vanilla model we
consider). Goussevskaia, Halldórson, Wattenhofer, and Welzl [14] then improved
this to an O(1)-approximation (still under uniform powers), while Andrews and
Dinitz [2] gave a similar O(log∆)-approximation algorithm for the power control
setting. This line of research was essentially completed by an O(1)-approximation
for the power control setting due to Kesselheim [19].

In parallel to the work on approximation algorithms, there has been some
work on using game theory (and in particular the games used in this paper) to
help design distributed approximation algorithms. This was begun by Andrews
and Dinitz [2], who gave an upper bound of O(∆2α) on the price of anarchy for
the basic game defined in Section 2.2. But since computing the Nash equilibrium
of a game is PPAD-complete [10], we do not expect games to necessarily converge
to a Nash equilibrium in polynomial time. Thus Dinitz [11] strengthened the
result by showing the same upper bound of O(∆2α) for no-regret behavior. This
gave the first distributed algorithm with a nontrivial approximation ratio, simply
by having every player use a no-regret algorithm. The analysis of the same game
was then improved to O(log∆) by Ásgeirsson and Mitra [3].

There is very little work on interference cancellation in arbitrary networks
from an algorithmic point of view, although it has been studied quite well from
an information-theoretic point of view (see e.g. [12,9]). Recently Avin et al. [4]
studied the topology of SINR diagrams under interference cancellation, which
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Fig. 1: Schematic illustration of the main lower bounds illustrating the Braess’s
paradox with (a) IC: a network in which every no-regret behavior without IC is
better than any no-regret behavior solution with IC; (b) PC: a network in which
there exists a pure Nash equilibrium with PC which is worse than any no-regret
behavior with IC; (c) PIC: a network with a pure Nash equilibrium in the PIC setting
which is Ω(log∆) worse than any no-regret behavior in the IC setting but without
power control; and (d) Decreased SINR threshold β′ < β: a network in which every
no-regret behavior with β′ has a smaller value than any no-regret behavior with
higher SINR threshold β. Edge weights represent distances.

are a generalization of the SINR diagrams introduced by Avin et al. [5] and
further studied by Kantor et al. [18] for the SINR model without interference
cancellation. These diagrams specify the reception zones of transmitters in the
SINR model, which turn out to have several interesting topological and geomet-
ric properties but have not led to a better understanding of the fundamental
capacity question.

2 Preliminaries

2.1 The Communication Model

We model a wireless network as a set of links L = {`1, `2, . . . , `n} in the plane,
where each link `v = (sv, rv) represents a communication request from a sender
sv to a receiver rv. The n senders and receivers are given as points in the Eu-
clidean plane. The Euclidean distance between two points p and q is denoted



d(p, q). The distance between sender si and receiver rj is denoted by di,j . We
adopt the physical model (sometime called the SINR model) where the received
signal strength of transmitter si at the receiver rj decays with the distance and
it is given by Pi,j = Pi/d

α
i,j , where Pi ∈ [0, Pmax] is the transmission power of

sender si and α > 0 is the path-loss exponent. Receiver rj successfully receives

a message from sender sj iff SINRj(L) =
Pj,j∑

`i∈L Pi,j+η
≥ β, where η denotes

the amount of background noise and β > 1 denotes the minimum SINR required
for a message to be successfully received. The total interference that receiver rj
suffers from the set of links L is given by

∑
i 6=j Pi,j . Throughout, we assume that

all distances di,j are normalized so that minsi,rj di,j = 1 hence the maximal link
length is ∆, i.e., ∆ = maxi di,i and any received signal strength Pi,j is bounded
by Pi,j ≤ Pmax.

In the vanilla SINR model we require that Pi is either 0 or Pmax for every
transmitter. This is sometimes referred to as uniform powers. When we have
power control, we allow Pi to be any integer in [0, Pmax].

Interference cancellation allows receivers to cancel signals that they can de-
code. Consider link `j . If rj can decode the signal with the largest received signal,
then it can decode it and remove it. It can repeat this process until it decodes its
desire message from sj , unless at some point it gets stuck and cannot decode the
strongest signal. Formally, rj can decode si if Pi,j/(

∑
`k:Pk,j<Pi,j

Pk,j + η) ≥ β

(i.e. it can decode si in the presence of weaker signals) and if it can decode sk
for all links `k with Pk,j > Pi,j . Link `j is successful if rj can decode sj .

The following key notion, which was introduced in [17] and extended to arbi-
trary powers by [20], plays an important role in our analysis. The affectance
aPw(v) of link `v caused by another link `w with a given power assignment
vector P is defines to be aPw(v) = min {1, cv(β)Pw,v/Pv,v}, where cv(β) =
β/(1−βηdαv,v/Pv). Informally, aPw(v) indicates the amount of (normalized) inter-
ference that link `w causes at link `v. It is easy to verify that link `v is successful
if and only if

∑
w 6=v a

P
w(v) ≤ 1.

When the powers of P are the same Pu = Pmax for every `u, (i.e. uniform
powers), we may omit it and simply write aw(v). For a set of links L and a link `w,
the total affectance caused by `w is aw(L) =

∑
`v∈L aw(v). In the same manner,

the total affectance caused by L on the link `w is aL(w) =
∑
`v∈L av(w). We

say that a set of links L is β-feasible if SINRv(L) ≥ β for all `v ∈ L, i.e. every
link achieves SINR above the threshold (and is thus successful even without
interference cancellation). It is easy to verify that L is β-feasible if and only if∑
`w∈L aw(v) ≤ 1 for every `v ∈ L.
Following [16], we say that a link set L is amenable if the total affectance

caused by any single link is bounded by some constant, i.e., au(L) = O(1) for
every u ∈ L. The following basic properties of amenable sets play an important
role in our analysis.

Fact 5 [3] (a) Every feasible set L contains a subset L′ ⊆ L, such that L′ is
amenable and |L′| ≥ |L|/2.
(b) For every amenable set L′ that is β-feasible with uniform powers, for every
other link u, it holds that

∑
v∈L′ au(v) = O(1).



2.2 Basic Game Theory

We will use a game that is essentially the same as the game of Andrews and
Dinitz [2], modified only to account for the different models we consider. Each
link `i is a player with Pmax + 1 possible strategies: broadcast at power 0, or at
integer power P ∈ {1, . . . , Pmax}. A link has utility 1 if it is successful, has utility
−1 if it uses nonzero power but is unsuccessful, and has utility 0 if it does not
transmit (i.e. chooses power 0). Note that if power control is not available, this
game only has two strategies: power 0 and power Pmax. Let S denote the set of
possible strategies. A strategy profile is a vector in Sn, where the i’th component
is the strategy played by link `i. For each link `i, let fi : Sn → {−1, 0, 1} be
the function mapping strategy profiles to utility for link i as described. Given
a strategy profile a, let a−i denote the profile without the i’th component, and
given some strategy s ∈ S let fi(s, a−i) denote the utility of `i if it uses strategy
s and all other links use their strategies from a.

A pure Nash equilibrium is a strategy profile in which no player has any
incentive to deviate from their strategy. Formally, a ∈ Sn is a pure Nash equi-
librium if fi(a) ≥ fi(s, a−i) for all s ∈ S and players `i ∈ L. In a mixed Nash
equilibrium [24], every player `i has a probability distribution πi over S, and the
requirement is that no player has any incentive to change their distribution to
some π′. So E[fi(a)] ≥ E[fi(π

′, a−i)] for all i ∈ {1, . . . , n}, where the expecta-
tion is over the random strategy profile a drawn from the product distribution
defined by the πi’s, and π′ is any distribution over S.

To define no-regret behavior, suppose that the game has been played for T
rounds and let at be the realized strategy profile in round t ∈ {1, . . . , T}. The
history H = {a1, . . . , aT } of the game is the sequence of the T strategy profiles.
The regret Ri of player i in an history H is defined to be

Ri(H) = maxs∈S
1
T

∑T
t=1 fi(s, a

t
−i)− 1

T

∑T
t=1 fi(a

t).

The regret of a player is intuitively the amount that it lost by not playing some
fixed strategy. An algorithm used by a player is known as a no-regret algorithm
if it guarantees that the regret of the player tends to 0 as T tends to infinity.
There is a large amount of work on no-regret algorithms, and it turns out that
many such algorithms exist (see e.g. [25,22]). Thus we will analyze situations
where every player has regret at most ε, and since this tends to 0 we will be free
to assume that ε is arbitrarily small, say at most 1/n. Clearly playing a pure or
mixed Nash is a no-regret algorithm (since the fact that no one has incentive
to switch to any other strategy guarantees that each player will have regret 0
in the long run), so analyzing the worst or best history with regret at most ε is
more general than analyzing the worst or best mixed or pure Nash. We will call
a history in which all players have regret at most ε an ε-regret history. Formally
an history H = {a1, . . . , aT } is an ε-regret history if Ri(H) ≤ ε for every player
i ∈ {1, . . . , n}.

A simple but important lemma introduced in [11] and used again in [3] re-
lates the average number of attempted transmissions to the average number of
successful transmissions. Fix an ε-regret history, let su be the fraction of times



in which u successfully transmitted, and let pu be the fraction of times in which
u attempted to transmit. Note that the average number of successful transmis-
sions in a time slot is exactly

∑
u su, so it is this quantity which we will typically

attempt to bound. The following lemma lets us get away with bounding the
number of attempts instead.

Lemma 1 ([11]).
∑
u su ≤

∑
u pu ≤ 2

∑
u su + εn ≤ O(

∑
u su) .

Notation: Let L be a fixed set of n links embedded in R2. Let Nmin(L) denote the
minimum number of successful links (averaged over time) in any ε-regret history,
and similarly let Nmax(L) denote the maximum number of successful links (av-
eraged over time) in any ε-regret history. Define N IC

max(L), and N IC
min(L) similarly

for the IC setting, NPC
max(L) and NPC

min(L) for the PC setting, and NPIC
max (L) and

NPIC
min (L) for the setting with both PC and IC. Finally, let N β

max(L), N β
min(L)

be for the corresponding values for the vanilla model when the SINR threshold
is set to β (this is hidden in the previous models, but we pull it out in order to
compare the effect of modifying β).

While we will focus on comparing the equilibria of games utilizing different
wireless technologies, much of the previous work on these games instead focuses
on a single game and analyzes its equilibria with respect to OPT, the maximum
achievable capacity. The price of anarchy (PoA) is the ratio of OPT to the value
of the worst mixed Nash [21], and the price of total anarchy (PoTA) is the ratio
of OPT to the value of the worst ε-regret history [7]. Clearly PoA ≤ PoTA. While
it is not our focus, we will prove some bounds on these values as corollaries of
our main results.

3 Interference Cancellation

We begin by analyzing the effect on the equilibria of adding interference cancel-
lation. We would expect that using IC would result equilibria with larger values,
since the capacity of the network might go up (and can certainly not go down).
We show that this is not always the case: there are sets of links for which even the
best ε-regret history using IC is a constant factor worse than the worst ε-regret
history without using IC.

Theorem 6. There exists a set of links L such that N IC
max(L) ≤ Nmin(L)/c for

some constant c > 1.

Proof. Let L′ be the four link network depicted in Figure 1(a), with b = 3/2
and a =

√
8.8− b. We will assume that the threshold β is equal to 1.1, the path-

loss exponent α is equal to 2, and the background noise η = 0 (none of these
are crucial, but make the analysis simpler). Let us first consider what happens
without using interference cancellation. Suppose each link has at most ε-regret,
and for link `i let pi denote the fraction of times at which si attempted to
transmit. It is easy to see that link 1 will always be successful, since the received



signal strength at r1 is 1 while the total interference is at most (1/4)+2(1/8.8) =
1/β. Since `1 has at most ε-regret, this implies that p1 ≥ 1− ε.

On the other hand, whenever s1 transmits it is clear that link `2 cannot be
successful, as its SINR is at most 1/4. So if s2 transmitted every time it would
have average utility at most −(1− ε) + ε = −1 + 2ε < 0 (since ε < 1/2), while if
it never transmitted it would have average utility 0. Thus its average utility is
at least −ε. Since it can succeed only an ε fraction of the time (when link 1 is
not transmitting), we have that ε − (p2 − ε) ≥ −ε and thus p2 ≤ 3ε. Since the
utility of s2 is at least −ε, it holds that the fraction of times at which both s1
and s2 are transmitting is at most 2ε.

Now consider link `3. If links `1 and `2 both transmit, then `3 will fail since

the received SINR will be at most 1/b2

(1/(1+a2))+(1/(4+a2)) ≈ 0.92 < 1.1. On the

other hand, as long as link `2 does not transmit then `3 will be successful, as it

will have SINR at least 1/b2

(1/(1+a2))+(1/(2a+b)2) ≥ 1.2 > 1.1. Thus by transmitting

at every time step `3 would have average utility at least (1−2ε)−2ε = 1−4ε > 0
(since ε < 1/4), and thus we know that `3 gets average utility of at least 1− 5ε,
and thus successfully transmits at least 1 − 5ε fraction of the times. `4 is the
same by symmetry. Thus the total value of any history in which all links have
regret at most ε is at least Nmin(L) ≥ 1− ε+ 2(1− 5ε) = 3− 11ε.

Let us now analyze what happens when using interference cancellation and
bound N IC

max(L). Suppose each link has at most ε-regret, and for link `i let qi
denote the fraction of times at which si attempted to transmit. As before, `1 can
always successfully transmit and thus does so in at least 1− ε fraction of times.
But now, by using interference cancellation it turns out that `2 can also always
succeed. This is because r2 can first decode the transmission from s1 and cancel
it, leaving a remaining SINR of at least 1/4

2/(a+b)2 = β. Thus `2 will also transmit

in at least 1− ε fraction of times and hence so far 1− ε ≤ q1, q2 ≤ 1. Note that
since a2 + 1 < b2, it holds that r3 cannot cancel s1 or s2 before decoding s3 (i.e.,
P1,3, P2,3 < P3,3). Hence, cancellation is useless. But now at r3 the strength of s1
is 1/(1 + a2) > 0.317, the strength of s2 is 1/(4 + a2) > 0.162, and the strength
of s3 is 1/b2 = 4/9. Thus r3 cannot decode any messages when s1, s2, and s3 are
all transmitting since its SINR is at most 0.92 < β, which implies that `3 can
only succeed on at most 2ε fraction of times. The link `4 is the same as the link
`3 by symmetry. Thus the total value of any history in which all links have an
ε-regret is at most N IC

max(L) ≤ 2 + 4ε. Thus Nmin(L)/N IC
max(L) ≥ 3/2 − o(1) as

required.

It turns out that no-regret behavior with interference cancellation cannot be
much worse than no-regret behavior without interference cancellation – as in
Braess’s paradox, it can only be worse by a constant factor.

Theorem 7. N IC
min(L) ≥ Nmax(L)/c for any set of links L and some constant

c ≥ 1.

Proof. Consider an ε-regret history without IC that maximizes the average
number of successful links, i.e. one that achieves Nmax(L) value. Let pi de-



note the fraction of times at which si attempted to transmit in this history,
so
∑
i∈L pi = Θ(Nmax(L)) by Lemma 1. Similarly, let qi denote that fraction

of times at which si attempted to transmit in an ε-regret history with IC that
achieves value of only N IC

min(L), and so
∑
i∈L qi = Θ(N IC

min(L)).
Note that since the best average number of successful connections in the

non-IC case is Nmax(L), there must exist some set of connections A ⊆ L such
that |A| ≥ Nmax(L) and A is feasible without IC. Let B = {i : qi ≥ 1/2} and let
A′ = A \B. If |B ∩A| ≥ |A|/2 then we are done, since then

Nmax(L) ≤ |A| ≤ 2|B| ≤ 4
∑
`i∈L qi = 4 · N IC

min(L)

as required. So without loss of generality we will assume that |B ∩ A| < |A|/2,
and thus that |A′| > |A|/2. Note that A′ is a subset of A, and so it is feasible in
the non-IC setting.

Now let Â = {i ∈ A′ :
∑
j∈A′ ai(j) ≤ 2} be an amenable subset of A′. By

Fact 5(a), it holds that Â ≥ |A′|/2 ≥ |A|/4. Fact 5(b) then implies that for any
link i ∈ L, its total affectance on A is small:

∑
j∈A ai(j) ≤ c′ for some constant

c′ ≥ 0. Thus we have that∑
i∈L

∑
j∈Â qiai(j) ≤ c

′ ·
(∑

i∈L qi
)
. (1)

On the other hand, we know that the qi values correspond to the worst
history in which every link has regret at most ε (in the IC setting). Let j ∈ A′.
Then qj < 1/2, which means the average utility of link `j is at most 1/2. Let
yj be the fraction of time sj would have succeeded had it transmitted in every
round. Since the average utility of the best single action is at most 1/2 + ε it
holds that yj − (1 − yj) ≤ 1/2 + ε or the that yj ≤ 3

4 + ε
2 . In other words, in

at least 1 − yj = 1
4 −

ε
2 fraction of the rounds the affectance of the other links

on the link `j must be at least 1 (or else j could succeed in those rounds even
without using IC). Thus the expected affectance (taken over a random choice of

time slot) on `j is at least
∑
i∈L ai(j)qi ≥

1
4 −

ε
2 . Summing over all j ∈ Â, we

get that ∑
j∈Â

∑
i∈L ai(j)qi ≥

∑
j∈A

1−2ε
4 ≥ Ω(|Â|). (2)

Combining equations (1) and (2) (and switching the order of summations)

implies that |Â| ≤ O(
∑
i∈L qi). Since |Â| ≥ |A|/4 ≥ Ω(Nmax(L)) ≥ Ω(

∑
i∈L pi),

we get that
∑
i pi ≤ O(

∑
i∈L qi) as desired.

As a simple corollary, we will show that this lets us bound the price of total
anarchy in the interference cancellation model (which, as far as we know, has
not previously been bounded). Let OPT ⊆ L denote some optimal solution
without IC, i.e., the set of transmitters forming a maximum β-feasible set, and
let OPT IC ⊆ L denote some optimal solution with IC.

Corollary 1. For every set of links L it holds that the price of total anarchy
with IC is O(log∆), or |OPT IC |/N IC

min(L) = O(log∆).



Proof. We begin by providing the following auxiliary lemma which demonstrates
that any feasible set of links under the setting of IC and power control in the
range [1, Pmax] contains a non-negligible subset of links that are feasible with
the same transmission powers without IC.

Lemma 2. For every feasible set L with IC, there exists a subset L′ ⊆ L such
that L is feasible without IC and satisfies |L′| > |L|/O

(
logβ (∆α · Pmax)

)
Proof. Let L be a feasible set with IC and transmission power in [1, Pmax].
We first claim that every link `v ∈ L has canceled a subset of at most x =
dlogβ (∆α · Pmax)− 1e links in L (where the last cancellation corresponds to the
signal of the designated transmitter sv). Assume towards contradiction that there
exists `v ∈ L that cancels y ≥ x + 1 distinct signals transmitted by s1, . . . , sy,
where sy = sv is the last canceled signal.

It then holds that Pi,v ≥ β · Pi+1,v for every i ∈ {1, . . . , y}, hence P1,v ≥
βyPv,v.

Since the maximum power is Pmax and the minimal transmitter-receiver dis-
tance d(si, rj) is at least 1, we have that Pmax ≥ P1,v ≥ βy ·Pv,v ≥ βy/∆α where
the last inequality follows by the fact that the maximal link length (after the nor-
malization) is∆ and the minimum power level is 1. Hence y ≤ logβ(∆α·Pmax)−1,
giving a contradiction. Thus every link has cancelled at most x links. It then
holds that Pi,v ≥ β · Pi+1,v for every i ∈ {1, . . . , y}, hence P1,v ≥ βyPv,v. Com-
bining this with the fact (due to normalizing distances so the smallest is equal
to 1) that every received power is at least 1/∆α, we have that Pmax ≥ P1,v ≥
βy · Pv,v ≥ βy/∆α. Hence y ≤ logβ(∆α · Pmax)− 1, giving a contradiction. Thus
every link has cancelled at most x links.

The subset L′ of feasible links without IC is created as follows. Initially set
Q ← L. Until Q is non-empty, consider some link `i ∈ Q and let Mi be the
subset of links cancelled by receiver ri (other than `i itself). Add `i to L′ and set
Q = Q\Mi. Since for every link `i in L′ there are at most x links in L\L′, it holds
that |L′| ≥ |L|/x. Moreover, it follows by construction that L′ is feasible without
IC and using the same transmission powers as before. The lemma follows.

We proceed by showing that |OPT IC |/N IC
min(L)) = O(log∆). According to

Theorem 2 of [3], it holds that Nmin(L) ≥ |OPT |/c′ for some constant c′. Hence,
by combining with Theorem 7 we get that

N IC
min(L) ≥ Nmin(L)/c ≥ |OPT |/(c · c′) ≥ |OPT IC |/O(log∆),

where the last inequality follows by Lemma 2.
Finally, we show that this analysis is actually tight by exhibiting a net-

work where there is a bad pure Nash equilibrium, and thus there are bad
no-regret histories. Consider the m = b(log∆)c-linkset network illustrated in
Fig. 2. The transmitters s̃1 and s̃2 are equidistant from the set of m-receivers
R′ = {r1, . . . , rm}. Since s̃1 and s̃2 are closer to R′ than any other transmitter
si, if both s̃1 and s̃2 transmit then none of the links `i = 〈si, ri〉 can be satisfied.

By letting the links ˜̀j = 〈s̃j , r̃j〉 for j ∈ {1, 2} be sufficiently short, these 2 links



can always succeed no matter which other links transmit. Thus {˜̀1, ˜̀2} form a
pure Nash equilibrium. On the other hand, clearly the set of links {`i}i∈[log∆]

are feasible with interference cancellation. Thus |OPT IC |/N IC
min(L) ≥ Ω(log∆).

… 
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Fig. 2: Schematic illustration of a network in which the price of anarchy in the IC
setting is Ω(log∆).

4 Power Control

In the power control setting, each transmitter sv either broadcasts at power 0
or broadcasts at some arbitrary integral power level Pv ∈ [1, Pmax]. Our main
claim is that Braess’s paradox is once again possible: there are networks in
which adding power control can create worse equilibria. For illustration of such
a network, see Fig. 1(b). We first observe the following relation between no-regret
solutions with or without power control.

Observation 8 Every no-regret solution in the uniform setting, is also a no-
regret solution in the PC setting.

Hence, we cannot expect the best no-regret solution in the PC setting to be
smaller than the worst no-regret solution in the uniform setting. Yet, the paradox
still holds.

Theorem 9. There exists a configuration of links L satisfying NPC
min(L) ≤ Nmin(L)/c

for some constant c > 1.



Proof. Since any pure-Nash solution is also a no-regret solution, in this case
it is sufficient to find a pure Nash equilibrium that uses power control that is
a constant factor worse than Nmin(L), the worst no-regret behavior without
power control. Let L be the set of links as illustrated in Fig. 1(b). Let η = 0,
β = 1.1, α = 3 and Pmax = 2. Let us first consider the case of power control,
where each sender sv transmits with power Pv ∈ [1, Pmax]. Let N = {`1, `2}
and s1 transmits with P1 = Pmax, s2 transmits with P2 = 1 and both other
transmitters user power 0. It is easy to see that this is a pure Nash: the SINR

of `1 is Pmax/8
1/8 > β and the SINR of `2 is 1/1

Pmax/(5)3
> β, while even if they

used power Pmax links `3 and `4 would not be able to overcome the interference
caused by `1 since Pmax/4.5

3 < 1/3.53 (as Pmax = 2).
We will now analyze the worst no-regret behavior without power control.

Given a history in which all players have regret at most ε, let pi denote the
fraction of times in which `i broadcasts. Note that `2 is always feasible, since
under uniform powers the SINR of `2 is at least 1/(P1,2 +P3,2 +P4,2) ≥ β where
P1,2 = 1/125 and P3,2 = P4,2 = 1/(64 + 25)3/2. Thus p2 ≥ 1 − ε, and link `2
succeeds at least 1−ε fraction of the time. Since β > 1 and the interfering sender
s2 is at the same distance to the receiver r1 as its intended sender s1, it holds
that `1 cannot succeed if s2 transmits. Hence, if s1 transmitted every time it
would have average utility at most −(1− ε) + ε = −1 + 2ε < 0 (since ε < 1/2),
while if it never transmitted it would have average utility 0. Thus its average
utility is at least −ε. Since it can succeed only an ε fraction of the time (when
link `2 is not transmitting), we have that ε− (p1 − ε) ≥ −ε and thus p1 ≤ 3ε.

Now consider link `3. Since s1 is closer to r3 than s3, the link `3 cannot
succeed if s1 transmits. However, it can succeed if s1 is not transmitting and s2
and s4 are transmitting, since P3,3 ≥ β(P2,3 + P4,3) where P3,3 = 1/4.53, P2,3 =
1/(16 + 3.52)3/2 and P4,3 = 1/11.53. Thus if s3 had chosen to transmit at every
time it would have average utility at least 1− 3ε− 3ε = 1− 6ε > 0 for ε ≤ 1/6.
Thus `3 must have average utility of at least 1−7ε and thus must succeed at least
1− 7ε fraction of the time. Link `4 is the same by symmetry. Thus the average
number of successes in any ε-regret history is at least 1− ε+ 2(1− 7ε) = 3− 15ε,
which proves the theorem.

We now prove that (as with IC) that the paradox cannot be too bad: adding
power control cannot cost us more than a constant. The proof is very similar to
that of Thm. 7 up to some minor yet crucial modifications.

Theorem 10. NPC
min(L) ≥ Nmax(L)/c for any set of links L and some constant

c ≥ 1.

Proof. Fix an arbitrary ε-regret history without power control, where all trans-
mitters transmit with Pmax and let pi be the fraction of rounds in which si
attempts to transmit. Similarly, fix an arbitrary ε-regret history with power con-
trol, and let qi be the fraction of rounds in which si attempts to transmit (at any
nonzero power). By Lemma 1, it is sufficient to prove that

∑
i∈L pi ≤ O(

∑
i∈L qi).

Note that since the average number of successful connections in the history
of the uniform case is

∑
pi, there must exist some set of connections A ⊆ L that



transmitted successfully in some round t ∈ [1, T ] such that |A| ≥ Ω(
∑
i pi) and

A is feasible when all senders transmit with power Pmax. Let B = {i : qi ≥ 1/2}
and let A′ = A \B. If |B ∩A| ≥ |A|/2 then we are done, since then

∑
i∈L

pi ≤ O(|A|) ≤ O(|B|) ≤ O

(∑
i∈L

qi

)

as required. So without loss of generality we will assume that |B ∩ A| < |A|/2,
and thus that |A′| > |A|/2. Note that A′ is a subset of A, and so it is feasible

in the uniform setting. Now let Â = {i ∈ A′ :
∑
j∈A′ ai(j) ≤ 2} be an amenable

subset of A′. By Fact 5(a), it holds that |Â| ≥ |A′|/2 ≥ |A|/4.

We have the following.

∑
i∈L

∑
j∈Â

qiai(j) ≤ c′ ·

(∑
i∈L

qi

)
. (3)

where
∑
i∈L

∑
j∈Â qiai(j) is the average affectance of L on the set Â when every

transmitter that transmitted in the PC history transmitted with power Pmax.
The inequality follows by Fact 5(b).

On the other hand, we know that the qi values correspond to an ε-regret
history in the PC setting. Consider some j ∈ Â. Since Â ⊆ A′ = A \B, we know
that qj < 1/2 and thus the average utility of link `j is at most 1/2. Let yj be the
fraction of time sj would have succeeded has it transmitted in every round with
full power Pmax. Since the average utility of the best single action is at most
1/2 + ε it holds also that the utility of transmitting with full power is at most
1/2 + ε as well, hence yj − (1− yj) ≤ 1/2 + ε and so yj ≤ 3

4 + ε
2 . In other words,

in at least 1− yj = 1
4 −

ε
2 fraction of the rounds the affectance of the other links

on the link `j must be at least 1 (or else j could succeed in those rounds) when
it attempted to transmit with Pmax. Thus the average affectance on `j in the

PC history is at least 1
4 −

ε
2 . Summing over all j ∈ Â, to get that

∑
j∈Â

∑
i∈L

qiai(j) ≥
∑
j∈Â

1− 2ε

4
≥ Ω(|Â|), (4)

where the first inequality follows by the fact the in the true ε-regret history in
the PC setting, the average affectance on `j is at least 1

4 −
ε
2 when sj transmit

with Pmax and all other transmitters sj′ transmit with power at most Pmax.

Combining equations (3) and (4) (and switching the order of summations)

implies that |Â| ≤ O(
∑
i∈L qi). Since |Â| ≥ |A|/4 ≥ Ω(

∑
i∈L pi), we get that∑

i pi ≤ O(
∑
i∈L qi) as desired.

Corollary 2. The price of total anarchy under the power control setting with
maximum transmission energy Pmax is Θ(log∆).



Proof. The upper bound of O(log∆) is given by [3]. Let m = blog∆c. The
lower bound example is given by the nested link network described in Fig. 3. Let
OPT ⊆ L denote the solution of the optimal solution (i.e., maximum feasible
set). According to [6] the link set L\{`∗} is feasible with exponentially increasing
power level Pi > 2Pi−1. In particular, since β > 1, a necessary condition for
feasibility is to maintain that P1 > P2 > . . . > Pm. Consider an ε-regret history
in which P ∗ = Pmax. Since the link `∗ = (s∗, r∗) is sufficiently short, s∗ always
succeeds with any power level P ∗ and hence s∗ transmits at least 1−ε fraction of
the time. For every other link `i, i ∈ {1, . . . ,m}, if s∗ transmits then si would fail
to transmit for every transmission power Pi ∈ [1, Pmax] as the interfering sender
s∗ is closer to ri then the intended sender si and s∗ transmits with full power.
Consider link si and let pi be the fraction of time it attempted to transmit
(possibly with different power levels) in the ε-regret history. If si would have
transmit in every round using any power P ti ∈ [1, Pmax] in round t ∈ {1, . . . , T},
it would have average utility at most −(1− ε) + ε = −1 + 2ε < 0 (since ε < 1/2),
while if it never transmitted it would have average utility 0. Thus its average
utility is at least −ε. Since it can succeed only an ε fraction of the time (when
link `∗ is not transmitting), we have that ε − (pi − ε) ≥ −ε and thus pi ≤ 3ε
Overall, the average number of attempted transmission is at most 1+3 ·m/ε ≤ 2
for ε = 1/(3m). Since |OPT | = m, the lemma follows.

𝑠1 𝑠2 𝑠𝑙𝑜𝑔 ∆ 
𝑟1 𝑟2 𝑟𝑙𝑜𝑔 ∆ 

… … 
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Fig. 3: Price of anarchy in the PC setting: a network in which the gap between the
optimal solution and a no-regret solution is Ω(log∆).



5 Power Control with Interference Cancellation (PIC)

In this section we consider games in the power control with IC setting where
transmitters can adopt their transmission energy in the range of [1, Pmax] and
in addition, receivers can employ interference cancelation. This setting is denote
as PIC (power control+IC). We show that Braess’s paradox can once again
happen and begin by comparing the PIC setting to the setting of power control
without IC and to the most basic setting of uniform powers.

Lemma 3. There exists a set of links L and constant c > 1 such that
(a) NPIC

min (L) ≤ NPC
min(L)/c.

(b) NPIC
min (L) ≤ Nmin(L)/c.

Proof. Consider the 6-transmitters network illustrated in Fig. 4. Let α = 8,
β = 10, η = 0, b = 251/8 and Pmax = 2. Set ε̂ << 1 to be a sufficiently small
constant. Intuitively, ε̂ should be sufficiently small so that the receivers r4, r5
and r6 consider the set of transmitters s1, s2 and s3 are co-located at the same
point, say at the point of transmitter s1. For simplicity, we therefore analyze the
network example as if this is the case while keeping in mind that this effect can be
achieved by setting ε̂ to be sufficiently small. In addition, if one insists on minimal
transmitter-receiver distance d(si, rj) ≥ 1 , then the entire set of distances can
be multiplied by 1/ε̂, without affecting the analysis (since there is no ambient
noise, such normalization factor cancels out). We begin by considering the value
of solutions in an ε-regret histories without IC. Let pi be the fraction of time
that si transmits in the worst PC setting for every i ∈ {1, . . . , 6}.

It is easy to see that link 1 will always be successful, since the length of the
link ε̂ is set to be sufficiently small. Since `1 has at most ε-regret, this implies
that p1 ≥ 1− ε.

On the other hand, whenever s1 transmits it is clear that the link `2 cannot
be successful even if s2 transmits with full power and s1 transmits with power
1 as β/ε̂8 > Pmax/(β

16 · ε̂8).
So if s2 transmitted every time it would have average utility at most −(1−

ε) + ε = −1 + 2ε < 0 (since ε < 1/2), while if it never transmitted it would have
average utility 0. Thus its average utility is at least −ε. Since it can succeed
only an ε fraction of the time (when link 1 is not transmitting), we have that
ε − (p2 − ε) ≥ −ε and thus p2 ≤ 3ε. In the same manner, it also holds that
p3 ≤ 3ε.

Now consider link `4. As long as links `2 and `3 do not transmit `4 always
succeeds even if it transmits with power P4 = 1 and s1, s5, s6 transmit with
full power Pmax. This holds since the amount of interference it suffers is at
most 2/b8 + 4/(16b8) ≤ 1/β. Since the fraction of time that both `2 and `3
are transmitting is at most p2 + p3 ≤ 6ε, it holds that if `4 always transmits
it succeeds at least 1 − 6ε fraction of the time and hence its average utility is
1 − 6ε − 6ε = 1 − 12ε which is strictly positive by taking a sufficiently small ε.
Therefore it holds that in ε-regret history, the average utility of `4 is at least
1 − 13ε, concluding that p4 ≥ 1 − 13ε. By symmetry, the same holds for `5



and `6. Overall, the value of any no-regret solution in PC setting is at least
NPC

min(L) =
∑6
i=1 pi ≥ 1− ε+ 6ε+ 3− 39ε ≥ 4 + o(1).

Let us now analyze what happens when using interference cancellation with
power control and bound NPIC

min (L). In this case, it is sufficient to consider a
specific pure Nash solution. Let N = {s1, s2, s3} be transmitting with full power
Pmax. It then holds that r2 and r3 can cancel the signal of s1 and that both r2
and r3 can decode (resp., cancel) the signal of s2 (this is achieved since s1, s2
and s3 form an exponential chain with respect to r1, r2, r3 though it looks the
same with respect to the receivers of r4, r5, r6) . We now show that in this case,
s4 cannot succeed even if they transmit with full power Pmax. This holds since
β ·6/b8 > Pmax. The same holds also for s5 and s6, concluding that NPIC

min (L) ≤ 3
and that NPC

min(L)/NPIC
min (L) = 4/3 + o(1) as required. Consider claim (b). This

case is practically the same as the case of claim (a), in particular it holds that
NPC

min(L) = Nmin(L) (since `1, `4, `5, `6 always succeed when s2 and s3 are not
transmitting and without IC, s2 and s3 cannot succeed if s1 transmits). Therefore
it also holds that Nmin(L)/NPIC

min (L) = 4/3 + o(1). The lemma follows.
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Fig. 4: Schematic illustration of a network in which playing IC with power control
might generate no-regret solutions that are worse by a factor of Ω(1) than no-regret
solution in a setting without interference cancellation, with or without power control.

Moreover, we proceed by showing that PIC can hurt the network by more
than a constant when comparing PIC equilibria to IC equilibria. For an illustra-
tion of such a network, see Fig. 1(c).

Theorem 11. There exists a set of links L and constant c > 1 such that the
best pure Nash solution with PIC is worse by a factor of Ω(log∆) than the worst
no-regret solution with IC.



Proof. Consider the following m-transmitters network for m = Ω(log∆) de-
scribed in Fig. 1(c). There is a set of m− 4 receivers R′ = {r5, . . . , rm} located
at (0, 0). Their corresponding transmitters si are located at (

√
10(1 + 2i/2), 0)

for every i ∈ {5, . . . ,m}. The remaining first links are located as follows: s1 is
located at (−3, 1), s2 is located at (−3,−1), the receiver r2 is located in the
middle, between s1 and s2 and the receiver r1 is located on top of s1 at (−3, 2).
The receiver r4 is located at (

√
19, 0), its transmitter s4 is located at (

√
19,−1).

Finally, the transmitter s3 is located at (
√

19, 1) and its receiver r3 is located at
(
√

19, 2). Let β = 1.5, η = 0, α = 2, Pmax = 2.

We begin by considering the PIC setting and showing that in this case there
exists a unique Nash in which only s1, ..., s4 are transmitting. Hence, the total
value of of any pure Nash is 4. First, observe that s1 and s3 always succeed even
if they transmit with power 1 and all other links transmit with power Pmax.
For example, for s1 we get that the received signal strength is 1, the amount of
interference from s2 is at most P2,1 = 2/9 and P3,1 + P4,1 ≤ 4/20 in addition
the amount of interference from all other transmitters s5, ..., sm is at most 1/44.
Hence 1 ≥ β(2/9 + 2/20 + 1/44). Next, note that also s2 and s4 always succeed.
Consider s2 for example. There are two cases. If s1 transmits with power P1 = 1
then with interference cancellation, s2 can succeed if it transmits with power
2. This holds since in this case P2,2 = 2, P1,2 = 1,

∑
i≥3 Pi ≤ 4/20 + 1/44,

hence r2 can successfully decode s2 as P2,2 ≥ β(1 + 21/80). Alternatively, if s1
transmits with P1 = 2 and P2 = 1 then r2 can successfully cancel s1 (by the same
computation as above) and subsequently it can decode s2 since in this case the
received signal strength of s2 is 1 ≥ β(4/20 + 1/44). By the same argumentation
we also have that s4 can always succeed as well. Note that any Nash solution
has the following structure: exactly one of the transmitters s1 and s2 transmit
with power 1 and the other with power 2, and exactly one of the transmitters
s3 and s4 transmit with power 1 and the other with power 2. We now show that
si always fails for every i ≥ 5. Consider some pure Nash solution, then by the
above, s1, ..., s4 are active, without loss of generality, let s1 be transmitting with
power 1 and s3 be transmitting with power 2. It then holds that the received
signal strength of transmitter s1 at ri is P1,i = 1/10 and the received signal
strength of s3 is P3,i = 2/20. Hence, P1,i = P3,i and in addition, these signals
are stronger than any other signal, i.e., P3,i > Pmax/(10 · 22j) for every j ≥ 5.
Hence, ri cannot cancel the strongest signal (as P1,i < β ·P3,i) and in particular
it cannot decode its intended message. Concluding that any Nash solution in the
IC setting consists of exactly 4 links.

We proceed by considering the worst no-regret solution in the IC setting
(without power control). Let pi be the fraction of time that si transmits in an
IC history. Note that since the links of s1 and s3 are sufficiently short they always
succeed if they attempt to transmit hence in any ε-regret history, they transmit
at least p1, p3 ≥ 1−ε fraction of the time. Consider link `2 and note that it cannot
succeed if s1 transmits since P1,2 = P2,2 hence if s2 transmitted every time it
would have average utility at most −(1− ε) + ε = −1 + 2ε < 0 (since ε < 1/2),
while if it never transmitted it would have average utility 0. Thus its average



utility is at least −ε. Since it can succeed only an ε fraction of the time (when link
1 is not transmitting), we have that ε−(p2−ε) ≥ −ε and thus p2 ≤ 3ε. The same
holds for p4. Finally, consider some link `j for j ≥ 5. Note that `j can always
succeed if s2 and s4 are not transmitting. This holds since P1,j ≥ β(P3,j + 1/32)
(i.e., hence, sj can cancel the strongest signal of s1), P3,j ≥ β · 1/32 (i.e., it can
successfully cancel the second strongest signal) and in addition by the structure
of the exponential transmitters chain, the remaining of cancelations of s5, ..., sj
are successful. Hence, if sj transmitted every time it would have average utility
at 1 − 6ε − 6ε and therefore it transmits at least p5 ≥ 1 − 13ε fraction of the
time. Since it holds for every `j for j ≥ 5 we have that the total value in any
ε-regret history is at least N IC

min =
∑
i≥5 pi = Ω(log∆) − o(1). Since the total

value of the unique pure Nash in the PIC setting is 4, the lemma follows.

Corollary 3. There exists a set of links L satisfying that NPIC
min (L) ≤ (c/ log∆)·

N IC
min(L).

As in the previous sections, we show that our examples are essentially tight.

Theorem 12. For every set of links L it holds that there exists a constant c ≥ 1
such that
(a) NPIC

min (L) ≥ Nmax(L)/c.
(b) NPIC

min (L) ≥ NPC
max(L)/c.

(c) NPIC
min (L) ≥ N IC

max(L)/(c log∆).

Proof. Part (a) follows by the argumentation as in Lemma 2 and Part (b) follows
trivially by Part (a) and by Theorem 10.

Consider part (c). Fix an arbitrary ε-regret history with IC and uniform
powers and let pi be the fraction of rounds in which si attempts to transmit.
Similarly, fix an arbitrary ε-regret history with PIC, and let qi be the fraction of
rounds in which si attempts to transmit (at any nonzero power). By Lemma 1,
it is sufficient to prove that

∑
i∈L pi ≤ O(

∑
i∈L qi). Note that since the average

number of successful connections in the best history of the IC case is
∑
i∈L pi,

there must exist some set of connections A ⊆ L that transmitted successfully
in some round t ∈ [1, T ] such that |A| ≥

∑
i∈L pi and A is feasible when all

transmitters transmit with power 1 and employing IC. Then by Cl. 2, there
exists a subset Ã ⊆ A of cardinality |Ã| ≥ |A|/O(log∆) that is feasible without

IC and with uniform power level Pmax. Let B = {i : qi ≥ 1/2} and let A′ = Ã\B.

If |B ∩ Ã| ≥ |Ã|/2 then we are done, since then

O(log∆) ·
∑
i∈L

pi ≤ |Ã| ≤ 2|B| ≤ 2
∑
i

qi

as required. So without loss of generality we will assume that |B ∩ Ã| < |Ã|/2,

and thus that |A′| > |Ã|/2. Note that A′ is a subset of Ã, and so it is feasible in

the IC setting. Now let Â = {i :
∑
j∈A′ ai(j) ≤ 2} be an amenable subset of A′.

By Fact 5(a), it holds that Â ≥ |A′|/2 ≥ |A|/4. By Fact 5(b) then implies that



for any link `i ∈ L, its total affectance on Â is small: ai(Â) =
∑
j∈Â ai(j) ≤ c

′ for

some constant c ≥ 0. Note that Fact 5(b) holds for the case where all interfering
transmitters transmit with the same power Pmax. Since in the power control
setting Pj ≤ Pmax, the actual affectance can only be lower. We have that

∑
i∈L

∑
j∈Â

qiai(j) ≤ c′ ·

(∑
i∈L

qi

)
, (5)

where
∑
j∈Â qiai(j) is the average affectance in the PIC history if all links that

attempt to transmit, transmit with full power. The inequality follow by Fact
5(b). On the other hand, we know that the qi values correspond to the worst

ε-regret history in the PIC setting. Consider some j ∈ Â, hence qj < 1/2 (i.e.,
the average utility of link `j is at most 1/2). Let yj be the fraction of time sj
would have succeeded has it transmitted in every round with full power Pmax

and in the IC setting. Since the average utility of the best single action is at
most 1/2 + ε in particular the average utility of transmitting with full power
Pmax is at most 1/2 + ε as well. It therefore holds that yj − (1 − yj) ≤ 1/2 + ε
or the that yj ≤ 3

4 + ε
2 . In other words, in at least 1− yj = 1

4 −
ε
2 fraction of the

rounds the affectance of the other links on the link `j must be at least 1 (or else
j could succeed in those rounds). Thus the average affectance (over the length of
the history) on `j (assuming it transmits with full power Pmax) is at least 1

4 −
ε
2 .

Summing over all j ∈ Â, to get that∑
j∈Â

∑
i∈L

qiai(j) ≥
1− 2ε

4
≥ Ω(|Â|). (6)

Combining equations (5) and (6) (and switching the order of summations) im-

plies that |Â| ≤ O(
∑
i∈L qi). Since |Â| ≥ |A|/O(log∆) ≥

∑
i∈L pi/O(log∆) as

desired.

Finally, as a direct consequences of our result, we obtain a tight bound for the
price of total anarchy in the PIC setting.

Corollary 4. For every set of links L it holds that the price of total anarchy
with PIC is Θ(log(∆ · Pmax)).

Proof. Let OPT ⊆ L denote some optimal solution without PIC, i.e., the set of
transmitters forming a maximum β-feasible set, and let OPTPIC ⊆ L denote
some optimal solution with PIC. We first show that |OPTPIC |/NPIC

min (L)) =
O(log(∆ · Pmax)). According to Theorem 2 of [3], it holds that Nmin(L) ≥
|OPT |/c′ for some constant c′ > 1. Hence, by combining with Theorem 12(a)
we get that

NPIC
min (L) ≥ Nmin(L)/c ≥ |OPT |/(c · c′) ≥ |OPTPIC |/O(log(∆ · Pmax)),

where the last inequality follows by Lemma 2. Finally, we show that this is
tight by noting that the example of Fig. 2 can be easily modified so that there



are m = Ω(log∆ · Pmax) transmitters (the location and powers should be care-
fully set) whose receivers are positioned at the origin. By placing the addi-
tional transmitters s̃1 and s̃2 at equidistance from the origin, we get that these
two links block the cancellation sequence at the m receivers; in addition by
setting these links to be sufficiently short, we get that in s̃1 and s̃2 transmit
most of the time. Thus, any ε-regret history is of total value of 2 + o(1/n) but
OPTPIC = Ω(log(∆ · Pmax)).

6 Decreasing the SINR Threshold

We begin by showing that in certain cases the ability to successfully decode a
message at a lower SINR threshold results in every no-regret solution having
lower value than any no-regret solution at higher β. For an illustration of such
a network, see Fig. 1(d).

Theorem 13. There exists a set of links L and constants 1 < β′ < β such that
N β′

max(L) ≤ N β
min(L)/c for some constant c > 1.

Proof. Let β′ be slightly greater than 1 (say 101/100), and let β = 4. Let L be
as in Fig. 1(d) with α = 2, some small constant noise η, and c =

√
1/(βη) and

a = b = 2
3c.

We first analyze N β
min(L). Fix an ε-regret history under threshold β. Note

that the SINR of `3 is at most β, simply due to background noise. So by making
β infinitesimally larger, `3 can never succeed, and thus it transmits in at most
an ε fraction of the times. Whenever `3 does not transmit, `1 can succeed no
matter what `2 does, since the SINR of `1 is at least

1/a2

η + 1
(3a)2

=
(9/4)βη

η + (1/4)βη
=

9

2
> β.

Hence choosing to transmit in every round would get `1 utility at least 1 − 2ε,
and thus it must succeed in at least 1−3ε fraction of the times. The same is true
for `2 by symmetry. So we have that in any ε-regret history under threshold β,
the average number of successes is at least 2− 6ε.

We now analyze N β′

max(L). Fix an ε-regret history under threshold β′. We
first claim that `3 can always succeed, no matter what `1 and `2 do. This is
because its SINR is at least

1/c2

η + 2
(a+b)2+c2

=
1/c2

η + 2
25c2/9

=
1/c2

η + 18
25

1
c2

=
βη

η + 18
25βη

=
4

1 + (72/25)
=

100

97
> β′.

Thus `3 must transmit in at least a 1 − ε fraction of the rounds. In any round
where `3 transmits, neither `1 nor `2 can succeed since a = b and β′ ≥ 1. Thus
the average number of successes is at most (1− ε) + 2ε = 1 + ε.

We now show that the gap between the values of no-regret solution for dif-
ferent SINR threshold values is bounded by a constant.



Lemma 4. For every 1 ≤ β′ ≤ β and every set of links L satisfying that Pvv ≥
2β · η for every `v ∈ L, it holds that N β′

min(L) ≥ N β
max(L)/c for some constant

c ≥ 1.

For simplicity, for the rest of the proof we will assume that Pvv ≥ 2β ·η for every
value of β we consider. This does not hold in the bad example of Theorem 13,
but that example can easily be modified so that it holds (although it makes the
example messier). This is a standard assumption, and limits strange phenomena
due to thresholding. In addition, we isolate the affect of the SINR threshold
value and restrict attention to uniform powers.

Given an SINR threshold β′ and links `w and `v define

aβ
′

w (v) = min {1, cv(β′)Pw,v/Pv,v} .

The affectness of a subset of (resp. on) a subset of links L′ is denoted by aβ
′

L′(w)

(aβ
′

w (L′)). We now show a simple lemma which will help us prove that the above
example is tight.

Observation 14 Let L be a 2β-feasible set without noise, η = 0 then L is a
β-feasible set with noise η > 0 satisfying that Pvv ≥ 2βη for every `v ∈ L.

Since L is a 2β-feasible set, it holds that
∑
u∈L Puv/Pvv ≤ 1/(2β) for every

`v ∈ L. Since Pvv ≥ 2βη, it holds that 1/(2β) ≤ 1/β − η/Pvv and hence that∑
u∈L Puv/Pvv ≤ 1/β− η/Pvv. Concluding that L is a β-feasible set with η > 0.

7 Conclusion

In this paper we have shown that Braess’s paradox can strike in wireless networks
in the SINR model: improving technology can result in worse performance, where
we measured performance by the average number of successful connections. We
considered adding power control, interference cancellation, both power control
and interference cancellation, and decreasing the SINR threshold, and in all
of them showed that game-theoretic equilibria can get worse with improved
technology. However, in all cases we bounded the damage that could be done.

There are several remaining interesting open problems. First, what other ex-
amples of wireless technology exhibit the paradox? Second, even just considering
the technologies in this paper, it would be interesting to get a better under-
standing of when exactly the paradox occurs. Can we characterize the network
topologies that are susceptible? Is it most topologies, or is it rare? What about
random wireless networks? Finally, while our results are tight up to constants,
it would be interesting to actually find tight constants so we know precisely how
bad the paradox can be.
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