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Mandate

“Why do all these Quantum Computing 
guys use reversible logic?”
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Heat Generation in Computing

§ Landauer’s Principle
– Want to erase a random bit?  It will cost you
– Storing unwanted bits just delays the inevitable

§ Bennett’s Loophole
– Computed bits are not random
– Can uncompute them if we’re careful



Example

Input
(11)

Work
bits



Example

Input
(11)

Work
bits



Example

Input
(11)

Work
bits



Example

Input
(11)

Work
bits

Output (1)



Example

Input
(11)

Work
bits

Output
Output



Example

Compute UncomputeCopy Result



Thermodynamic Reversibility
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Quantum State
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Two Spin-½ Particles
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Four Distinguishable States
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State Evolution

§ H is Hermitian, U is Unitary
§ Linear, deterministic, reversible

h (Continuous form)

(Discrete form)



Measurement

§ Outcome m occurs with probability p(m)
§ Operators Mm non-unitary
§ Probabilistic, irreversible



Deriving Measurement

“It can be done up to a 
point… But it becomes 
embarrassing to the 
spectators even before it 
becomes uncomfortable 
for the snake”

– Bell

“Like a snake 
trying to 

swallow itself 
by the tail”



A Simple Measurement
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A Simulated Measurement
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A Simulated Measurement

↑ ↓

↑ ↓
Terms remain orthogonal –

evolve independently, no interference
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Density Operator Representation



Mixed States
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Discarding a Qubit
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Toffoli Gate
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Deutsch’s Controlled-U Gate
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Equivalent Gate Array

for Toffoli gate
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Almost Any Gate is Universal
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Protecting against a Bit-Flip (X)

Even Odd OddInput Output

Syndrome à third qubit flipped
(reveals nothing about state)



Protecting against a Phase-Flip (Z)

Phase flip
(Z)



General Errors

§ Pauli matrices form basis for 1-qubit operators:

§ I is identity, X is bit-flip, Z is phase-flip
§ Y is bit-flip and phase-flip combined (Y = iXZ)



9-Qubit Shor Code

§ Protects against all one-qubit errors
§ Error measurements must be erased
§ Implies heat generation
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Fault Tolerant Gates

H
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Clifford Group

§ Encoded operators are tricky to design

§ Manageable for operators in Clifford group using 
stabilizer codes, Heisenberg representation

§ Map Pauli operators to Pauli operators

§ Not universal
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Simplified Circuit
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Equivalent Circuit
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Implementing a Gate
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Implementing a Gate



Conclusions

§ Quantum computing requires logical reversibility

– Entangled qubits cannot be erased by dispersion

§ Does not require thermodynamic reversibility

– Ancilla preparation, error measurement = refrigerator


