Section 4
Want more of a challenge? View in
iconic
form (
experimental
)
# MATH introduce the AND logical operator
[
hear
]
(intro and);
[
hear
]
(and
(= 0110 0110)
(= 01110 01110)
);
[
hear
]
(and
(> 0111110 0110)
(> 0111110 011110)
);
[
hear
]
(and
(= 0111110 0111110)
(= 011110 011110)
);
[
hear
]
(and
(< 00 010)
(= 0111110 0111110)
);
[
hear
]
(and
(> 011110 01110)
(= 011110 011110)
);
[
hear
]
(and
(< 0111110 0111111110)
(< 010 01110)
);
[
hear
]
(and
(> 01111110 0111110)
(> 011111110 0111110)
);
[
hear
]
(and
(> 0111110 01110)
(> 011111110 011110)
);
[
hear
]
(and
(< 01110 011110)
(= 010 010)
);
[
hear
]
(and
(< 0111110 01111110)
(= 00 00)
);
[
hear
]
(not / and
(> 011110 010)
(> 010 011110)
);
[
hear
]
(not / and
(< 0110 011110)
(= 0110 0111110)
);
[
hear
]
(not / and
(< 0111110 011111110)
(= 010 00)
);
[
hear
]
(not / and
(> 011110 01110)
(< 0111110 0110)
);
[
hear
]
(not / and
(= 0110 0110)
(> 010 010)
);
[
hear
]
(not /
and
(< 0111110 01110)
(> 011111110 011110)
);
[
hear
]
(not / and
(> 00 010)
(< 01110 0111110)
);
[
hear
]
(not /
and
(< 0111110 0110)
(> 0111110 01110)
);
[
hear
]
(not /
and
(< 01111110 011110)
(= 011110 011110)
);
[
hear
]
(not /
and
(< 01110 0110)
(> 01111110 011110)
);
[
hear
]
(not / and
(< 0110 010)
(= 0110 00)
);
[
hear
]
(not / and
(> 010 010)
(< 011110 00)
);
[
hear
]
(not /
and
(< 01111110 0110)
(> 011110 0111110)
);
[
hear
]
(not / and
(< 0111110 0110)
(= 0111110 00)
);
[
hear
]
(not / and
(> 01110 01110)
(> 010 0111110)
);
[
hear
]
(and
(< 01110 0111110)
(< 010 01110)
);
[
hear
]
(and
(> 01110 010)
(< 0110 011110)
);
[
hear
]
(not / and
(< 00 01110)
(= 011110 00)
);
[
hear
]
(not / and
(= 00 0111110)
(> 010 010)
);
[
hear
]
(not / and
(< 01111110 010)
(> 01110 00)
);
[
hear
]
(not / and
(= 011110 011110)
(> 0110 0110)
);
[
hear
]
(and
(< 0111110 011111110)
(= 011110 011110)
);
[
hear
]
(not / and
(> 011110 0110)
(> 00 01111110)
);
[
hear
]
(not / and
(> 01110 00)
(= 011110 0110)
);
[
hear
]
(not / and
(= 011110 0110)
(= 011110 01110)
);