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Abstract

This paper initiates the study of fault resilient network structures that mix two
orthogonal protection mechanisms: (a) backup, namely, augmenting the structure with
many (redundant) low-cost but fault-prone components, and (b) reinforcement, namely,
acquiring high-cost but fault-resistant components. To study the trade-off between
these two mechanisms in a concrete setting, we address the problem of designing a
(b, r) fault-tolerant BFS (or (b, r) FT-BFS for short) structure, namely, a subgraph H
of the network G consisting of two types of edges: a set E′ ⊆ E of r(n) fault-resistant
reinforcement edges, which are assumed to never fail, and a (larger) set E(H) \ E′ of
b(n) fault-prone backup edges, such that subsequent to the failure of a single fault-
prone backup edge e ∈ E \E′, the surviving part of H still contains an BFS spanning
tree for (the surviving part of) G, satisfying dist(s, v,H \ {e}) ≤ dist(s, v,G \ {e}) for
every v ∈ V and e ∈ E \ E′. We establish the following tradeoff between b(n) and
r(n): For every real ε ∈ [0, 1], if r(n) = Θ̃(n1−ε), then b(n) = Θ̃(n1+ε) is necessary and
sufficient. More specifically, it was shown in [14] that for ε = 1, FT-BFS structures (with
no reinforced edges) require Θ(n3/2) edges, and this number of edges is sufficient. At
the other extreme, if ε = 0, then n− 1 reinforced edges are sufficient with no need for
backup. Here, we present a polynomial time algorithm that given an undirected graph
G = (V,E), a source vertex s and a real ε ∈ [0, 1], constructs a (b(n), r(n)) FT-BFS with
r(n) = O(n1−ε) and b(n) = O(min{1/ε ·n1+ε · log n, n3/2}). We complement this result
by providing a nearly matching lower bound, showing that there are n-vertex graphs
for which any (b(n), r(n)) FT-BFS structure requires Ω(min{n1+ε, n3/2}) backup edges
when r(n) = Ω(n1−ε) edges are reinforced.
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1 Introduction

Background and Motivation. Modern day communication networks support a variety of
logical structures and services, and depend on their undisrupted operation. Following the
immense recent advances in telecommunication networks, the explosive growth of the Inter-
net, and our increased dependence on these infrastructures, guaranteeing the survivability
of communication networks has become a major objective in both practice and theory. An
important aspect of this objective is survivable network design, namely, the design of low cost
high resilience networks that satisfy certain desirable performance requirements concerning,
e.g., their connectivity, distance or capacity. Our focus here, however, is not on planning
survivable networks “from scratch”, but rather on settings where an initially existing infras-
tructure needs to be improved and optimized.

Our interest in this paper is in exploring a natural “quality vs. quantity” tradeoff in
survivable network design. Designers and manufactures often face the following design choice
when dealing with ensuring product reliability. One option is to invest heavily in the quality
and resilience of the various components of the product, making them essentially failure-free.
An alternative option is to use unreliable but cheap components, and ensure the reliability
of the whole product by employing redundancy, namely, including several “copies” of each
component in the design, so that the failure of one component will not disable the operation.

In the context of survivable network design, where the goal is to overcome link disconnec-
tions, the “quantity-based” approach to survivability relies on adding to the network many
inexpensive (but failure-prone) backup links, counting on redundancy to provide resilience
and guarantee the desired performance requirements in the presence of failures. In contrast,
a “quality-based” approach may rely on reinforcing some of the network links, and thus
making them failure-resistant (but expensive), counting on these links to ensure the per-
formance requirements. Clearly, these two approaches address two different and orthogonal
factors affecting the survivability of a network: the topology, e.g., the presence of redundant
alternate paths, and the reliability of individual network components. We would like to
study the tradeoff betwen these two factors in various survivable network design problems.

Towards exploring this tradeoff, we consider the following “mixed” model. Assume that
the existing infrastructure consists of a given fixed set V of vertices and a collection E of
existing links, and it is required to decide, for each link, among the following three choices:
(a) discard the link (in which case it will cost us nothing), (b) purchase it as is (at some
low cost B), or (c) “reinforce” it (at some high cost R), making it failure-resilient. The
existing initial graph G(V,E) provides a baseline for comparison, in the sense that if we
decide on the conservative approach of making no changes, namely, purchasing all the links
of the existing network G “as is” (at a cost of B · |E|), then the performance properties that
can be guaranteed in the presence of failures are those of the existing G. An alternative
baseline is obtained by the opposite extreme, namely, basing the design on selecting the
smallest subgraph H of G that satisfies the desired performance requirements in the absence
of failures, and reinforcing all its links, thus ensuring this performance level.

Unfortunately, both of these two extremes might be too costly. Hence, constructing a sur-
vivable subnetwork with a limited budget introduces a tradeoff between backup and reinforce-
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ment and the system designer is faced with a choice: reinforcing just a few of the links may po-
tentially lead to considerable savings, by allowing one to discard many of the ordinary backup
edges and still obtain the same performance properties.
To illustrate this point, consider for example an n-vertex network con-
sisting of a single vertex s connected via a single edge e to an n−1-vertex
clique (see figure). The edge connectivity of this network is 1, as the
removal of e disconnects the graph. Hence the conservative approach of
keeping all existing edges leaves this network with a low level of surviv-
ability. In contrast, in a mixed model allowing also reinforcements, it is
sufficient to reinforce a single edge, namely, e, in order to obtain a high
level of survivability, even by purchasing only a fraction of the edges of
the clique.

Our Contributions. To initiate the study of the tradeoff between re-
inforcement and backup in survivable network design, we consider in
this paper the concrete problem of designing (in the mixed model) a
fault-tolerant Breadth-First structure (or FT-BFS for short), namely, a
subnetwork that preserves distances with respect to a given source vertex s in the pres-
ence of an edge failure. Formally, given a network G(V,E) and a source vertex s in G, a
(b(n), r(n))-FT-BFS is a subgraph H of G consisting of two types of edges: a set E ′ ⊆ E of
r(n) fault-resistant reinforcement edges, which are assumed to never fail, and a (larger) set
E(H) \ E ′ of b(n) fault-prone backup edges, such that subsequent to the failure of a single
fault-prone backup edge e ∈ E \ E ′, the surviving part of H still contains an BFS spanning
tree for (the surviving part of) G, satisfying dist(s, v,H \ {e}) ≤ dist(s, v,G \ {e}) for every
v ∈ V and e ∈ E \E ′. We establish the following tradeoff between b(n) and r(n): For every
real ε ∈ [0, 1], if r(n) = Θ̃(n1−ε), then b(n) = Θ̃(min{n1+ε, n3/2}) is necessary and sufficient.

It was shown in [14], that for ε = 1, FT-BFS structure requires Θ(n3/2) edges. In the other
extreme case of ε = 0, by reinforcing all the edges of the BFS tree, no backup is needed.
This result can also be interpreted in the following manner. Let B (resp., R) be the cost
of a backup (resp., reinforced) edge. The total cost of a (b, r) FT-BFS structure is given by

B · b(n) +R · r(n) = Õ(n1−ε ·B+n1+ε ·R). Hence, the minimum cost (b, r) FT-BFS obtained

by taking ε = Õ(log(R/B)/ log n).
We complement the upper bound construction of (r, b) FT-BFS structures by presenting

a nearly matching lower bound. We show that there are n-vertex graphs for which any
(b(n), r(n)) FT-BFS structure for r(n) = Ω(n1−ε) requires Ω(min{n1+ε, n3/2}) backup edges.
In our lower bound constructions, we also consider a generalized structure referred to as a
(b, r) fault-tolerant multi-source BFS tree, or FT-MBFS tree for short, aiming to provide a
(b, r) FT-BFS structure at each source vertex s ∈ S for some subset of sources S ⊆ V . We
show that a (b, r) FT-MBFS structure for r(n) = Ω(|S|ε · n1−ε) requires b(n) = Ω(min{

√
|S| ·

n3/2, |S|1−ε · n1+ε}) edges for every ε ∈ (0, 1].
Techniques and proof outline. Studying (b, r) FT-BFS structures significantly differs from
their standard FT-BFS counterparts (for r(n) = 0) in both the upper and lower bounds.
Let π(s, v) be an s − v shortest-path in G. The initial structure consists of the BFS tree
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T0 =
⋃
v∈V π(s, v). It is then augmented by adding to it the last edges of some carefully

chosen replacement-paths. For an edge e ∈ π(s, v), a replacement path Pv,e is new-ending
path if its last edge was not present in the structure when the path was selected by the
algorithm. A new-ending replacement path Pv,e has the following structure. It consists of a
prefix of π(s, v) followed by a detour D avoiding the failing edge e and joining the π(s, v) path
at the terminal v. An essential component in our analysis deals with the detour segment of
the single failure replacement paths. The analysis of FT-BFS structure [14] focused on a single
terminal v and showed that it has O(

√
n) new-ending replacement-paths (with distinct last

edges). The current setting of (b, r) FT-BFS structures is more involved and requires studying
the interactions between detours of different vertices. In particular, the current construction
has two simultaneous objectives: minimizing the number of backup edges in the structure
as well as selecting at most r(n) reinforced edges. In other words, when constructing a
(b, r) FT-BFS structure with o(n3/2) edges, one has the privilege of discarding the protection
against the failure of r(n) edges, which are reinforced.

The upper bound of [14] was achieved by analyzing the interactions between the detours
of s− v new-ending replacement-paths Pv,ei and Pv,ej for some ei, ej ∈ π(s, v). It was shown
that upon a proper construction of the replacement-paths, these detours are vertex disjoint1,
except for the common endpoint v, and hence these detours are vertex-consuming, which
enables bounding their number. In contrast, studying (b, r) structures requires understanding
the interaction between detours of distinct terminals. These detours may overlap and are
not necessarily vertex disjoint, hence bounding their number calls for new techniques.

Our key observation is that the interactions (referred hereafter as interference) between
detours can be roughly classified into two types depending on the relation between the edges
protected by the corresponding detours. Each of these interference types gives raise to unique
structural characterization and volume constraints that enable us to bound the cardinality
of their corresponding paths. The first type of interference concerns Pv,e and Pt,e′ paths both
whose failing edges e and e′ occur below the least common ancestor of v and t in the BFS tree
T0. We show that adding the last edges of O(nε) such replacement-paths protecting against
the failure of the deepest edges of each s− v path is sufficient, i.e., it leaves no unprotected
edge (that is protected by a replacement-path of this type) in the structure. We then turn to
consider the second type of interference, where at least one of the faulty edges, say e, occurs
above the least common ancestor of v and t. Analyzing the interaction between detours that
protect edges on the same shortest-path turns out to be more involved. Our technique is
based on the heavy-path-decomposition procedure of Sleator and Tarjan [19] (slightly adapted
by Baswana and Khanna [2]), applied on T0. This decomposition is obtained by O(log n)
recursive calls on partial trees T ′ ⊆ T0, where each recursive call results with a collection
of paths in T0 whose edges appear in the s − v shortest-paths of a distinct set of vertices.
The advantage of this approach is that equipped with our interference classification, the
analysis is reduced to solving the subproblem (i.e., designing the (b, r) structure) for the
case where the failing events are restricted to a given path ψ ⊆ T0 in the tree-decomposition
(a similar approach is taken in [2] for a different problem). In other words, when handling the

1if their last edge is distinct
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second type of interference, there is an independence between the tree-decomposition paths
ψi, ψj ⊆ T0 that were generated at the same level of the recursion. Since there are O(log n)
recursion levels, summing over all levels increases our bounds by a logarithmic factor. The
final structure H is then given by the union of the substructures for each of the paths in
the tree-decomposition2. By collecting the last edges of carefully selected replacement-paths
protecting the failures on ψ, for every path ψ in the tree-decomposition, it is then shown
that there are Õ(n1−ε) unprotected edges in the structure.

Turning to the lower bound, (b, r) FT-BFS structures for large b(n) and r(n) values require
a more delicate construction when compared to standard FT-BFS structures. The design of
the lower bound graph is governed by two opposing forces whose balance is to be found.
Specifically, since detours are vertex consuming, to end up with a dense structure with
many backup edges, the detours (and as a result also the shortest-paths) of many vertices
should collide. For instance, in the lower bound construction of FT-BFS structures, the
s− v shortest-path of Θ(n) vertices is the same. In other words, a large number of backup
edges implies packing many shortest-paths and detours efficiently. Since the lower bound
construction of [14] involved only Θ(

√
n) edges on the s−v shortest-paths, a new approach is

needed when trying to maximize the number of reinforced edges in the structure to O(n1−ε)
for ε ∈ (0, 1/2). In particular, large reinforcement forces the construction to distribute the
vertices on distinct shortest-paths so as to increase the number of edges that have large cost
and hence should be reinforced. Our construction then finds the fine balance between these
forces, matching our upper bounds up to logarithmic factors.

Related Works. To the best of our knowledge, this paper is the first to study the backup -
reinforcement tradeoff in survivable nework design for (b, r) FT-BFS structures.

The question of designing sparse FT-BFS structures (without link reinforcement) has been
studied in [14], using the notion of replacement paths. For a source node s, a target node
v and an edge e ∈ G, a replacement path is the shortest s − v path Pv,e that does not go
through e. An FT-BFS structure consists of the collection of all Pv,e replacement paths for
every target v ∈ V and edge e ∈ E. It is shown in [14] that for every graph G and source
node s there exists a (polynomial time constructible) FT-BFS structure H with O(n3/2) edges.
This result was complemented by a matching lower bound showing that for every sufficiently
large integer n, there exist an n-vertex graph G and a source node s ∈ V , for which every
FT-BFS structure is of size Ω(n3/2). Hence the insistence on exact distances makes FT-BFS

structures significantly denser (hence expensive) compared their fault-prone counterparts
(namely, BFS trees). This last observation motivates the idea of studying the mixed model
and makes FT-BFS structures an attractive platform for studying the backup-reinforcement
tradeoff.

The notion of FT-BFS trees is also closely related to the single-source replacement paths
problem, studied in [9]. That problem requires to compute the collection P(s) of all s − t
replacement paths Pt,e for every t ∈ V and every failed edge e that appears on the s − t
shortest-path in G. The vast literature on replacement paths (cf. [3, 9, 17, 20, 21]) focuses

2The paths of the tree-decomposition do not cover all the edges in the BFS tree, however, the remaining
uncovered edges can be handled directly by adding the last edges of the corresponding replacement-paths.
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on time-efficient computation of the these paths as well as on their efficient maintenance in
data structures (a.k.a distance oracles).

Constructions of sparse fault tolerant spanners for Rd Euclidean space were studied in
[7, 12, 13]. Algorithms for constructing sparse edge and vertex fault tolerant spanners for
arbitrary undirected weighted graphs were presented in [5, 8]. Note, however, that the use of
costly link reinforcements for attaining fault-tolerance in spanners is less attractive than for
FT-BFS structures, since the cost of adding fault-tolerance via backup edges (in the relevant
complexity measure) is often low (e.g., merely polylogarithmic in the graph size n), hence
the gains expected from using reinforcement are relatively small.

Constructions of edge fault-tolerant spanners with additive stretch are given in [4], and
the case of single vertex fault has been recently studied in [16].

Discussion. The presented mixed model implicitly reflects the notion of economy of scale,
stating that the cost per unit decreases with the amount of purchased units. Indeed, economy
of scale has been incorporated explicitly in many network design tasks by using a sublinear
cost function. These scenarios are known in the literature as buy-at-bulk problems [1, 18, 6]
in which capacity is sold with a “volume discount”: the more capacity is bought, the cheaper
is the price per unit of bandwidth.

Economy of scale arises implicitly in (b, r) FT-BFS structures. The main objective in
constructing (b, r) FT-BFS is to minimize the number of backup edges b(n) subject to a
bound limit on the number of reinforced edges r(n) = O(n1−ε). We say that a vertex v ∈ V
uses an edge if the edge is on the s − v shortest path in G (for the sake of discussion,
assume that all shortest paths in G are unique). The cost of an edge e, Cost(e), is the
number of backup edges required to be added to the structure upon its failing (to provide
alternative shortest-paths in the surviving network). Since reinforcement is expensive, it is
beneficial to reinforce an edge that has many users (i.e., appears on many s − v shortest
paths). The intuition behind this observation is that an edge e with many users may cause
a considerable damage upon failing, hence its cost Cost(e) should be large. Whereas in the
traditional backup mechanism Cost(e) scales with the number of users, in the reinforcement
mechanism the reinforcement cost of each edge is fixed and independent of the number of
users. Therefore, for certain B/R ratios, the cost of reinforcement becomes sublinear with
the number of users. A similar intuition arises in the single sink rent-or-buy problem [11].

The problem considered here, namely, the construction of (r, b) FT-BFS structure, de-
viates from the traditional rent-or-buy and buy-at-bulk network design tasks in the sense
that it concerns a fault resilient distance preserving (and not merely connectivity preserv-
ing) structure. In addition, whereas most network design tasks are stated as combinatorial
optimization problems and their solution employs polyhedral combinatorics, the goal of the
current paper is to establish a universal bound on the tradeoff between backup and rein-
forcement.

This paper aims at establishing universal lower and upper bounds for (b, r) FT-BFS struc-
tures. In particular, although the universal upper bound is nearly tight (upto logarithmic
factors), our upper bound constructions might be far from optimal in some instances (see
the example of Fig. 5 in [15]). This motivates the study of (b, r) FT-BFS structures from the

6



combinatorial optimization point of view. Specifically, two natural optimization problems
can be defined within this context. The first (resp., second) formulation aims at optimizing
the number of backup edges b(n) (resp., reinforced edges r(n)) subject to a given bound on

the number of reinforced edges (resp., backup edges). For example, when r(n) = Õ(n1−ε),
we know that for every input graph G and source vertex s ∈ V , one can construct a structure
with b(n) = Õ(n1+ε) backup edges, and there are graphs for which b(n) = Ω(n1+ε) backup
edges are essential. Yet, there are graphs for which b(n) = O(n) backup edges are sufficient
and using the current construction is too wasteful.

Aside from optimization tasks for (r, b) FT-BFS structures, the presented reinforcement-
backup tradeoff can be studied in a more generalized setting. In fact, it can be integrated
into a large collection of survivability network design tasks. We hope that this work will
pave the way for studying this setting, leading to new theoretical tools and techniques as
well as to a better understanding of fault resilient structures.

2 Preliminaries and Notation

Let E(v,G) = {(u, v) ∈ E(G) | u ∈ V } be the set of edges incident to the vertex v in the
graph G and let deg(v,G) = |E(v,G)| denote the degree of v in G. When the graph G is clear
from the context, we may simply write deg(v) and E(v). For a subgraph G′ = (V ′, E ′) ⊆ G
(where V ′ ⊆ V and E ′ ⊆ E) and a pair of vertices u, v ∈ V , let dist(u, v,G′) denote the
shortest-path distance in edges between u and v in G′. For a path P = [u1, . . . , uk], let
LastE(P ) denote the last edge of P , let |P | denote the length of P in edges, i.e., k − 1, and
let P [ui, uj] be the subpath of P from ui to uj. For paths P1 and P2 where the last vertex
of P1 equals the first vertex of P2, let P1 ◦ P2 denote the path obtained by concatenating
P2 to P1. Throughout, the edges of these paths are considered to be directed away from
the source s. Given an s − t path P and an edge e = (u, v) ∈ P , let dist(s, e, P ) be the
distance (in edges) between s and e on P . For an edge e = (u, v) ∈ T0, define dist(s, e) = i
if dist(s, u,G) = i− 1 and dist(s, v,G) = i. For a subset V ′ ⊆ V , let G(V ′) be the subgraph
of G induced by V ′. Let LCA(u, v) be the least common ancestor of u and v in T0.

For vertices u, v ∈ V and subgraph G′ ⊆ G, let SP (u, v,G′) be the collection of all s− v
shortest-path in G′, i.e, |P | = dist(s, v,G′) for every P ∈ SP (s, v,G′). For a positive weight
assignment W : E(G)→ R>0, let SP (s, v,G′,W ) be the collection of s− v shortest-paths in
G′ according to the weights of W . In this paper, the weight assignment W is chosen as to
guarantee the uniqueness the shortest-paths in every G′ ⊆ G. That is W is used to break to
shortest-path ties in G′ in a consistent manner. In such a case, we override notation and let
SP (s, v,G′,W ) ∈ SP (s, v,G′) be the unique s − v shortest-path in G′ with the weights of
W . Given a source vertex s and target vertex v, let π(s, v) = SP (s, v,G,W ) be the unique
s − v path in G according to W . Define T0(s) =

⋃
v∈V π(s, v) as the BFS tree rooted at s.

When the source s is clear from the context, we simply write T0.
For a vertex v and an edge e, each path in SP (s, v,G\{e}) is referred to as a replacement-

path. Note that if e /∈ π(s, v), then π(s, v) is a replacement path as it appears in SP (s, v,G\
{e}). A vertex w is a divergence point of the s− v paths P1 and P2 if w ∈ P1 ∩ P2 but the
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next vertex u after w (i.e., such that u is closer to v) in the path P1 is not in P2.

ε FT-BFS and protected edges. For a subgraph H ⊆ G and and a source vertex s, an edge e
is protected in H if dist(s, v,H \ {e}) = dist(s, v,G \ {e}) for every v ∈ V and otherwise it
is unprotected. In other words, the edge e is protected if for every vertex v, H contains at
least one replacement path Pv,e ∈ SP (s, v,G \ {e}).

Definition 2.1 (ε FT-BFS). For every real ε ∈ [0, 1], a subgraph H ⊆ G is an ε FT-BFS

with respect to s, if it contains O(n1−ε) unprotected edges. That is, there exists a subset
of O(n1−ε) edges E ′ such that dist(s, v,H \ {e}) = dist(s, v,G \ {e}) for every v ∈ V and
e ∈ E(G) \ E ′. Alternately, an ε FT-BFS H can be thought of as a (b, r) FT-BFS taking E ′

to be the set of r(n) = O(n1−ε) reinforcement edges and E(H) \ E ′ == O(b(n)) to be the
backup edges.

Note that in the context of the reinforcement-backup model, unprotected edges are viewed
as edges that should be reinforced in the structure, since by definition, in the (b, r) FT-BFS

structure, all backup edge are protected, and unprotected edges are not allowed to exist.
We now define a more refined notion of protected edges that is determined by the exis-

tence of the last edges of the replacement-paths in the subgraph H (instead of requiring the
existence of the entire replacement path in H). Given a subgraph H ⊆ G, we say that the
edge e is v-last-unprotected in H if there exists no replacement path Pv,e ∈ SP (s, v,G \ {e})
whose last edge LastE(Pv,e) is in H, otherwise the edge is v-last-protected. An edge e is last-
unprotected in H, if there exists at least one vertex v ∈ V for which e is v-last-unprotected,
otherwise it is last-protected. Note that the notion of protected edge refers to the case where
every vertex v has at least one s− v replacement-path protecting against the failing of e in
H. In contrast, the notion of last-protected edges refers to the existence of the last edge of
these replacement-path (and not the entire path) in the subgraph H. The next observation
relates the properties of “last-protected” and “protected”.

Observation 2.2. If e is last-protected in H, then e is protected, i.e., dist(s, v,H \ {e}) =
dist(s, v,G \ {e}), ∀ v ∈ V .

Proof: Let e be a last-protected edge in H. Assume towards contradiction that the claim
does not hold and let

BV = {v | dist(s, v,H \ {e}) > dist(s, v,G \ {e})}

be the set of “bad vertices,” namely, vertices for which the s − v shortest path distance
in H \ {e} is greater than that in G \ {e}. (By the contradictory assumption, it holds
that BV 6= ∅.) For every vertex v, let P ∗v,e ∈ SP (s, v,G \ {e}) be a replacement-path
satisfying that LastE(P ∗v,e) ∈ H, (since e is v-last-protected for every v, this path exists).
Define BE(v) = P ∗v,e \ E(H) to be the set of “bad edges,” namely, the set of P ∗v,e edges
that are missing in H. By definition, BE(v) 6= ∅ for every bad vertex v ∈ BV . Let

d̃(v) = maxe∈BE(v){dist(s, e, P ∗v,e)} be the maximal depth of a missing edge in BE(v), and
let DM(v) denote that “deepest missing edge” for v, i.e., the edge e on P ∗v,e satisfying
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dist(s, e, P ∗v,e) = d̃(v). Finally, let v′ ∈ BV be the vertex that minimizes d̃(v), and let
e1 = (x, y) ∈ BE(v′) be the deepest missing edge on P ∗v′,e, namely, e1 = DM(v′). Note that
e1 is the shallowest “deepest missing edge” over all bad vertices v ∈ BV . Let P1 = P ∗s,y,e,
P2 = P ∗s,y,e[s, y] and P3 = P ∗s,v′,e[y, v

′]. Note that since v′ ∈ BV , it follows that also y ∈ BV .
(Otherwise, if y /∈ BV , then any s−y shortest-path P ′ ∈ SP (s, y,H\{e}), where |P ′| = |P ∗y,e|,
can be appended to P3 resulting in P ′′ = P ′ ◦ P3 such that (1) P ′′ ⊆ H \ {e} and (2)
|P ′′| = |P ′|+ |P3| = |P2|+ |P3| = |P ∗s,v′,e|, contradicting the fact that v′ ∈ BV .) We conclude
that y ∈ BV . Finally, note that LastE(P1) ∈ H by definition, and therefore the deepest

missing edge of y must be shallower, i.e., d̃(y) < d̃(v′). However, this is in contradiction to
our choice of the vertex v′. The lemma follows.

3 Algorithm

In this section, we describe a construction of an ε FT-BFS subgraph H containing O(1/ε′ ·
log n · n1+ε′) edges where ε′ = ε + log(log n/ε)/ log n for every ε ∈ (0, 1]. In the next section
we prove the following.

Theorem 3.1. For every input n-vertex graph G, source vertex s and real ε ∈ (0, 1], there
exists an ε FT-BFS H ⊆ G with O(min{1/ε′ · log n · n1+ε′ , n3/2}) edges. Hence, in particular,
one can construct a (b, r) FT-BFS structure with b(n) = O(min{1/ε · n1+ε · log n, n3/2}) and
r(n) = O(1/ε · n1−ε · log n).

By [14], there exists a polynomial time algorithm for constructing FT-BFS structures with
O(n3/2) edges, hence the claim holds trivially for ε ≥ 1/2, and to establish the theorem, it
remains to consider the case where ε ∈ (0, 1/2). To deal with this case, we next describe an
explicit construction for an ε FT-BFS H which is then analyzed in the following subsection.

3.1 Phase (S0): Preprocessing

Algorithm Pcons for constructing the replacement-paths. The goal of the preprocessing phase
(S0) is to define a function RP : (V × E) → E that maps each vertex-edge pair 〈v, e〉 to a
replacement path Pv,e ⊆ E. These paths will be used in the main construction. Let T0 be
a BFS tree rooted at s in G. Algorithm Pcons iterates over every vertex v ∈ V and every
edge e ∈ π(s, v). For a given pair 〈v, e〉, the algorithm first tests if there exists an s − v
replacement path whose last edge is already in T0. Let G′(v) = (G\E(v,G))∪E(v, T0). Now,
if dist(s, v,G′(v) \ {e}) = dist(s, v,G \ {e}), then let RP(〈v, e〉) = Pv,e = SP (s, v,G′(v) \
{e},W ). Else, (i.e., the replacement-path Pv,e must include a new last edge that is not in
T0), the algorithm attempts to select the s − v replacement-path whose divergence point
from π(s, v) is as close to s as possible. Specifically, let π(s, v) = [u0 = s, u1, . . . , uk = v]
and e = (ui, ui+1). For every j ∈ {0, . . . , i}, define Gj(v) = G \ V (π(uj, uk)) ∪ {uj, uk}.
Note that e /∈ Gj(v). Define j∗ as the minimal index j satisfying that dist(s, v,Gj(v)) =
dist(s, v,G \ {e}) and let Pv,e = SP (s, v,Gj∗(v) \ {e},W ).
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Replacement-path classification. A replacement-path P = Pv,e is new-ending if its last edge
is not in T0. A vertex-edge pair 〈v, e〉 is uncovered if its replacement path Pv,e is new-ending.

𝑠 

𝑒 

𝑣 

𝐷(𝑃) 𝑑(𝑃) 

The following observation follows immediately by the construction of
Alg. Pcons.

Observation 3.2. Consider a new-ending path P = Pv,e. Let d(P ) be
the first divergence point of P and π(s, v). Then P can be decomposed
into P = π(s, d(P )) ◦ D(P ) where D(P ) = P \ E(π(s, v)), referred to
as the detour segment, departs from π(s, v) at d(P ) and returns only
at v, i.e., D(P ) = P [d(P ), v] and π(s, v) are vertex disjoint besides the
common endpoints d(P ) and v.

Let UP = {〈v, e〉 | LastE(Pv,e) /∈ T0} be the collection of all
uncovered vertex-edge pairs. Let UP(v) = {〈w, e〉 ∈ UP | w = v} be
the uncovered pairs of v (hence, UP =

⋃
v∈V UP(v)).

Throughout, we consider the edges of T0 to be directed away from s,
hence referring to the edge e = (x, y) ∈ T0 implies that dist(s, x,G) <
dist(s, y,G).

The following definitions are key to in our construction and the sub-
sequent analysis. For two tree edges e = (a, b), e′ = (c, d) ∈ T0, we say that e ∼ e′ if
LCA(b, d) ∈ {b, d}, i.e., e, e′ ∈ π(s, v) for v = {b, d} \ {LCA(b, d)}, otherwise e 6∼ e′. (In the
figure, e ∼ e′ and e′ 6∼ e′′.) In our construction, we may impose an ordering on a subset of v’s
uncovered pairs. For a given subset of v′s pairs Add(P , v) = {〈v, e1〉, . . . , 〈v, ek〉} ⊆ UP(v),

let
−→
P (v) be ordered in increasing distance of ei from v, i.e.,

−→
P (v) = {〈v, ei1〉, . . . , 〈v, eik〉}

where dist(v, ei1 , π(s, v)) < . . . < dist(v, eik , π(s, v)).

𝑠 

𝑒 
𝑎 

𝑏 

𝑒′ 
𝑐 

𝑑 

𝑒′′ 
𝑐′ 

𝑑′ 

(∼)-interference and (6∼)-interference. The paths P = Pv,e, P
′ = Pt,e′

for 〈v, e〉, 〈t, e′〉 ∈ UP and v 6= t interfere with each other if their detours
intersect at some vertex z internal to both, i.e.,

V (D(P )) ∩ V (D(P ′)) * {d(P ), d(P ′), v, t} . (1)

Note that according to this definition, interference is symmetric, i.e., if P
interferes with P ′ then P ′ interferes with P as well. For every uncovered
pair 〈v, e〉 ∈ UP , denote the set of pairs 〈t, e′〉 whose corresponding path
P ′ = Pt,e′ interferes with P = Pv,e by

I(〈v, e〉) = {〈t, e′〉 ∈ UP | t 6= v, Pt,e′ and Pv,e satisfy Eq. (1)}.

Our construction is heavily based on distinguishing between two
types of interference, depending on the relation of the two failing
edges protected by the interfered paths. In particular, if the inter-
fering paths Pv,e and Pt,e′ satisfy that e 6∼ e′, then we call it (6∼)-
interference, and if e ∼ e′, then it is (∼)-interference. For an illustration, see Fig. 1.
Let I 6∼(〈v, e〉) = {〈t, e′〉 ∈ I(P ) | e 6∼ e′} be the set of pairs whose corresponding paths
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𝑠 

𝑣 𝑡 

𝓌 
𝑒 𝑒′ 

𝑃𝑣,𝑒  
𝑃𝑡,𝑒′ 

(≁)-𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 

handled in ℐ1 

(a) 

𝑠 

𝑣 𝑡 

𝑒  

𝑒′ 

𝑃𝑣,𝑒 

𝑃𝑡,𝑒′ 

(∼)-𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

handled in ℐ2 ∪  𝒫𝐶  

(b) 

𝓌 

Figure 1: Illustration of the two types of interference. The replacement paths Pv,e (solid)
and Pt,e′ are (a) (6∼) interfering as e 6∼ e′, and (b) (∼) interfering as e ∼ e′.

(6∼)-interfere with Pv,e.
A given subset of uncovered pairs P ′ ⊆ UP is called a (∼)-set if I 6∼(〈v, e〉) ∩ P ′ = ∅ for

every 〈v, e〉 ∈ P ′. Otherwise, it is called (6∼)-set. In other words, in a (∼)-set there is no
(6∼)-interference between any pair of paths.

3.2 The main construction

Let us start with an overview of the main construction phases. The initial structure H
contains T0. In phases (S1) and (S2), we add backup edges to H corresponding to last edge
of the new ending replacement paths Pv,e so that eventually the set of T0 edges unprotected
by H is bounded by O(1/ε · n1−ε · log n). (These edges will have to be reinforced; all other
edges of H will be taken as backup edges.) The high level idea of our main construction is as
follows. First, we divide the uncovered pairs UP into two sub-sets (6∼)-set I1 and a (∼)-set
I2, by letting

I1 = {〈v, e〉 ∈ UP | I 6∼(〈v, e〉) 6= ∅} and I2 = UP \ I1.

Phase (S1) starts by setting the first (∼)-set to be PC0 = I2. Then, Phase (S1) employs
an iterative process of Kε = O(1/ε) iterations. Each of these iterations does the following.
For every vertex v ∈ V , the algorithm repeatedly adds the dn1/εe distinct last edges of the
remaining s− v replacement-paths of the uncovered pairs in I1 protecting the deepest edges
on π(s, v). In addition, each such iteration i may yield an additional (∼)-set, PCi , which
would be handled in Phase (S2). Thus, at the end of Phase (S1), we have at most O(1/ε)
such (∼)-sets PCi that partially cover the pairs of I1. The last edges of the replacement-paths
of the pairs in I1 that are not covered by the (∼)-sets are added to H. Phase (S2) of the
algorithm is then devoted for considering the (∼)-sets (i.e., I2 and the O(1/ε) additional
(∼)-sets that were created in Phase (S1)). For each such (∼)-set P ′ and for every vertex v,
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the algorithm adds a collection of O(nε · log n) backup edges corresponding to the last edges
of s − v replacement-paths of the pairs in P ′. The analysis shows that after Phase (S2),
for each of the O(1/ε) (∼)-sets PCi the number of edges protected by replacement paths
corresponding to the pairs collection PCi that are still unprotected by H is O(n1−ε · log n).
Hence, overall there are at most O(1/ε · n1−ε · log n) edges that are still unprotected by H.
Those edges will have to be reinforced.

We now describe the algorithm in detail.

Phase (S1): Handling the ( 6∼)-set I1.
The next definition is important in this context. For v 6= t, a path Pv,e π-intersects

with path Pt,e′ ∈ I 6∼(Pv,e) if the detour of Pv,e intersects at least one of the vertices of
π(LCA(v, t), t)) \ {LCA(t, v)}, see Fig. 2. Note that this property may not be symmetric

𝑠 

𝑣 𝑡 

𝑤 
𝑒 𝑒′ 

𝑃𝑠,𝑣,𝑒  
𝑃𝑠,𝑡,𝑒′ 

𝜋 − 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

Figure 2: Illustration of π-intersection. The replacement-path Pv,e (solid) π-intersects Pt,e′ ∈
I 6∼(Pv,e) (dashed).

(unlike interference). That is, it might be the case that Pv,e π-intersects Pt,e′ but not vice-
versa.

The replacement paths of the uncovered pairs in some subset P` ⊆ I1 can be roughly
classified into three types, termed A,B, and C with respect to P`. A replacement-path Pv,e for
〈v, e〉 ∈ P` is of type A with respect to P` if it π-intersects at least one path in I 6∼(〈v, e〉)∩P`.
Let PA` ⊆ P` be the subset of all pairs whose paths is of type A, i.e.,

PA` = {〈v, e〉 ∈ P` | ∃〈t, e′〉 ∈ I 6∼(〈v, e〉) ∩ P`, Pv,e π-intersects Pt,e′} . (2)

A replacement-path Pv,e for 〈v, e〉 ∈ P` is of type B with respect to P`, if it is not of type A
and it (6∼)-interferes with at least one path Pt,e′ for 〈t, e′〉 ∈ P` that is not of type A as well,
i.e., 〈t, e′〉 ∈ P` \ PA` . In such a case, both 〈v, e〉 and 〈t, e′〉 are not in PA` , and hence Pv,e
does not π-intersect Pt,e′ and vice-versa, implying that Pt,e′ is of type B as well. Let PB` be
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the collection of the pairs whose corresponding path is of type B; formally

PB` = {〈v, e〉 ∈ P` \ PA` | I 6∼(〈v, e〉) ∩
(
P` \ PA`

)
6= ∅} . (3)

Finally, a replacement-path Pv,e ∈ P` is of type C with respect to P` if it is not of type A or
B. Note that such a path Pv,e satisfies that the intersection I 6∼(〈v, e〉) ∩ (P` \ PA` ) is empty.
(This can happen either because I 6∼(〈v, e〉) ∩ P` = ∅ or because

(
I 6∼(〈v, e〉) ∩ P`

)
⊆ PA` .)

Let PC` = P` \
(
PA` ∪ PB`

)
be the set of pairs whose path is of type C. Let

Kε = d1/εe+ 2 . (4)

The uncovered pairs of I1 are now partitioned into Kε + 1 subsets: Kε (∼)-sets PC1 , . . . ,PCKε
and a subset containing all the remaining pairs I ′1 = I1 \

⋃Kε
i=1PCi . Essentially, the subset

I ′1 is “implicit” and is not actually constructed by the algorithm; it consists of all I1 pairs
〈v, e〉 whose last edge of their path Pv,e was added to H during one of the Kε iterations of
Phase (S1). The analysis shows that the number of distinct last edges of the replacement
paths of I ′1 that were added into H is bounded by O(1/ε · n1+ε).

The partition of I1 is conducted in Kε iterations. At the end of each iteration, O(n1+ε)
distinct last edges of the paths that correspond to the first 〈v, e〉 pairs from I1 (the paths
protecting the deepest edges on π(s, v)) are added to H (and intuitively, the pairs of these
replacement paths join I ′1). Initially, let P1 = I1. For every i = {1, . . . , Kε}, the next steps
are performed:

• Divide Pi into the subsets PAi ,PBi and PCi (according to Eq. (2,3)).
(* Handling the paths of PCi is deferred to Phase (S2). The following steps attempt to
handle the paths of PAi ∪ PBi . *)

• Let
−→
P J
i (v) = {〈v, ei1〉, . . . , 〈v, eikJv 〉} be the ordered 〈v, e〉 uncovered pairs of v in PJi

for every v ∈ V and J ∈ {A,B} (in increasing distance of the failing edge eij from v).

• Add to H, the dnεe distinct last edges of the first replacement-paths of the pairs in

the ordering
−→
P J
i (v).

• Set Pi+1 = {〈v, e〉 ∈ PAi ∪ PBi | LastE(Pv,e) /∈ H}.

This completes Phase (S1). Observe that a pair 〈v, e〉 ∈ Pi that was classified as, say, type
A in iteration i, but was not handled (i.e., its last edge was not added to H), joins Pi+1 and
is re-classified in iteration i+ 1, where it may be classified differently. In particular, if it gets
classified into PCi+1, then its handling will be deferred to Phase (S2).

Phase (S2): Handling the remaining (∼)-sets. The input for this step is a collection of (∼)
multi-sets S = {PC0 ,PC1 , . . . ,PCKε}.
Preprocessing Sub-Phase (S2.0): Building tree-decomposition for T0. As a preprocessing
step for handling the (∼)-sets, the algorithm begins applying to the BFS tree T0 the heavy-
path-decomposition technique presented by Sleator and Tarjan [19] and slightly adapted by
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Baswana and Khanna [2]. Using this technique, the tree T0 is broken into vertex disjoint
paths T D = {ψ1, . . . , ψt} that satisfy some desired properties; for an illustration see Fig.
3(b).

Fact 3.3. [2] There exists an O(n) time algorithm for computing a path ψ in T0 whose
removal splits T0 into a set of disjoint subtrees T0(v1), . . . , T0(vj) s.t. for every 1 ≤ i ≤ j,

(1) |T0(vi)| ≤ n/2 and ψ ∩ T0(vi) = ∅, and

(2) T0(vi) is connected to ψ through some edge, hereafter denoted e(ψ, i) .

The algorithm of Fact 3.3 is applied recursively on T0. The output of this recursive
procedure is a collection T D of paths ψ ⊆ T0 plus a set of T0 edges e(ψ, i) that glue the
paths ψ to the tree T0. Let E+(T D) =

⋃
ψ∈T D E(ψ) be the set of tree edges occurring on

the paths of the decomposition and let E−(T D) = T0 \ E+(T D) be the collection of “glue”
edges. In the next Sub-Phase, the algorithm iterates over all the vertices v and add to the
structure H a collection of last edges of the replacement-paths protecting against the failing
of the glue edges. (In the analysis it is shown that at most O(n log n) edges are added due
to this step.)

Sub-Phase (S2.1): Edge addition based on tree-decomposition [for fixed v]. Define the last
edges of the new-ending replacement paths protecting the glue edges E−(T D) ∩ ψ(s, v) by

Ê(T D, v) = {LastE(Pv,e) | 〈v, e〉 ∈ UP and e ∈ E−(T D)}.

Add Ê(T D, v) to H.
We now turn to consider the main part of Phase S2. The algorithm treats each (∼)-set

P ∈ S separately, by adding into H O(n1+ε · log n) distinct last edges of replacement paths
carefully selected from the uncovered pairs of P . In the analysis section, we then show that
the total number of edges e with a pair 〈v, e〉 in P that are unprotected by H is bounded by
O(n1−ε · log n), and since there are Kε + 1 = O(1/ε) sets in S (see Eq. (4)), overall there are
O(1/ε · n1−ε · log n) edges in T0 that are unprotected by H (and will have to be reinforced).

The selection of the uncovered pairs 〈v, e〉 whose last edge of their replacement path Pv,e
is to be added into H is performed in the following manner. The algorithm iterates over
every (∼)-set P ∈ S and every vertex v ∈ V , and selects a subset Add(P , v) of v’s uncovered
pairs from P , where the total number of last edges of their corresponding replacement paths
in bounded by O(nε · log n), and then adds these last edges to H. The selection, for P and
v, of pairs to be included in Add(P , v) is done in two main phases.

Sub-Phase (S2.2)[for fixed P , v]: Covering pairs based on shortest-path decomposition into
O(log n) fragments. The s − v shortest-path π(s, v) = [s = u0, . . . , uk = v] is decomposed
into k′ = blog |π(s, v)|c subsegments of exponentially decreasing length, i.e., where each
subsegment consists of the first half of the remaining π(s, v) path. For an illustration see Fig.

3(a). Formally, letting uij be the vertex at distance
⌈∑j

`=1

(
|π(s, v)|/2`

)⌉
from s on π(s, v)

for j ∈ {1, . . . , k′}, and ui0 = u0, the j’th subsegment is given by πj(s, v) = π(uij−1
, uij) for
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every j ∈ {1, . . . , k′}. It then holds that

|πj(s, v)| ≥
⌊
|π(s, v)|/2j−1|

⌋
and

∑
j′>j

|πj(s, v)| ≥ |πj(s, v)|/2 (5)

For each of the k′ subsegments πj(s, v), let Pj(v) = {〈v, e〉 ∈ P | e ∈ πj(s, v)} be the set
of v’s uncovered pairs from P whose paths protect the edges in πj(s, v); let LE j(P , v) =
{LastE(Pv,e) | 〈v, e〉 ∈ Pj(v)} be the corresponding last edges of these replacement paths.

A subsegment πj(s, v) is heavy with respect to P if |LE j(P , v)| ≥ dnεe, otherwise it
is light. For every light subsegment πj(s, v), add Pj(v) to the collection of selected pairs
Add(P , v) whose last edges (of their corresponding replacement paths) are later added to
H. I.e., add to Add(P , v) the pairs

⋃
Pj(v), where the union is over all j ∈ {1, . . . , k′} s.t.

πj(s, v) is light. In addition, we move to Add(P , v) some additional pairs 〈v, e∗j〉 as follows.
For every j ∈ {1, . . . , k′}, let e∗j be the first edge on πj(s, v) (closest to s) such that 〈v, e∗j〉
is in Pj(v). The algorithm adds

⋃k′

j=1〈v, e∗j〉 to Add(P , v). (This addition would ensure that
the divergence point d(Pv,e) of the replacement paths Pv,e protecting edges e on the segment
πj(s, v) and whose last edge was not added to the output structure H, is located inside the
segment πj(s, v).)

Sub-Phase (S2.3): Covering pairs depending on both the tree-decomposition and π(s, v) de-
composition [for fixed P , ψ, v].

Define E(ψ,P , v) = {e | 〈v, e〉 ∈ P and e ∈ ψ ∩ π(s, v)}. Let e∗ be the upmost edge
in E(ψ,P , v) (i.e., closest to s). Add 〈v, e∗〉 to Add(P , v).

Next, consider the intersection of ψ with π(s, v). Recall that in Sub-Phase (S2.1), the
s − v path π(s, v) was decomposed into k′ = blog |π(s, v)|c segments π1(s, v), . . . , πk′(s, v).
Let πU(ψ, v) be the first, i.e., closest to s, subsegment of π(s, v) that intersects ψ such
that πU(ψ, v) * ψ and πU(ψ, v) ∩ ψ 6= ∅ (if such exists). Similarly, let πL(ψ, v) be the
last, i.e., closest to v, subsegment of π(s, v) that intersects ψ such that πL(ψ, v) * ψ and
πL(ψ, v) ∩ ψ 6= ∅. See Fig. 4 for an illustration.

Let PU(ψ, v) = {〈v, e〉 ∈ P | e ∈ πU(ψ, v)∩ψ} be the pairs in P whose replacement paths
protect against the failing of the edges in the intersection πU(s, v)∩ψ and let LEU(P , ψ, v) =
{LastE(Pv,e) | 〈v, e〉 ∈ PU(ψ, v)} be the last edges of the corresponding replacement paths.
If |LEU(P , ψ, v)| ≤ dnεe, then add PU(ψ, v) to Add(P , v). Finally, let e∗U be the upmost edge
on π(s, v) with a pair 〈v, e∗U〉 ∈ PU(ψ, v). Then, add 〈v, e∗U〉 to Add(P , v). The set PL(ψ, v)
is handled in the same manner as PU(ψ, v).

Finally, for every P and v and for every edge e such that 〈v, e〉 ∈ Add(P , v) add the
last edge of Pv,e to H. While the resulting sets Add(P , v) might contain many pairs, in the
analysis section we show that the total number of new backup edges that will be added to
H as a result of these pairs will be at most O(log n · nε) per vertex v and (∼)-set P . This
completes the description of the algorithm.
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Figure 3: Decomposition of shortest-paths and trees. (a) decomposition of the s − v path
π(s, v) into O(log n) subsegment. The segment i, πi(s, v) contains roughly half of the remaining
vertices. (b) Heavy-tree-decomposition T D on the BFS tree T0 according to the algorithm of
[2]. The solid edges correspond to the paths of T D.
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𝑣 

|𝜋 𝑠, 𝑣 |/4 

|𝜋 𝑠, 𝑣 |/2 
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𝜋𝐷(𝑠, 𝑣) 

Figure 4: Illustration of the intersection between sψ − tψ path ψ in the tree decomposition T D
and the shortest-path π(s, v) decomposition. The vertex w is the LCA of tψ and v in T0. The
intersection of the paths ψ∩π(s, v) is shown in red. The upper (resp., lower) intersected segment
is πU(s, v) (resp., πL(s, v)).
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4 Analysis

4.1 Size Bound

We start with size analysis and use the following fact.

Fact 4.1 ([2]). For every node v ∈ V ,
(a) π(s, v) ∩ E−(T D) = O(log n), and (b) π(s, v) intersects at most O(log n) paths in T D
[Lemma 3.6 of [2]].

Lemma 4.2. |E(H)| = min{O(1/ε · n1+ε · log n), n3/2}.

Proof: For ε ≥ 1/2, the claim trivially holds by [14]. From now on, consider ε ∈ (0, 1/2). By

Fact 4.1(a), the set of edges Ê(T D, v) that was added in Sub-Phase (S2.1) contains O(log n)
edges. We now focus on a specific vertex v and (∼)-set P and bound the number of new
edges corresponding to the pairs of Add(P , v) that were collected in Sub-Phase (S2.2-3).

In Sub-Phase (S2.2), the algorithm adds the pairs of the light subsegments πj(s, v).
Since there are O(log n) subsegments and as the number of last edges of replacement paths
protecting the edges of a light subsegment is bounded by O(nε) edges, overall O(log n · nε)
edges are added due to these pairs.

In Sub-Phase (S2.3) we restrict attention to a specific path ψ ∈ T D and consider the
intersection of π(s, v) and ψ. By Fact 4.1(b), every path π(s, v) intersects with O(log n) paths
ψ in T D. Since the algorithm adds the last edges of replacement paths protecting edges on
πU(s, v) and πL(s, v) only if their number is bounded by O(nε), overall O(log n · nε) edges
are added due to this sub-phase. Finally, the total number of pairs 〈v, e∗j〉 and 〈v, e∗U〉, 〈v, e∗L〉
that are added in Sub-Phase (S2.2-3) is bounded by O(log n). Altogether, we get that the
pairs of Add(P , v) contributes O(log n ·nε) edges to H. The lemma follows by summing over
all n vertices and the O(1/ε) (∼) sets.

We proceed by presenting some useful properties of the paths constructed by Alg. Pcons.

4.2 Basic Replacement Path Properties

Lemma 4.3. For every v ∈ V , e ∈ π(s, v), it holds that Pv,e ∈ SP (s, v,G \ {e}).

Proof: If the replacement path Pv,e is not new-ending, i.e., LastE(Pv,e) ∈ T0, then the
correctness follows immediately. The interesting remaining case is where the replacement-
path Pv,e had to include a new-edge that was not in T0. We show that in this case, there exists
an s−v shortest path in G\{e} with a unique divergence point from π(s, v) that occurs above
the failing edge e. In particular, such a path can given by letting P ′ = SP (s, v,G \ {e},W ).
To see this, assume towards contradiction that the divergence point of P ′ from π(s, v) is not
unique. Let w1 (resp., w2) be the first (resp., second) divergence point of P ′ from π(s, v).
There are two cases. If e ∈ π(w1, w2), then P ′[w2, v] = SP (w2, v, G \ {e},W ) = π(w2, v), in
contradiction to the fact that Pv,e is new-ending. Otherwise, e ∈ π(w2, v) and P ′[w1, w2] =
SP (w1, w2, G \ {e},W ) = π(w1, w2), contradicting the fact that w1 is a divergence point
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from π(s, v). This establishes the claim that there exists a replacement-path with a unique
divergence point. Since the algorithm picks the replacement-path whose unique divergence
point from π(s, v) is as close to s as possible, the correctness follows.

Recall that for a new-ending path Pv,e (i.e., 〈v, e〉 ∈ UP), d(Pv,e) is the first divergence
point of Pv,e from π(s, v). By the construction of the new-ending paths, we have the following.

Claim 4.4. For every new-ending path Pv,e:

(1) the divergence point d(Pv,e) is unique;

(2) there exists no s−v replacement path in G\{e} whose unique divergence point is above
d(Pv,e) on π(s, v) (i.e., closer to s).

Proof: Begin with (1). Consider a new-ending path Pv,e and let π(s, v) = [u0 = s, u1, . . . , uk =
v]. Recall that for every j ∈ {0, . . . , k − 1}, Gj(v) = G \ V (π(uj, uk)) ∪ {uj, uk}. Let j∗

be the minimal index j satisfying that dist(s, v,Gj(v) \ {e}) = dist(s, v,G \ {e}). Alg.
Pcons defines Pv,e = SP (s, v,Gj∗(v) \ {e},W ). We now show that uj∗ is the unique di-
vergence point by showing that D(Pv,e) = Pv,e[uj∗ , v] and π(s, v) are vertex disjoint except
for the common endpoints uj∗ and v. Assume towards contradiction otherwise, and let
u` ∈ (V (D(Pv,e)) ∩ V (π(s, v))) \ {uj∗ , v} be the last vertex (closest to v) on D(Pv,e) that
occurs on π(s, v) \ {v}. By the definition of Pv,e, u` occurs above uj∗ on π(s, v) and hence
also above failing edge e on π(s, v). Consider the path P ′ = π(s, u`) ◦ Pv,e[u`, v]. By the
selection of u`, P

′ ∈ SP (s, v,G\{e}) and u` is the unique divergence point of P ′ and π(s, v).
In particular, P ′ ⊆ G` where ` < j∗. Contradiction to the selection of j∗. Part (1) follows.
Part (2) follows immediately by Part (1) and the definition of the paths by Alg. Pcons.

Claim 4.5. Consider two new-ending s−v replacement paths Pv,ei1 , Pv,ei2 such that LastE(Pv,ei1 ) 6=
LastE(Pv,ei2 ) where without loss of generality ei1 = (xi1 , yi1) is above (closer to s) ei2 =
(xi2 , yi2) on π(s, v). Then, d(Pv,ei2 ) ∈ π(yi1 , xi2).

Proof: Towards contradiction, assume otherwise. It then holds that d(Pv,ei2 ) ∈ π(s, xi1).
Since the detour segments are edge disjoint with π(s, v) (see Cl. 4.4(1)), we get that there
are two s− v paths in G \ {ei1 , ei2} given by Pv,ei1 , Pv,ei2 , and the optimality of these paths
implies |Pv,ei1 | = |Pv,ei2 |. There are three cases.
Case 1: d(Pv,ei1 ) = d(Pv,ei2 ). In this case, by the uniqueness of the weight assignment W , we
get that Pv,ei1 = Pv,ei2 , in contradiction to the fact that LastE(Pv,ei1 ) 6= LastE(Pv,ei1 ). Case
2: d(Pv,ei1 ) is above d(Pv,ei2 ). In this case, we get a contradiction to Cl. 4.4(2) with respect
Pv,ei2 . Case 3: d(Pv,ei2 ) is above d(Pv,ei1 ). In this case, we get a contradiction to Cl. 4.4(2)
with respect Pv,ei1 . The claim follows.

Claim 4.6. For every P = Pv,e such that 〈v, e〉 ∈ UP(v),

(1) |D(P )| = Ω(dist(e, v, π(s, v))).

(2) For every P ′ = Pv,e′ 〈v, e〉 ∈ UP(v) satisfying that LastE(P ) 6= LastE(P ′) it holds that
D(P ′) ∩D(P ) = {v}.
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Proof: Since d(P ) is above the edge e on π(s, v), it holds that |D(P )| = |P (d(P ), v)| ≥
dist(e, v, π(s, v)). Consider (2) and assume, towards contradiction, that there exists a mutual
vertex w ∈ (D(P ′) ∩D(P )) \ {v}. Since d(P ) and d(P ′) are unique divergence points, it
holds that P [w, v] ∩ V (π(s, v)) = {v} and P ′[w, v] ∩ V (π(s, v)) = {v}. Hence,

P [w, v] = SP (w, v, (G \ V (π(s, v))) ∪ {v},W ) = P ′[w, v],

in contradiction to the fact that LastE(P ) 6= LastE(P ′).

4.3 Bounding the number of T0 edges unprotected by H

Throughout, we consider the final structureH (obtained by the end of Phase (S2)) and denote
the path Pv,e as H-new-ending if LastE(Pv,e) /∈ H. Let UP(H) = {〈v, e〉 | LastE(Pv,e) /∈ H}
be the uncovered pairs in the final structure H.

For every (∼)-set P ∈ S, let Pmiss = {〈v, e〉 ∈ P ∩ UP(H)} be the pairs of P that are
uncovered by H. Let Emiss(P , v) = {e | 〈v, e〉 ∈ Pmiss} be the set of edges on π(s, v) such
that the last edge of the replacement paths of P pairs were not added to H. Let

Emiss(P) =
⋃
v∈V

Emiss(P , v) (6)

be the collection of T0 edges unprotected by H, corresponding to the paths of P and let
Emiss(H) = {e | ∃v s.t 〈v, e〉 ∈ UP(H)} be the set of T0 edges that are unprotected by H.
Toward the end of this section, we show that

Lemma 4.7. |Emiss(H)| = O(1/ε · n1−ε · log n).

The analysis proceeds in two steps. Let PC =
⋃Kε
i=1PCi be the collection of pairs whose

corresponding paths are of type C defined in Phase (S1). First, we show that due to Phase
(S1), I1 \PC contains no uncovered pair in H, i.e., there is no pair 〈v, e〉 ∈ I1 \PC such that
Pv,e is H-new-ending path. This implies that it suffices to consider the uncovered pairs of
PCi , since UP(H) =

⋃
P∈S Pmiss. In the second step, we complete the argument by showing

that for each of the O(1/ε) (∼)-sets P , the cardinality of Emiss(P), the set of T0 edges that
are unprotected by H, is bounded by O(n1−ε ·log n). Since there are O(1/ε) such sets, overall,
we get that

|Emiss(H)| = |
⋃
P∈S

Emiss(P)| = O(1/ε · n1−ε · log n)

as desired. We now describe the analysis in detail.

4.3.1 Analysis of Phase (S1)

We begin by establishing a property that holds for every two pairs 〈v, e1〉, 〈v, e2〉 ∈ PJi for
J ∈ {A,B} such that LastE(Pv,e1) 6= LastE(Pv,e2). This property plays a key role in our
analysis and justifies the classification of the paths of Pi pairs into the three types.
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Lemma 4.8. Let P1 = Pv,e1 , P2 = Pv,e2 be such that e1 = (x1, y1) is above e2 = (x2, y2) on
π(s, v), LastE(P1) 6= LastE(P2), 〈v, e2〉 ∈ PJi for some J ∈ {A,B} and i ∈ {2, . . . , Kε}.
Then there exist a vertex t and an edge e′ ∈ π(s, t) satisfying (see Fig. 5)

(a) 〈t, e′〉 ∈ Pi and hence also 〈t, e′〉 ∈ PAi−1 ∪ PBi−1,

(b) LCA(t, v) ∈ π(y1, x2).

Proof: Let Ii(〈v, e2〉) = I 6∼(〈v, e2〉) ∩ Pi. Since 〈v, e2〉 ∈ PAi ∪ PBi , by Eq. (2) and (3), we
get that Ii(〈v, e2〉) 6= ∅ and Ii(〈v, e2〉) ⊆ PAi−1 ∪ PBi−1.

To identify the path P ′ = Pt,e′ where 〈t, e′〉 ∈ Ii(〈v, e2〉), consider two cases depending
on the type of the path P2 with respect to Pi. Case 1 : 〈v, e2〉 ∈ PAi (i.e., P2 is of type
A). Let 〈t, e′〉 ∈ Ii(〈v, e2〉) be such that P π-intersects P ′ = Pt,e′ . By Eq. (2) such 〈t, e′〉
exists. Case 2 : 〈v, e2〉 ∈ PBi (i.e., P2 is of type B). Let P ′ = Pt,e′ be some type B path for
〈t, e′〉 ∈ Ii(〈v, e2〉) \ PAi . By Eq. (3) such a pair 〈t, e′〉 exists. By the definition of type B,
P2 does not π-intersect P ′ and vice-versa. Note that in either case, P ′ satisfies part (a) of
the lemma. To prove part (b), let w = LCA(v, t). Since 〈t, e′〉 ∈ I 6∼(〈v, e2〉) (i.e., e′ 6∼ e2),
it holds that w is not below x2. In addition, since P1 and P2 are new-ending s − v paths
ending with a distinct edge, by Cl. 4.5, it holds that d2, the unique divergence point of P2

and π(s, v), occurs on the segment π(y1, x2).

Claim 4.9. There exists an s − v replacement-path protecting against e2, P3 ⊆ G \ {e2},
whose unique divergence point from π(s, v) is not below w (see Fig. 5).

Proof: First consider the case where 〈v, e2〉 ∈ PAi , see Fig. 5(a). In this case, by the
selection of P ′, it holds that P2 π-intersects P ′. Let w′ ∈ (V (π(w, t)) \ {w}) ∩ V (P2) and
define P3 = π(s, w′) ◦ P2[w′, v]. First, observe that w is the unique divergence point of
P3 and π(s, v) since P2[w′, v] ⊆ D(P2). Next, observe that e2 /∈ P3. This holds since
π(s, w′) = π(s, w) ◦ π(w,w′). Since e2 ∈ π(w, v) and E(π(w,w′)) ∩ E(π(w, v)) = ∅, indeed
the failing edge is not on P3. Finally, by the optimality of the BFS tree T0, |P3| = |P2|.
Hence, the path P3 satisfies the desired property as it diverges from π(s, v) at w.

It remains to consider the case where 〈v, e2〉 ∈ PBi . See Fig. 5(b). Since both P2 and P ′

are of type B, P2 does not π-intersect P ′ and vice-versa, and hence

V (π(w, v) ∩ P ′) \ {w} = ∅ and also V ((π(w, t) ∩ P2)) \ {w} = ∅ . (7)

Let w′ /∈ {d(P2), d(P ′), v, t} be a common point of the detours D(P2) and D(P ′). Since
〈t, e′〉 ∈ I 6∼(P2), by Eq. (1), such vertex w′ exists. Let P3 = P ′[s, w′] ◦ P2[w′, v]. We
first claim that P3 has a unique divergence point from π(s, v) which is not below w. Let
d(P ′) be the unique divergence point of P ′ from π(s, t) (which exists by Cl. 4.4(1)).
Clearly, P ′[s, w′] = π(s, d(P ′)) ◦ P ′[d(P ′), w′]. Since P ′[d(P ′), w′] ⊆ D(P ′), it holds that
(P ′[d(P ′), w′] ∩ π(s, w)) \ {d(P ′)} = ∅. Since P ′ does not π-intersect with P2, by Eq. (7), it
also holds that (P ′[d(P ′), w′] ∩ π(w, v))\{d(P ′), w} = ∅, and since P2[w′, v] ⊆ D(P2), overall
it holds that V (P3[d(P ′), v]) ∩ V (π(s, v)) \ {d(P ′), v} = ∅.

Note that the last point common to P ′ and π(s, v) is not below w and hence the unique
divergence point of P3 and π(s, v) is not below w. In addition, observe that P3 ⊆ G \ {e2}
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since e2 ∈ π(w, v) and P ′ does not intersect π(w, v) \ {w}. It remains to bound the length
of P3. By Eq. (7), P ′[s, w′], P2[s, w′] ⊆ G \ {e′, e2}, and by the optimality of P ′ and P2, it
holds that |P ′[s, w′]| = |P2[s, w′]|. The claim follows.

Since Algorithm Pcons attempt to select the replacement-path whose divergence point
is as close to s as possible, (see Cl. 4.4(2)), it holds that d2 is not below w. Altogether, w is
above e2 but not above d2, implying that w ∈ π(y1, x2) as well, thus proving part (b) of the
lemma.
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Figure 5: Schematic Illustration for Lemma 4.8: (a) P2 of type A. (b) P2 of type B that does
not intersect π(w, t).

We conclude the analysis of Phase (S1) by showing that LastE(Pv,e) ∈ H for every
〈v, e〉 ∈ I1 \ PC . The high level idea of the proof is to use Lemma 4.8 to show that the
existence of at least one H-new-ending path Pv,e where 〈v, e〉 ∈ I1 \ PC implies that T0 has
expansion at least nε, so after O(1/ε) steps of expansion, it covers more than n vertices,
leading to contradiction.

Lemma 4.10.
(
I1 \ PC

)
∩ UP(H) = ∅.

Proof: Assume, towards contradiction, that there exists at least one uncovered pair 〈v, e〉 ∈
I1 \ PC such that LastE(Pv,e) /∈ H. Let O be the collection of all ordered pairs of vertices
(x, y) where x is an ancestor of y in T0, that is, O = {(x, y) ∈ V × V | LCA(x, y) = x}.
For every pair of vertices (x, y) ∈ O and index t ∈ {1, . . . , Kε}, define the collection of s− y
replacement paths in PAt ∪ PBt protecting the edges on π(x, y) by

Pt(x, y) = {〈y, e〉 ∈ PAt ∪ PBt | e ∈ π(x, y)} . (8)

The structure of our reasoning is as follows. For every i ∈ {1, . . . , Kε}, we define a

collection Π̂i ⊆ O of Ω(nε(i−1)) ordered vertex-pairs (x, y), such that the paths π(x, y) are of
length Ω(nε), and the internal segments of the paths π(x, y) and π(x′, y′) are vertex disjoint
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for every two distinct pairs (x, y), (x′, y′) ∈ Π̂i. Hence, overall, the total number of vertices

occupied by the tree-paths connecting the pairs of Π̂i is Ω(nε·i). Solving for i = Kε, we get
that the graph contains Ω(n1+ε) distinct vertices and hence leading to contradiction.

We next define the sets Π̂i and show that Π̂i satisfies the following properties for every
i ∈ {1, . . . , Kε}.

(Q1) |Π̂i| = Ω(nε·(i−1)).

(Q2) T0(z) and T0(z′) are vertex-disjoint, where z, z′ is the second vertex on π(x, y) and

π(x′, y′) respectively, for every (x, y), (x′, y′) ∈ Π̂i and T0(z), T0(z′) ⊆ T0 are the sub-
trees of T0 rooted at z, z′ respectively.

(Q3) For every (x, y) ∈ Π̂i, PKε−i+1(x, y) contains at least nε pairs whose corresponding
s− y replacement paths end with a distinct last edge.

(Q4) |π(x, y)| ≥ nε for every (x, y) ∈ Π̂i.

We now construct Π̂i inductively and show by induction that it satisfies these properties.
For i = 1, let Π̂1 = {(s, v)} where v is the vertex satisfying that there exists an e ∈ π(s, v)
such that 〈v, e〉 ∈ I1 \ PC and Pv,e is H-new-ending (i.e., 〈v, e〉 ∈ UP(H) ∩

(
I1 \ PC

)
.)

Properties (Q1-Q2) hold vacuously as Π̂1 contains (only) one pair. We now verify (Q3),
that is, we show that PKε(x, y) contains pairs corresponding to at least nε replacement paths
whose last edges are distinct.

Since 〈v, e〉 ∈ I1 \ PC , it follows that 〈v, e〉 /∈ PCKε and hence Pv,e is of type A or B
with respect to the collection PKε . Let J ∈ {A,B}, be such that 〈v, e〉 ∈ PJKε (so, Pv,e is of

type (J)). Recall that
−→
P J
Kε

(v) is the collection of all v’s pairs in PJKε ordered in increasing
distance of their failing edge from v. Recall that the algorithm adds dnεe distinct last edges
of the paths corresponding to the first pairs in this ordering into H. Hence, by the fact that
LastE(Pv,e) was not added to H, it follows that the paths of the pairs of PJKε(v) end with
more than dnεe distinct edges, hence (Q3) holds.

Finally, to see (Q4), observe that the replacement path of every pair 〈v, e〉 ∈ PKε(s, v)
protects a different edge on π(s, v), i.e., e 6= e′ for every 〈v, e〉, 〈v, e′〉 ∈ PKε(s, v). In addition,
ej ∈ π(s, v) for every pair 〈v, ej〉 ∈ PKε(s, v). Hence, |π(s, v)| ≥ |PKε(s, v)| > nε, as required,
and (Q4) holds.

For the inductive step, assume that the collection Π̂i−1 is given and satisfies (Q1-Q4).

We now describe the construction of Π̂i and show that it satisfies the properties as well. To
do that, every pair (x, y) ∈ Π̂i−1 is used to produce Ω(nε) new pairs (x1, y1), . . . , (xk, yk) for
k ≥ dnεe in the following manner. Let PUNKε−i+2(x, y) be a maximum collection of replacement
paths corresponding to the pairs of PKε−i+2(x, y) each ending with a distinct last edge. By
the induction assumption for Property (Q3), |PUNKε−i+2(x, y)| ≥ nε. Let Ei−1(x, y) = {e ∈
π(x, y) | Pv,e ∈ PUNKε−i+2(x, y)} be the set of edges on π(x, y) protected by the paths of

PUNKε−i+2(x, y). Let
−→
E i−1(x, y) = {ej1 , . . . , ejk} be the set of Ei−1(x, y) ordered in increasing

distance from y. As |Ei−1(x, y)| = |PUNKε−i+2(x, y)|, it follows that k ≥ dnεe. Let ej` = (aj` , bj`)
for every ` ∈ {1, . . . , k}. Since LastE(P1) 6= LastE(P2) for every P1, P2 ∈ PUNKε−i+2(x, y), we
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can safely apply Lemma 4.8. By this lemma, for every ` ∈ {1, . . . , k − 1}, there exists a
vertex v` and an s−v` replacement-path P ′` = Pv`,e′` for 〈v`, e′`〉 ∈ PAKε−i+1∪PBKε−i+1 one level
up, such that LCA(v`, y) is located on π(s, y) between the two failing edges ej` , ej`+1

∈ π(x, y),

that is, LCA(y, v`) ∈ π(aj` , bj`+1
). Let Π̂(x, y) = {(LCA(y, v`), v`) | 1 ≤ ` ≤ k} and define

Π̂i =
⋃

Π̂(x, y), where the union is over all (x, y) ∈ Π̂i−1. See Fig. 6 for an illustration for
the case where i = 2.

We now show that Π̂i satisfies (Q1-Q4). By induction assumption (Q1) for i − 1, Π̂i−1

contains Ω(nε·(i−2)) pairs, and by the construction, each pair (x, y) gives raise to a collection

of pairs Π̂(x, y) of size Ω(nε). We now show that these pairs are distinct, and hence the

claim holds. By construction, z1 6= z′1 for every (z1, z2), (z′1, z
′
2) ∈ Π̂(x, y), as each such

vertex is located between two consecutive failing edges on π(x, y). Note that for every

(z1, z2) ∈ Π̂(x, y), it holds that z1 occurs on π(x, y) strictly below the first edge on π(x, y)
(i.e., z1 is between two failing edges on π(x, y)). Thus z1 ∈ T0(z) where z is the second

vertex on π(x, y). By Property (Q2) for Π̂i−1, also z1 6= z′1 for every (z1, z2) ∈ Π̂(x, y)

and (z′1, z
′
2) ∈ Π̂(x′, y′) for every (x, y), (x′, y′) ∈ Π̂i−1. Hence, Property (Q1) holds. By a

similar argument, (Q2) holds as well. In particular, by (Q2) for Π̂i−1 the claim holds for

(z1, z2) ∈ Π̂(x, y) and (z′1, z
′
2) ∈ Π̂(x′, y′) corresponding to distinct pairs (x, y), (x′, y′) ∈ Π̂i−1.

In addition, by the definition of Π̂(x, y), the first vertex z1 of each pair (z1, z2) ∈ Π̂(x, y) is
located between two different consecutive edges on π(x, y).

We now turn to consider (Q3). By the construction of Π̂(x, y) for (x, y) ∈ Π̂i−1, the first

vertex of every pair (zj1 , zj2) ∈ Π̂(x, y) is zj1 = LCA(y, zj2) and there exists a pair of edges
e ∈ π(x, y) and e′ ∈ π(s, zj2) satisfying that e 6∼ e′ and 〈zj2 , e′〉 ∈ PAKε−i+1 ∪ PBKε−i+1. Since
e 6∼ e′, it follows that e′ ∈ π(zj1 , zj2) (i.e., e′ occurs below LCA(y, zj2)). Let J ∈ {A,B} be
such that 〈zj2 , e′〉 ∈ PKε−i+2 ∩ PJKε−i+1.

Recall that the algorithm adds, at the end of step Kε − i+ 1, dnεe last distinct edges of

s − zj2 replacement paths corresponding to the first pairs in the ordered set
−→
P J
Kε−i+1(zj2).

Hence, the fact that 〈zj2 , e′〉 ∈ PJKε−i+2, implies that the last edge of Pzj2 ,e′ was not taken
into H, and thus there are at least dnεe pairs such that each their corresponding replacement
paths ending with a distinct last edge, and these pairs precede it in the ordering, i.e., their
corresponding paths protect edges on π(s, zj2) below e′. Since all the protected edges of the
pairs of PKε−i+1(zj1 , zj2) belong to the segment π(zj1 , zj2), property (Q3) follows. Finally,
since each replacement-path corresponds to a pair in PKε−i+1(zj1 , zj2) protecting against the
failing of a distinct edge on π(zj1 , zj2), Property (Q4) holds as well. The induction step
holds.

We now complete the proof. By Property (Q1), Π̂Kε contains Ω(nε(Kε−1)) pairs. By

(Q2), the paths π(x, y) and π(x′, y′) are vertex-disjoint for every (x, y), (x′, y′) ∈ Π̂Kε . By

(Q4), the length of each path π(x, y) is Ω(nε) for every (x, y) ∈ Π̂Kε , so overall there are
Ω(nε·Kε) = Ω(n1+ε) vertices in these paths, in contradiction to the fact that the number of
vertices in T0 is bounded by n. The claim follows.
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Figure 6: Illustration for Lemma 4.10. Shown is the construction of Π̂2 where Π̂1 = {(s, v)}.
By the induction base, π(s, v) contains at least nε edges protected by the paths of type A and
B whose corresponding pairs are in PKε(s, v). These edges are sorted in increasing distance
from v. By Lemma 4.8, between any two consecutive edges (bj` , bj`) and (aj`+1

, bj`+1
), there

is a least common ancestor LCA(v, v`). The length of the segment π(LCA(v, v`), v`) is at least
nε since the last edges of the paths protecting the nε edges closest to v` were taken into H in
step 2 of Phase (S1), but the last edge of the path Ps,v,e′` was not taken. Hence, after i = 2,
the subtree rooted at v contains Ω(n2·ε) distinct vertices.

4.3.2 Analysis of Phase (S2)

We begin by showing the following.

Observation 4.11. PCi is a (∼)-set for every i ∈ {1, . . . , Kε}.

Proof: To prove this, we consider two pairs 〈v, e〉, 〈t, e′〉 in PCi for some i ∈ {1, . . . , ε̂} and
show that 〈t, e′〉 /∈ I 6∼(〈v, e〉). By definition, 〈v, e〉, 〈t, e′〉 ∈ PCi ⊆ Pi. If I 6∼(〈v, e〉) ∩ Pi = ∅
then the claim holds vacuously. So consider the remaining case. Since P1 = Pv,e is of type
C with respect to Pi, Eq. (2) and (3) imply that I 6∼(〈v, e〉) ∩ Pi ⊆ PAi . Since 〈t, e′〉 /∈ PAi ,
it holds that 〈t, e′〉 /∈ I 6∼(〈v, e〉)∩Pi, and as 〈t, e′〉 ∈ Pi, we conclude that 〈t, e′〉 /∈ I 6∼(〈v, e〉)
(by symmetry, 〈v, e〉 /∈ I 6∼(〈t, e′〉) holds as well). The observation follows.

Recall that E−(T D) is the collection of glue edges, namely, T0 edges that do not appear
by the paths ψ of the tree-decomposition T D. Sub-Phase (S2.2) and Obs. 2.2 imply:

Claim 4.12. Every glue edge e ∈ E−(T D) is protected by H.

Hence, it remains to bound the number of unprotected edges on the paths of T D. The
following definitions are useful in our reasoning. For a vertex v and an sψ− tψ path ψ ∈ T D,
define

Pmiss(ψ, v) = {〈v, e〉 ∈ Pmiss | e ∈ π(s, v) ∩ ψ},
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as the set of uncovered pairs in H that belong to P and whose corresponding replace-
ment paths protect against the failure of the edges on π(s, v) ∩ ψ. Let Emiss(P , ψ, v) =
{e | 〈v, e〉 ∈ Pmiss(ψ, v)} be the corresponding last-unprotected edges by H on π(s, v) ∩ ψ
and let Emiss(P , ψ) =

⋃
v∈V Emiss(P , ψ, v). By Cl. 4.12,

Emiss(P) =
⋃

ψ∈T D

Emiss(P , ψ).

Note that the replacement paths of the pairs of Pmiss(ψ, v) may end with the same last
edge. We now identify a set PUN

miss(P , ψ, v) of unique representatives for each last edge as
follows. For every edge e′ that has several replacement paths Pv,e for 〈v, e〉 ∈ Pmiss(ψ, v)
whose last edge LastE(Pv,e) = e′, we pick one representative pair 〈v, e∗〉 corresponding
to the path Pv,e∗ whose failing edge e∗ is closest to s among all other candidates. For-
mally, let LEmiss(P , ψ, v) = {LastE(Pv,e) | 〈v, e〉 ∈ Pmiss(ψ, v)} be the last edges of
the replacement paths of the pairs in Pmiss(ψ, v). For every e′ ∈ LEmiss(P , ψ, v), let
P(e′,P , ψ, v) = {〈v, e〉 ∈ Pmiss(ψ, v) | LastE(Pv,e) = e′}. The representative pair

for the last edge e′ denoted by P̂ (e′) = 〈v, e∗〉 for 〈v, e∗〉 ∈ P(e′,P , ψ, v) satisfying that
dist(s, e∗, π(s, v)) < dist(s, e′′, π(s, v)) for every e′′ 6= e∗ and 〈v, e′′〉 ∈ P(e′,P , ψ, v). Finally,

define PUN
miss(P , ψ, v) = {P̂ (e′) | e′ ∈ LEmiss(P , ψ, v)} and

EUN
miss(P , ψ, v) = {ej | 〈v, ej〉 ∈ PUN

miss(P , ψ, v)}.

We proceed by showing that EUN
miss(P , ψ, v) is either empty or sufficiently large.

Lemma 4.13. For every v ∈ V and every ψ ∈ T D, if EUN
miss(P , ψ, v) 6= ∅, then:

(a) |EUN
miss(P , ψ, v)| ≥ dnεe, and (b) the first dnεe edges in EUN

miss(P , ψ, v) are contained in
πj∗(s, v) ⊆ π(s, v), which is the highest heavy subsegment that intersects ψ with respect to
P.

Proof: Recall that in Sub-Phase (S2.1), the s− v shortest-path π(s, v) was partitioned into
k′ = blog |π(s, v)|c segments where the j’th segment πj(s, v) is given by πj(s, v) = π(uij−1

, uij)
for every j ∈ {1, . . . , k′}. Let e1 ∈ π(s, v) be the closest edge to s in Emiss(P , ψ, v) and e1 ∈
EUN
miss(P , ψ, v). Since e1 ∈ Emiss(P , ψ, v), it implies that e1 belongs to a heavy subsegment

and in particular, e1 ∈ πj∗(s, v). First, consider the case where this subsegment is fully
contained in ψ , i.e., that πj∗(s, v) ⊆ ψ. Recall that Pj∗(v) = {〈v, e〉 ∈ P | e ∈ πj∗(s, v)}
is the collection of s − v replacement paths in P that protect the edges on πj∗(s, v) and
LE j∗(v) is the corresponding last edges of these paths. Since e1 ∈ Emiss(P , ψ, v), it follows
that πj∗(s, v) is heavy with respect to P , i.e., that |LE j∗(v)| > dnεe. Hence, the pairs
of Pj∗(v) correspond to at least dnεe replacement paths that end with distinct last edges,
implying that |EUN

miss(P , ψ, v)| ≥ dnεe.
Next, consider the complementary case where πj∗(s, v) * ψ . This implies that e1 belongs

to the subsegment πU(ψ, v) or πL(ψ, v) that intersects with ψ. Assume first that e1 ∈
πU(ψ, v). Since e1 ∈ Emiss(P , ψ, v), it follows that |LEU(P , ψ, v)| ≥ dnεe and hence PU(ψ, v)
contains pairs corresponding to at least dnεe replacement paths that end with a distinct last
edge. The case where e1 ∈ πL(ψ, v) is analogous.
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Note that if EUN
miss(P , ψ, v) = ∅, then also Emiss(P , ψ, v) = ∅, so this set needs not concern

us anymore. Hence hereafter we concentrate on vertices v with a large set EUN
miss(P , ψ, v).

For such a vertex v, let −→
E UN
miss(P , ψ, v) = {ei1 , . . . , ei`}

be the edges of EUN
miss(P , ψ, v) ordered in increasing distance from s. By Lemma 4.13, ` ≥

dnεe. Define D(P , ψ, v) = {D(Pv,eij ) | j ∈ {1, . . . , dn
εe}} as the collection of the detours

protecting against the failure of the first dnεe ordered edges in the ordering
−→
E UN
miss(P , ψ, v).

Note that by the definition of EUN
miss(P , ψ, v), each of the detours in D(P , ψ, v) ends with a

distinct last edge (in particular, by Cl. 4.6, these detours are vertex disjoint, except for the
terminal v).

In addition, for a vertex v with a large set EUN
miss(P , ψ, v), Let e∗(P , ψ, v) ∈ Emiss(P , ψ, v)

be the closest edge to s on π(s, v)∩ψ among all edges in Emiss(P , ψ, v). Hence, e∗(P , ψ, v) ∈
EUN
miss(P , ψ, v). Note that by the end of the Sub-Phases (S2.2.1-2) and by Cl. 4.5, the

divergence point of Pv,e∗(P,ψ,v) from π(s, v) must occur on ψ, i.e., d(Pv,e∗(P,ψ,v)) ∈ π(s, v)∩ψ.
(This is because the last edges of the new ending paths protecting the first failing edges on
each subsegment πj(s, v) and the intersected segments πU(s, v), πL(s, v) were added into H,
the divergence point of the H-new-ending paths protecting the other edges on these segments
are internal to their segments.) Define the segments

σ(P , ψ, v) = π(d(Pv,e∗(P,ψ,v)), LCA(v, tψ)),

and the segment collection

SG(P , v) = {σ(P , ψ, v) | Emiss(P , ψ, v) 6= ∅} , (9)

where ψ is an sψ − tψ path, for illustration see Fig. 7.
We next claim that each of the detours of D(P , ψ, v) is sufficiently long.

Lemma 4.14. If D(P , ψ, v) is nonempty, then |Di| ≥ |σ(P , ψ, v)|/4 for every Di ∈ D(P , ψ, v).

Proof: By Cl. 4.13(b), the first dnεe edges in EUN
miss(P , ψ, v) are contained in πj∗(s, v) ⊆

π(s, v), which is the highest heavy subsegment with respect to P and v that intersects
π(s, v). Hence letting d∗ = d(Pv,e∗(P,ψ,v)), we get that d∗ occurs on πj∗(s, v) and the detours
of a nonempty set D(P , ψ, v) protect the failing of edges on πj∗(s, v).

By the right inequality of Eq. (5), for every Di ∈ D(P , ψ, v),

|V (Di)| ≥
∑
j′>j∗

|πj′(s, v)| ≥ |πj∗(s, v)|/2 ≥
∑
j′≥j∗
|πj′(s, v)|/4

≥ |π(d∗, v)|/4 = |σ(P , ψ, v)|/4 . (10)

The lemma follows.

Observation 4.15. Emiss(P , ψ) ⊆
⋃
σ∈SG(P,ψ) σ.
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Figure 7: Illustration of the segments σ(P , ψ, v). For brevity, we omit P and simply write
σ(ψ, v). Shown is an sψ − tψ path ψ ∈ T D and (a) a segment σ(ψ, v) defined by the
divergence point of the replacement-path Pv,e∗(P,ψ,v) protecting the highest unprotected edge
on π(s, v) ∩ ψ and the LCA of v and tψ; (b) the independent segments SGIS(P , ψ), where
` = max{|σ(ψ, v1)|, |σ(ψ, v2)|} is the minimum spacing between two segments.

Proof: Assume towards contradiction that there exists an edge e ∈ Emiss(P , ψ)\
⋃
σ∈SG(P,ψ) σ.

Let v ∈ V be such that LastE(Pv,e) /∈ H, i.e., e ∈ Emiss(P , ψ, v).
Recall that e∗(P , ψ, v) is the closest edge to s in Emiss(P , ψ, v), hence e∗(P , ψ, v) ∈

EUN
miss(P , ψ, v), and e is not above e∗(P , ψ, v) on π(s, v). In addition, since e ∈ π(s, v) ∩ ψ,

it holds that e is above LCA(v, tψ). Altogether, we get that e ∈ σ(P , ψ, v), contradiction.
The observation follows.

From now on, we focus on a particular path ψ in the tree decomposition T D. We
proceed by defining a notion of independence between two segments σi = σ(P , ψ, vi) and
σj = σ(P , ψ, vj) in SG(P , ψ) (see Eq. (9) for the definition of SG(P , ψ)). Let xi (resp. xj)
be the first vertex of σi (resp., σj) and let yi = LCA(vi, tψ) (resp., yj = LCA(vj, tψ)) be the
last vertex of σi, σj.

Definition 4.16 (Independent Segments). Let σi = π(xi, yi), σj = π(xj, yj) ∈ SG(P , ψ)
be such that dist(s, xi, G) ≤ dist(s, xj, G) and let ` = max{|σi|, |σj|}. Then, σi and σj are
independent if dist(s, xj, G)− dist(s, yi, G) ≥ `, otherwise they are dependent.

By Lemma 4.13, we have the following.

Observation 4.17. For a vertex v with EUN
miss(P , ψ, v) 6= ∅, we have |σ(P , ψ, v)| = Ω(nε).

Set SG ′(P , ψ) ← SG(P , ψ). We now compute a collection of maximal weighted in-
dependent set SGIS(P , ψ) greedily by adding to SGIS(P , ψ) at each step the segment
σ(P , ψ, v) ∈ SG ′(P , ψ) whose length is maximal among all remaining segments SG ′(P , ψ)
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and removing from it the segments σ(P , ψ, v′′) that are dependent with σ(P , ψ, v). For illus-
tration see Fig. 7(b). The next observation shows that the total length of the independent
set SGIS(P , ψ) is of the same order as the original set SG(P , ψ).

Claim 4.18.
∑

σ∈SGIS(P,ψ)

|σ| ≥ |Emiss(P , ψ)|/5 (see Fig. 8).

Proof: Note that by the definition of independence, σ∩σ′ = ∅ for every σ, σ′ ∈ SGIS(P , ψ).
By Obs. 4.15, |

⋃
σ∈SG(P,ψ) σ| ≥ |Emiss(P , ψ)|. Let ∆(σ) be the collection of segments

discarded from SG ′(P , ψ) before adding σ into SGIS(P , ψ). We now show that∣∣∣∣∣∣
⋃

σ′∈∆(σ)

σ′

∣∣∣∣∣∣ ≤ 5 · |σ|.

Note that every σ′ in ∆(σ) is dependent with respect to σ. The inequality follows by
the maximality of σ in ∆(σ) and by the definition of independence. The claim follows by
summing over all independent segments σ in SGIS(P , ψ).
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ℓ 𝜎 

ℓ 

𝜎′ 
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𝜎′′ ≤ ℓ 

≤ ℓ 

Figure 8: Illustration for Claim 4.18. Shown is an sψ − tψ path ψ ∈ T D and the segment σ
of length |σ| = ` that was taken into SGIS(P , ψ). The dependent segments ∆(σ) that were
discarded from SG ′(P , ψ) when adding σ occupied at most 5|σ| vertices from ψ. To see this,
observe that in the most extreme scenario, σ′ and σ′′ shown in the figure are in ∆(σ). By
the maximality of the length of σ at the time it was taken into SGIS(P , ψ), it holds that
|σ′|, |σ′′| ≤ `.

We next show the following (for the given ψ and P).

Lemma 4.19. nε ·
∑

σ∈SGIS(P,ψ) |σ| ≤ |
⋃
P∈Pmiss(P,ψ) V (D(P ))|.
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To prove the lemma, we consider an iterative process on the set V S = {v | σ(P , ψ, v) ∈
SGIS(P , ψ)}, the set of vertices whose segment is in the independent set SGIS(P , ψ). In this
process, the detours of these vertices v′ are added in decreasing distance of LCA(v′, tψ) and s.
(Note that the order is strictly decreasing since the segments are independent and hence also

vertex disjoint.) Formally, let
−→
V S = {vi1 , . . . , vik} be the collection of V S vertices sorted in

decreasing distance of LCA(vij , tψ) and s, i.e., dist(s, LCA(vi1 , tψ)) > . . . > dist(s, LCA(vik , tψ)).
Starting with G′1 = ∅, at step τ ≥ 1, let

G′τ+1 = G′τ ∪
⋃

D′∈D(P,ψ,viτ )

D′ .

Let Ĝ = G′k be the final subgraph. Hence,

Ĝ ⊆
⋃
〈v,e〉∈P

D(Pv,e) . (11)

Lemma 4.20. For every τ ∈ {1, . . . , k}, |V (G′τ ) \ V (G′τ−1)| ≥ nε/4 · |σ(P , ψ, viτ ))|.

Proof: Consider a specific detour D̃ ∈ D(P , ψ, viτ ) of a path Pviτ ,e for e ∈ Emiss(P , ψ, viτ ).
First note that since each of the detours in D(P , ψ, viτ ) ends with a distinct edge, by Cl.
4.6(2), these detours are vertex disjoint (besides the common endpoint viτ ). We distinguish

between two cases. Case (1): the internal segment of the detour D̃ does not intersect with

the vertices of G′τ−1. In this case, by Lemma 4.14, |V (D̃)| ≥ |σ(P , ψ, viτ )|/4.

Case (2): the internal segment of D̃ intersects at least one vertex of G′τ−1. Let w be the first

internal vertex of D̃ that occurs in some D′, i.e., w ∈ V (D̃) \ {d, viτ} where d (resp., viτ )

is the first (resp., last) vertex of D̃. That is, D̃[d, w] \ {w, d} is vertex disjoint with G′τ−1.

Note that by the definition of the segments, d ∈ σ(P , ψ, viτ ). We now show that |D̃(d, w)| ≥
|σ(P , ψ, viτ )|. By Cl. 4.6(2) and by the ordering

−→
V S, D′ is a detour of some Pvij ,e′ path for

vij such that j < τ . Let στ = σ(P , ψ, viτ ) = π(xτ , yτ ) and σj = σ(P , ψ, vij) = π(xj, yj) (this
definition is consistent, as the segments σ are subpaths on the tree T0).

By the ordering of the insertion into Ĝ, it holds that dist(s, yτ , G) < dist(s, xj, G). In
addition, since σj and στ are independent (i.e., in SGIS(P , ψ)),

|π(yτ , xj)| ≥ max{|στ |, |σj|} . (12)

This case is further divided into two cases depending on whether or not the failing edge e′

(protected by the detour D′) occurs on D̃[d, w]. First, consider the case where e′ = (x′, y′) ∈
D̃[d, w], that is, e′ occurs on D̃ before the first common vertex. For illustration, see Fig. 9(a).
By definition, e′ ∈ σj and by the independence of the subsegments, it holds that e′ /∈ στ . By
the ordering, yτ occurs on ψ not below d′ where d′ is the first vertex of the detour D′. We
get that

|D̃[d, w]| ≥ |D̃[d, y′]| ≥ |π(d, y′)| ≥ |π(yτ , xj)| ≥ |στ | ,
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where the last inequality holds by Eq. (12). Finally, we turn to consider the complementary

case where e′ /∈ D̃[d, w]. Then there are two d − w shortest paths in G \ {e′} given by

P1 = π(d, d′) ◦ D′[d′, w] and P2 = D̃[d, w] where P1 ⊆ Pvij ,e′ and P2 ⊆ Pviτ ,e. As P1 is

optimal in G \ {e′},

|P2| ≥ |P1| ≥ |π(d, d′)| ≥ |π(yτ , xj)| ≥ |στ | ,

where the last inequality follows again by Eq. (12).
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Figure 9: Illustration for Lemma 4.20. Shown is an sψ−tψ path ψ ∈ T D and two independent

segments στ , σj in SGIS(P , ψ). The detour D̃ was added to Ĝ at step τ and it intersects

D′, which was added to Ĝ at step j < τ . (a) The detour D̃ traverses e′, the failing edge

protected by D′, before the first mutual vertex w. (b) e′ /∈ D̃[d, w] (where d is the first vertex
of D).

By the last two lemmas we get:

Lemma 4.21. |
⋃
P∈Pmiss(P,ψ) V (D(P ))| = Ω(nε · |Emiss(P , ψ)|).

Corollary 4.22. |Emiss(P)| = O(n1−ε · log n) for every P ∈ {I2, . . . ,PC1 , . . . ,PCKε}.

Proof: Recall that by Cl. 4.12, the edges that are not covered by the paths of the tree-
decomposition are protected by H. Hence, the set of unprotected edges is given by

Emiss(P) =
⋃

ψ∈T D

Emiss(P , ψ) . (13)

The recursive tree-decomposition algorithm of [2] (Procedure Partition therein) consists of
O(log n) levels. Let ψi1 , . . . , ψi` ∈ T D be a collection of paths constructed in the same
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recursion level. Let vi1 , . . . , vi` be the first vertices of these paths respectively (the path
endpoint that is closer to s). It can be shown that the subtrees T (vi1), . . . , T (vi`) ⊆ T0 are
vertex disjoint, and hence e 6∼ e′ for every e ∈ ψij and e′ ∈ ψij′ . By Lemma 4.21, the
number of vertices occupied by the detour segments protecting the edges of Emiss(P , ψij)
is Ω(nε · |Emiss(P , ψij)|). Since P is a (∼)-set, the internal detour segments protecting the
edges on ψij and on ψij′ are vertex-disjoint. Note that the definition of independence between
detours, refers to empty intersection of their internal segments (excluding the first and the
last vertices). Since the length of each detour is Ω(nε) (see Obs. 4.17 and the proof of Lemma
4.20), this is negligible. Overall, we get that the number of vertices occupied by these detours
is bounded by Ω(nε ·

∑k
j=1 |Emiss(P , ψij)|). As the number of vertices is bounded by n, we

get that
∑k

j=1 |Emiss(P , ψij)| = O(n1−ε). Summing over all O(log n) recursion levels, and
combining with Eq. (13),

|Emiss(P)| =
∑
ψ∈T D

|Emiss(P , ψ)| = O(n1−ε · log n).

The lemma follows.

We are now ready to complete the proof of Thm. 3.1.
Proof: [Thm. 3.1] Recall that UP = I1 ∪

⋃Kε
i=0PCi . By Lemma 4.10, the uncovered pairs in

H (i.e., pairs that correspond to H-new-ending paths) are in
⋃Kε
i=0PCi . Finally, using Cor.

4.22 and summing over all O(1/ε) (∼)-sets P yields Lemma 4.7, which bounds the number
of unprotected edges (that need to be reinforced) as in the theorem. Lemma 4.2 bounds the
size of H, hence the number b(n) of backup edges. Consequently the theorem follows.

5 Lower Bound

In this section, we establish lower bounds on the size of the ε FT-BFS structures. These
bounds match the upper bound of Sec. 3 up to logarithmic factors in both the number
of reinforced edges and the size of the construct. These lower bound constructions are
generalizations of [14]. We first consider the single source case. Note that for ε ∈ [1/2, 1], by
the lower bound FT-BFS in [14] Ω(n3/2) edges are required. Hence, it remains to establish
the lower bound for ε ∈ (0, 1/2).

Theorem 5.1. For every ε ∈ (0, 1/2), there exists an n-vertex graph G(V,E) and a source
node s ∈ V such that any ε FT-BFS tree rooted at s with at most bn1−ε/6c reinforced edges
has Ω(n1+ε) edges. In other words, there exists a graph for which any (b(n), r(n)) FT-BFS

structure for r(n) = Ω(n1−ε) requires Ω(min{n1+ε, n3/2}) backup edges.

Proof: Let us first describe the structure of G = (V,E). Set dε = bnε/4c and kε = bn1−2εc.
We first describe the structure of a subgraph Gε which provides the basic building block
of the construction. In particular, the final graph G consists of kε copies of the graph Gε

denoted by Gε,1, . . . , Gε,kε that are connected to the source vertex s as will be described later.
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We begin by describing the structure of the ith copy Gε,i (the copies are identical), which
consists of four main components. The first is a path

πi = [si = vi1, . . . , v
i
dε+1 = v∗i ]

of length dε. The second component consists of a node set Zi = {zi1, . . . , zidε} and a collection
of dε disjoint paths of deceasing length, P i

1, . . . , P
i
dε

, where P i
j = [vij = pij,1, . . . , p

i
j,tj

= zij]

connects vij on πi with zij and its length is tj = |P i
j | = 6 + 2(dε− j), for every j ∈ {1, . . . , dε}.

Altogether, the set of nodes in these paths,
Qi =

⋃dε
j=1 V (P i

j ), is of size |Qi| = d2
ε + 5dε = Θ(n2ε). The third component is a set of nodes

Xi of size n− 1− kε(|πi|+ |Qi|+ |Zi|) = Θ(n2ε), all connected to the terminal node v∗i . The
last component is a complete bipartite graph Bi = (Xi, Zi) connecting every vertex in Xi to
every vertex in Zi.

So far, V (Gε,i) = V (πi) ∪ Zi ∪Xi ∪Qi and

E(Gε,i) = E(πi) ∪ {(v∗i , xit) | xit ∈ Xi} ∪ E(Bi) ∪
dε⋃
j=1

E(P i
j ).

Finally, s is connected via a star to the first vertex si of each path πi for every i ∈
{1, . . . , kε}, see Fig. 10(b) for illustration.

Overall, V (G) = {s} ∪
⋃kε
i=1 V (Gε,i) and E(G) = E(s) ∪

⋃kε
i=1 V (Gε,i), where E(s) =

{(s, si) | i ∈ {1, . . . , kε}}.
A BFS tree T0 rooted at s for this G is given by

E(T0) = E(s) ∪
kε⋃
i=1

(
πi ∪

⋃
x∈Xi

(v∗i , x) ∪
kε⋃
t=1

(xit, z
i
t)

∪
dε⋃
j=1

E(P i
j ) \ {(pij,`j , p

i
j,`j−1)}

)
,

where `j = tj − (dε − j) for every j ∈ {1, . . . , dε}.
Let B =

⋃kε
i=1Bi be the collection of edges on the kε complete bipartite graphs Bi and

let Π =
⋃kε
i=1 πi.

Observation 5.2. (a) |V (Gε,i)| = n/kε − 1 and hence |V (G)| = n.

(b) |E(G)| = Ω(|EB|) = Ω(n1+ε).

(c) |E(Π)| = kε · dε ≥ bn1−ε/5c.

We now show that every ε FT-BFS structure H must contain a constant fraction of the
edges in B =

⋃kε
i=1Bi, namely, the edges eit,j = (xit, z

i
j) (the thick edges in Fig. 10(b)).

Note that the edges of Π are “costly” in the sense that to protecting against their failure,
many edges connecting Xi and Zi should be introduced into the fault-tolerant structure
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H. To provide a succinct structure, one can choose to fortify these edges, however, since
|E(Π)| = Ω(n1−ε), upon setting the fortification budget as in the statement of Thm. 5.1,
a constant fraction of these edges could not be reinforced, resulting eventually in a dense
structure. We now formalize this intuition.

For ease of analysis, consider a partition the edges of B into dε · kε disjoint subsets
corresponding to the number of edges in Π. Let eij = (vij, v

i
j+1) ∈ πi be the j’th edge on the

path πi ⊆ Gε,i and define Ei
j = {(xit, zij) | xit ∈ Xi}. Observe that Ei

j and Ei′

j′ are disjoint for
every pair (i, j) 6= (i′, j′) for every i ∈ {1, . . . , kε} and every j ∈ {1, . . . , dε} and in addition,
B =

⋃kε
i=1

⋃dε
j=1 E

i
j.

For every ε FT-BFS structure H ⊆ G, let E ′(H) be the set of at most bn1−ε/6c = O(nε)
reinforced edges in H (which is the maximum allowed number of reinforced edges by the
statement of the theorem).

Claim 5.3. Ei
j ⊆ H for every eij ∈ Π \ E ′(H).

Proof: Assume, towards contradiction, that H does not contain e′ = (xit, z
i
j) ∈ Ei

j for some
xit ∈ Xi (the bold dashed edge (xit, z

i
j) in Fig. 10(b)). Note that upon failure of the edge

eij = (vij, v
i
j+1) ∈ πi, the unique s − xit shortest path connecting s and xit in G \ {eij} is

P ′i,j = π[s, vij] ◦ P i
j ◦ e′, and all other alternatives are strictly longer. Since e′ /∈ H, also

P ′i,j * H, and therefore dist(s, xit, G \ {eij}) < dist(s, xit, H \ {eij}), in contradiction to the
fact that H is an ε FT-BFS structure. It follows Ei

j ⊆ H.

We are now ready to complete of Theorem 5.1. By Obs. 5.2(c), |E(Π)| ≥ bn1−ε/5c. By
the statement of Thm. 5.1, the ε FT-BFS structure contains at most bnε/6c reinforced edges
E ′(H). Hence, even if all those edges are taken from the edges of Π (i.e., E ′(H) ⊆ E(Π)),
there are still |E(Π) \ E ′(H)| = Ω(n1−ε) edges in Π that remain unenforced. By Cl. 5.3,
each such edge requires that Ei

j would be added to H. Note that |Ei
j| = |Xi| = Ω(n2ε). By

the disjointness of the Ei
j sets, |E(H)| ≥ Ω(n2ε) · |Π \ E ′(H)| = Ω(n1+ε), as required.

Multiple Sources. In this subsection, we consider an intermediate setting where it is
necessary to construct an ε fault tolerant subgraph containing several ε FT-BFS trees in
parallel, one for each source s ∈ S, for some S ⊆ V .

For a given subset of K sources S ⊆ V , a subgraph H ⊆ G is an ε FT-MBFS structure if
there exists a subset E ′ ⊆ E of O(Kε ·n1−ε) edges such that dist(s, v,H \{e}) = dist(s, v,G\
{e}) for every s, v ∈ S × V and every e ∈ E \ E ′. Towards the end of this section, we show
the following.

Theorem 5.4. For every real ε ∈ (0, 1/2] and K ∈ {1, . . . , n}, there exists a graph G =
(V,E), a subset of K sources S ⊆ V , such that any ε FT-MBFS structure with at most
b(Kε · n1−ε)/6c reinforced edges, contains Ω(K1−ε · n1+ε) edges.

Set dε,K = b(n/4K)εc and kε,K = b(n/K)1−2εc.
We first describe the structure of a subgraph Gε,K which is a subgraph of Gε in the

construction for the single source case. The final constructs uses K · kε,K copies of this
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Figure 10: Schematic description of the lower bound construction for ε FT-BFS. (a) The graph
Gεi . The dashed lines corresponds to the collection monotone increasing lengths of paths P i

j .
The set of vertices Xi contains Ω(n2ε) vertices that is fully connected to the collection of Ω(nε)
vertices Zi. (b) The graph G = (V,E) consists of kε = Ω(n1−2ε) copies of the graph Gε,i

connected to the source vertex s. The bold dashed red edge (xit, z
i
j) is required upon failure of

the edge eij.

subgraph: kε,K copies per source s ∈ S. Consider now the (i, j)′th copy Gi,j
ε,K for i ∈

{1, . . . ,K} and j ∈ {1, . . . , kε,K} (all copies are identical). This subgraph consists of three
main components. The first is a path πi,j = [si,j = vi,j1 , . . . , v

i,j
dε,K+1 = v∗i,j] of length dε,K. The

second component consists of a node set Zi,j = {zi,j1 , . . . , zi,jdε,K} and a collection of dε,K disjoint

paths of deceasing length, P i,j
1 , . . . , P i,j

dε,K
, where P i,j

` = [vi,j` = pi,j`,1, . . . , p
i,j
`,t`

= zi,j` ] connects

vi,j` on πi,j with zi,j` and its length is t` = |P i,j
` | = 6 + 2(dε,K − `), for every ` ∈ {1, . . . , dε,K}.

Altogether, the set of nodes in these paths,

Qi,j =
⋃dε,K
`=1 V (P i,j

` ), is of size |Qi,j| = d2
ε,K + 5dε,K = Θ((n/K)2ε). This completes the

description of the Gi,j
ε,K subgraph.

For every j ∈ {1, . . . , kε,K}, let Xj be a set of Ω(n/kε,K) vertices. The Xj vertices are
connected via a star to a vertex ṽj. The latter is connected to the terminal node v∗i,j ∈ πi,j
for every i ∈ {1, . . . ,K}. Formally, these edges are defined by Ê(Xj) = {(ṽj, x) | x ∈
Xj} ∪ {(ṽj, v∗i,j) | i ∈ {1, . . . ,K}}. In addition, the Xj vertices are fully connected to

each of the vertices in Zj =
⋃K
i=1 Zi,j. Formally, G contains kε,K complete bipartite graphs

Bj = B(Xj, Zj) for every j ∈ {1, . . . , kε,K}. Finally, every source vertex si ∈ S is connected
to si,j for every j ∈ {1, . . . , kε,K}. Overall, the vertices of G = (V,E) are given by

V (G) =
K⋃
i=1

kε,K⋃
j=1

V (Gi,j
ε,K) ∪

kε,K⋃
j=1

(Xj ∪ {ṽj}) ∪ S
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and the edges are

E(G) =
K⋃
i=1

kε,K⋃
j=1

(
E(Gi,j

ε,K) ∪ {(si, si,j)}
)
∪
kε,K⋃
j=1

(
E(Bj) ∪ Ê(Xj)

)
.

Observation 5.5. (a) |V (Gi,j
ε,K)| = Θ((n/K)2ε).

(b) The constants can be set precisely, so that |V (G)| = n and |Xj| = Θ(n/kε,K).

(c) |E(G)| ≥ |EB| = Ω(K1−ε · n1+ε).

Let Π =
⋃K
i=1

⋃kε,σ
j=1 E(πi,j). Since each πi,j is of length dε,σ, overall

|E(Π)| ≥ bKε · n1−ε/5c . (14)

Recall that ei,j` = (vi,j` , v
i,j
`+1) is the `’th edge on πi,j.

The reasoning goes in a very similar way to the single source case. In particular, we show
that the edges of Π are costly in the sense that unless they are reinforced in H, they require
the introduction of many edges into H.

For ease of analysis, the edges of the bipartite graphs B =
⋃kε,K
j=1 Bj are partitioned

into |Π| disjoint sets Ei,j
` , each corresponds to one particular edge ei,j` ∈ Π. Let Ei,j

` =

{(xjt , z
i,j
` ) | xjt ∈ Xj}, hence |Ei,j

` | = |Xj| = Ω(n/kε,K) and EB =
⋃K
i=1

⋃kε,σ
j=1

⋃dε,σ
`=1 E

i,j
` . For

every ε FT-MBFS structure H ⊆ G, let E ′(H) be the set of at most bKε ·n1−ε/6c = O(Kε ·n1−ε)
reinforced edges in H (which is the maximum allowed number of reinforced edges by the
statement of the theorem).

Claim 5.6. For every ei,j` ∈ Π \ E ′(H), it holds that Ei,j
` ⊆ H.

Proof: Assume, towards contradiction, that H does not contain e′ = (xjt , z
i,j
` ) ∈ Ei,j

` for
some xjt ∈ Xj. Note that upon the failure of the edge ei,j` = (vi,j` , v

i,j
`+1) ∈ πi,j, the unique

si − xjt shortest path connecting si and xjt in G \ {ei,j` } is P ′i,j,` = π[si, v
i,j
` ] ◦ P i,j

` ◦ e′, and all
other alternatives are strictly longer. Note that the paths from the other sources si′ ∈ S\{si}
are not helpful as well. Since e′ /∈ H, also P ′i,j,` * H, and therefore dist(si, x

j
t , G \ {e

i,j
` }) <

dist(si, x
j
t , H \{e

i,j
` }), in contradiction to the fact that H is an ε FT-MBFS structure. It follows

Ei,j
` ⊆ H.

We are now ready to complete of Theorem 5.4. Consider any ε FT-MBFS structure H. By
Eq. (14) and by the bound on the number of reinforced edges as stated in Thm. 5.4, even if
all reinforced edges E ′(H) are taken from the edges of Π (i.e., E ′(H) ⊆ E(Π)), there are still
|E(Π) \ E ′(H)| = Ω(Kε · n1−ε) edges in Π that remain unreinforced. By Cl. 5.6, each such
edge ei,j` requires that a subset of Ω(n/kε,K) edges Ei,j

` to be included in H. It then holds
that |E(H)| ≥ Ω(n/kε,K) · |Π \ E ′(H)| = Ω(K1−ε · n1+ε) as required. The theorem follows.
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