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Abstract

Adaptive behavior is best understood through
study of the complete action-perception cycle
within which it occurs [7]. For naturally occur-
ring behaviors, this requires detailed modeling of
an animal’s nervous system, body, and environ-
ment. Beer in [2] presents a simplified model
agent which captures many biologically relevant
qualities, while itself having no immediate ana-
logue in the animal kingdom. He then evolves
a number of visually-guided behaviors using the
model, and suggests that a careful analysis of their
operation could provide empirical data concern-
ing the role representation plays in cognitive be-
havior. This paper provides an example of such
analysis, discusses its consequences, and gives a
critique of Beer’s methodology.

1 Introduction

Adaptive behavior emerges from rich interactions be-
tween the nervous system, body, and environment of an
animal. Computational neuroethology is a methodol-
ogy for studying the neural basis of adaptive behavior
within an explicitly embodied, situated framework [5]. It
makes use of joint models of relevant aspects of the neu-
ral mechanism itself, the biomechanics of the body, and
the external environment. Models used in computational
neuroethology vary in degree of biological plausibility.
The more realistic can make quantitative, experimen-
tally verifiable predictions [15]. More qualitative work
can inform further experimentation or put theoretical
models from the biology literature to the test of mech-
anistic implementation [7]. Beer proposes an even sim-
pler model that could be used to empirically investigate
ideas that are currently argued primarily at the theoret-
ical level [2]. His model is sufficiently complex to be able
to exhibit very simple instances of what he calls “mini-
mally cognitive behaviors”, such as basic object percep-
tion and discrimination, while still being amenable to
rigorous analysis.

The most sophisticated behavior examined by Beer
involves a visual discrimination task where the agent
tries to catch circular objects, but “runs away” from dia-
monds. Beer creates an environment and an agent body
that are just sufficient to allow this behavior. He then

evolves a dynamical neural network as a control system
for the agent, such that the network will actually cause
the desired behavior to be exhibited. His paper con-
cludes with a series of questions: are there “circle” and
“diamond” detectors in the agent; does the agent make
use of representation in any meaningful sense; or is it
more appropriate to view the role of the agent’s control
system as facilitating the expression of the desired be-
havior by the whole dynamical system within which it
is embedded. His purpose in the paper is to show that
these kinds of questions can be investigated within his
framework, and not to actually answer them. This pa-
per takes up that challenge. It presents an analysis of
an agent evolved using the same neural network archi-
tecture, body, and environment that Beer describes, and
then attempts to answer his questions. The paper then
draws together the arguments as to why we can reason-
ably expect questions asked of an invented model to have
some true relevance outside of that model, and not sim-
ply be a computationally expensive form of navel gazing.

2 The dynamical system

This section briefly summarizes the nature of the dy-
namical system within which Beer evolved his minimally
cognitive behaviors, as described in [2]. This consists of
a joint model of a “nervous system”, a body, and an en-
vironment, which together form an autonomous dynam-
ical system. The details of the model vary somewhat
from behavior to behavior. Only those details relevant
to the circle/diamond discrimination behavior are de-
scribed here.

The environment

The simulated agent is situated on the “floor” of a rect-
angular environment of dimensions 400× 275 units (see
Figure 1). Space is empty except for the agent itself and
a single object, which “falls” down from an arbitrary lo-
cation at the top of the environment. The object is either
a circle of diameter 30 units or a diamond with edges of
length 30.

The body

The agent has a circular body of diameter 30. It is con-
strained to move horizontally along the bottom of the
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Figure 1: The agent and its environment (not to scale). Ob-
jects fall vertically down towards the agent, which is con-
strained to move in the horizontal direction only. A simula-
tion run ends when the object approaches the bottom of the
environment.

environment, and cannot move vertically. The agent is
also constrained to face directly upwards. It has a set
of sensors arranged as in Figure 1. These see along a
“ray” projecting out from the body of the agent. The
leftmost and rightmost ray point 30◦ from the vertical.
There is no noise in the sensors, actuators, or any part
of the dynamical system.

The nervous system

The nervous system of the agent is a continuous-time
recurrent neural network, whose neurons obey:

τiẏi = −yi +
N∑
j=1

wjiσ(gj(yj + θj)) + Ii, i = 1, . . . , N

σ(x) =
1

1 + e−x

where y is the activation level of the neuron, wji is the
connection weight from the jth to the ith neuron, g is a
gain, θ is a bias, I, when non-zero, is an external input
from a sensor, τ is the time constant of the neuron, and
N is the number of neurons. There is a single neuron for
each sensor, which all feed forward to a set of five fully
interconnected intermediate neurons, which in turn feed
forward to a pair of motor neurons. Motion of the agent
left and right is controlled by the difference in activation
level of the two motor neurons. Bilateral symmetry is
imposed on the parameters of the neural architecture.
In other words, connection weights, biases, and gains
associated with the neurons on the left of Figure 2 are
equal to those in the symmetric location on the right.

3 The behavior

The dynamical system is now completely specified ex-
cept for the actual parameters of the neural network
controller. These parameters were chosen by artificial
evolution such that the agent would move towards falling
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Figure 2: The “nervous system” of the agent. There are
seven sensor neurons feeding forward to five fully intercon-
nected intermediate neurons, which feed forward to a left and
right motor neuron.

circular objects, and away from diamond-shaped objects.
The evolutionary algorithm will only be sketched here.
It relied on a real-valued encoding of the network pa-
rameters, with mutation but no cross-over. Mutation
was performed by addition of a vector chosen from a
uniform distribution over the unit hypersphere of appro-
priate dimensionality, scaled by a Gaussian centered on
zero and with a specified variance. I used an algorithm
due to Sibuya [14] for this. For further information on
the evolutionary algorithm, or on the components of the
dynamical system, see the original paper, which is re-
freshingly clear on the details.

Using a population size of 100, a fully competent indi-
vidual emerged after several thousand generations. Fig-
ures 3 and 4 show the horizontal position of the agent
over time as it responds to either of the two object
shapes, circular or diamond. Clearly it achieves the de-
sired behavior. Performance generalizes well over differ-
ent initial horizontal displacements of the object. Notice
that the agent approaches the object initially regardless
of its shape, and then seems to decide whether to catch it
or run away. The strategy is qualitatively similar to the
one presented by Beer, although it differs in detail. The
next section analyzes how the behavior operates, and to
which aspects of the object’s shape the agent is sensitive.

4 The analysis

Establishing the neural mechanism of the behavior di-
rectly is difficult. Analyzing a continuous time recurrent
neural network with more than two neurons is hard (see
[1] for a rigorous treatment of the one and two neuron
case). This particular agent has five neurons with mu-
tually recurrent connections. The approach I took was
to perform experiments on the agent at the behavioral
level, and then use the constraints this revealed to guide
an analysis of the network.

Given that the agent needs to perform exactly one
of two possible actions, catch or flee, it is worth asking
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Figure 3: The response of the agent to a circular object.
The graph shows the horizontal position of the agent and the
object over time. Time and distance units are both arbitrary.
The agent moves to match its position with the object.
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Figure 4: The response of the agent to a diamond-shaped
object. The agent closes in on the object, then moves away
from it again.

when it makes the commitment to one or the other. One
way to test this is to initiate an experiment with the
falling object having one shape, and then watch how the
agent responds if the shape of the object changes in mid-
experiment. Figure 5 shows that the agent will respond
to the new shape only if it is introduced early enough.
This holds true even when the agent has the object in
full view. This suggests that the agent is receptive to the
shape of the object for a limited period only, and from
then on is receptive only to the cues necessary to either
move closer or further away.

Another important concern is to determine the cue or
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Figure 5: The effect of switching the shape of the object in
mid-experiment. Low values imply that the agent finished
close to the object, suggesting that it treated it like a circle.
High values suggest the opposite, that the agent treated the
object like a diamond.

cues that the agent uses to distinguish circles for dia-
monds. Beer speculates that the relevant cue may be
“smooth” versus “pointy”. The truth, at least for every
agent I evolved, was somewhat more mundane. Recall
that circular objects were specified to have a diameter of
30, and diamonds to have sides of length 30. Viewed from
below, the horizontal extent of a diamond will therefore
be 30

√
2 = 42.4, while the horizontal extent of a circle

will be just 30. Figure 6 gives strong evidence that hori-
zontal extent, or something very strongly correlated with
it, is the cue used by the agent to distinguish between
the two shapes. If a circle of diameter 42.4 is presented
to the agent, it will treat it as a diamond, and if a dia-
mond is shrunk to have a horizontal extent of 30, it will
be treated as if it were a circle.

Now the question is: how does the agent’s behavior
come to be determined by the horizontal extent of the
object? Perhaps some of the agent’s sensors play a larger
role in this than others. One way to find out is to “blind”
each sensor in turn and see how it affects the behavior of
the agent. This gives some information, but is difficult to
interpret because blinding sensors affects aspects of the
behavior we are not immediately concerned with, such as
the agent moving towards the object to start with, and
the feedback loop needed for efficient catching. The am-
biguity this causes can be removed by making stronger
use of the complete control we have over the simulation.
My solution was to let one sensor “see” the object as
the opposite shape to the rest, and then determine how
strong an impact it had on the overall behavior of the
agent. Now the activity of the sensor is different only
when the shape of the object makes a difference, which
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Figure 6: Response of the agent to objects with varying
widths. This is the diameter of a circle, or the corner-to-
corner distance of a diamond. Notice that the agent treats
diamonds and circles with the same horizontal extent almost
identically. Objects with widths of around 20–30 are treated
as attractive, and all other widths are treated as repulsive.

is exactly what we want. The results of this experiment
were much clearer, showing that only two of the seven
sensors played a significant role in discrimination. When
the object started to the right of the agent, these were
the right-most sensor and the sensor immediately to the
left of center (sensor neuron 3 and 7 in Figure 2). When
the object fell to the left of the agent, the symmetrically
opposite pair of sensors were involved instead (1 and 5).
This must be so, given that the network is bilaterally
symmetric, and that the falling object is the only factor
that breaks the symmetry of its environment1.

Figure 7 shows the activity of the sensors implicated in
discrimination within the critical time period identified
in Figure 5 and refined by further experimentation. No-
tice that the regions where the sensors are active overlap.
In contrast, for a circle there is a distinct gap between
their active regions. For objects with widths varying
between that of a circle and that of a diamond, the gap
length correlates strongly with the behavior of the agent.
More convincingly, the agent can be made to display be-
havior ranging from full attraction to full repulsion by
artificially varying the gap length. Also, if sensor data
is made binary (either high or zero, with no fine-grain
distance information) the behavior of the agent is un-
affected, other than becoming slightly less efficient at
catching. This suggests that the agent truly is measur-
ing a qualitative feature such as this gap length, rather

1This means it is impossible for an agent with this neural archi-
tecture to deal with objects falling directly from above, or falling
outside its sensor range, because there is nothing to break symme-
try and allow it to move left in preference to right or vice versa.
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Figure 7: Sensor activity for the agent interacting with a
diamond object during the “sensitive” time period identified
by earlier experiments. Note that the overlap in the activity
of the two sensors implicated in discrimination.

than some more complex quantitative measure. That
the gap length is in fact the primary feature of interest
was confirmed by further experimentation and controls.
Analysis of the trigonometry shows that the gap length is
a good indicator of object width, although the perceived
width depends on how far away the object is when the
agent reaches it. The slack around the widths of circles
(30) and diamonds (42.4) shown in Figure 5 means that a
certain amount of error in the measurement is tolerable.

Figures 8 and 9 show the internal state of the agent
as it responds to either a circle or a diamond. This state
consists of the activation levels of the intermediate neu-
rons. Both sensor and motor neurons also contain state,
but this plays a role only over short time periods because
they have no recurrent connections. Notice that striking
differences do not arise in the internal state until quite
late. These differences can be shown to be caused by the
fact that the agent is close to an object, or distant from
it, rather than causing the agent to be close or distant.
An attempt to interpret earlier differences in a causal
manner quickly runs into trouble. For example, consider
the slightly different early activation levels of neuron 2.
Tracing what causes this difference is extremely hard.
After much effort, the best I could say is that yes, it
correlates with the horizontal extent of the object. But
unfortunately, so did every activation level. This is not
surprising given that all the sensor neurons feed to ev-
ery intermediate neuron, and every intermediate neuron
feeds to every other intermediate neuron.

So much for “cause”, how about “effect”? It is much
easier to make definite statements about this. Earlier
experiments determined that there is a specific time pe-
riod during which the agent “decides” whether to catch
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Figure 8: Activation levels of intermediate neurons over time
when a circular object is presented.
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Figure 9: Activation levels of intermediate neurons over time
when a diamond object is presented. Compared with Figure 8
there are no dramatic differences during the sensitive period,
although there are many subtle ones.

or flee. This suggests that the dynamical system ini-
tially progresses similarly regardless of the shape of the
object presented, and then diverges irreversibly into two
different modes depending on some feature that corre-
lates with the object shape. The feature could be di-
rectly sensed, or could be embedded in the accumulation
of small differences in neural activation levels. The key
point is that at some stage the dynamical system is likely
to diverge based on a relatively small difference. So one
way to work out when the dynamical system is “making
a decision” is simply to test how sensitive it is to small
changes in neural levels at various times. Figure 10 shows
the result of doing just that. For three of the five inter-
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Figure 10: Effect of “kicking” intermediate neurons at differ-
ent times. The object the agent is interacting with happens
to be a diamond, so transitions from high final distance to
low final distance show “sensitive” regions. The two neurons
that show sensitivity are intermediate neurons 2 and 5.

mediate neurons, these “kicks” have little effect at any
time. The remaining two neurons are quite robust to
kicks too — except in a particular range, within which
a kick is sufficient to make the dynamical system act as
if the object had the opposite shape. This sensitive area
compares well with Figure 5. When the object starts to
the agent’s right, the two neurons implicated are inter-
mediate neurons 2 and 5 in Figure 2.

So, although every piece of state in the agent corre-
lates with the shape of the object, the activation lev-
els of two specific neurons within a specific time period
seem particularly crucial for determining the behavior of
the agent. I will return to this point later, and discuss
what it implies in terms of the use of representation by
the agent. The next section briefly touches on some ex-
plorations of agents evolved to perform discrimination
without the object width cue.

5 Variations on a theme

I evolved a number of agents to generate the “circle-
loving” behavior as specified by Beer, and all relied on
measuring the horizontal extent of the object in some
way. I do not believe that Beer intended his particu-
lar choice of object dimensions to allow the agents to
use this relatively simple “hack”, but his specifications
are too clear and complete for the problem to simply
be a misinterpretation on my part. Previous work Beer
was involved in showed that dynamical neural networks
could indeed be used to implement an agent that dis-
tinguished between shapes by integrate sensor readings
over time [17]. Perhaps if circles and diamonds with
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Figure 11: Path of agent responding to circles that fall in a
straight line, and circles that “wiggle” as they fall.

the same width were used, so that the horizontal-extent
hack was not available, the agent truly would be forced
to distinguish between “pointy” and “smooth” as Beer
envisaged. My attempts to evolve such an agent met
with limited success. The best agent behaved qualita-
tively correctly, in that it eventually turning towards the
object if it was a circle and turning away if it was a di-
amond. Its strategy was to approach the object in such
a way as to arrive at a stereotyped distance from it at
a well-defined time, and then to drift closer or further
away depending on small differences in the sensor read-
ings at that point. This was not particularly robust. A
better approach to creating such an agent would be to
evolve with test-cases that include circles and diamonds
of varying sizes. However, adding another parameter to
generalize over made the problem too hard for my com-
putational resources and methodology. To perform an
accurate discrete simulation of a continuous time recur-
rent neural network requires fine-grain time steps, and is
quite computationally expensive.

I was interested in whether this type of agent could be
evolved to discriminate between objects that differ not
in shape but in temporal behavior. In particular, I tried
to evolve an agent to catch circles that fell passively as
before, but to run away from circles that “wriggled” a
little as they fell. Figure 11 shows a successful agent do-
ing just that. The strategy it adopts is to close in on the
object initially, and then once the object has fallen far
enough a wriggle becomes easy to detect. It is interest-
ing that the agent relies on a simple form of active vision
in both this case and in the circle-loving behavior from
the previous section. This suggests that active vision is
strongly advantageous for agents with limited sensing ca-
pability. Beer found similar “foveating” behavior in his
agents.

6 Use of representation

I now return to Beer’s question about the use of repre-
sentation in the agent. Is there something in the neural
network of the agent that we can point to and call a rep-
resentation? Philosophically, there are difficulties even
asking the question. A representation is only a repre-
sentation for or to someone; the concept is meaningless
without an observer (see [8] or [9, page 101]). It must be
clear who or what this representation-user is. Otherwise
we will have introduced a homunculus into our analysis,
which will need explaining in turn.

Before tackling the actual circle-loving agent presented
in Section 4, imagine that one of its neurons went “high”
in the presence of a diamond and “low” in the presence
of a circle2. As observers, we may choose to say that
the activation level of the neuron represents the shape
of the object. Irrespective of whether this is justified
or not, it does not tell us whether the agent itself uses
representation. We have isolated something that may be
a representation; now we must identify something within
the agent that can be called a representation-user. This
is not easy to do in a satisfying way.

Turning to the actual agent presented in this paper,
the situation is even less clear. First, there is no con-
venient single feature related to the shape of the object
that we as observers can pick out. There is also no ob-
vious candidate for a distributed representation (I tried
various forms of dimensionality reduction in the search
for one, without success), except in the weak sense that
the entire state of the agent might serve as one.

Beer asks if, rather than talking about representation,
it might be more appropriate to view the neural circuitry
of his agents as “merely instantiating dynamics that,
when coupled to their bodies and environments, give rise
to effective performance of the tasks for which they were
selected”. The language of dynamical systems certainly
seems to match reality better in this case. Dynamical
systems theory also promises to provide a new set of tools
for guiding our understanding of systems like this agent
and its environment. See, for example, [12] for an analy-
sis of an evolved agent in terms of state space attractors.
For the circle-loving agent, even though formal analy-
sis was difficult, useful structure could be picked out by
perturbing the dynamical system and noting changes in
its time evolution. That analysis showed that slightly
perturbing a particular part of the network (neurons 2
and 5), during a particular time period (50 to 100 steps),
strongly affected later behavior of the agent; the behav-
ior bifurcates into either catching or running away. In a
sense, this point in space and time shares some character-
istics with what we think of as representation. The state
of the network elements at this point correlate with some
external reality, so we can interpret or assign meaning-

2In fact, this was the case for one agent I evolved.
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ful labels to the state; the state also has a clear impact
on determining the agent’s behavior. There are many
significant differences however. The “representation” is
temporally bounded; look later or earlier at the same
network elements and their states have very different in-
terpretations, if indeed they can be interpreted mean-
ingfully at all without reference to the rest of the net-
work. Experimentation shows that the “representation”
can occur at different times, depending on the distance
to the object, and even in different parts of the network,
depending on whether the object is to the left of the
agent or to the right (neurons 1 and 4 are used instead
of 2 and 5 if the object is to the left of the agent rather
than the right). So it seems more sensible to speak in
the language of dynamical theory and call a bifurcation
a bifurcation, rather than trying to stretch the notion of
representation to the point of ripping it.

7 Discussion

We can conclude from the previous section that repre-
sentation in the conventional sense is not necessary for
an agent to perform the circle-loving behavior. Can any
general conclusions be drawn from this? This section
examines how realistic it is to claim that experimenta-
tion with Beer’s model can provide useful empirical data
about the general nature of cognitive behavior.

The short answer is that at our current level of under-
standing, existence proofs of agents performing visually-
guided tasks without the use of representation do indeed
represent a step forward (consider, for example, progress
in behavior-based robotics [13]). This answer is sufficient
to justify the work in this paper.

But the issue of representation was just one example
chosen by Beer to motivate his model. He intends the
model to be generally useful for studying the “cognitive
implications of adaptive behavior ideas”. Is this hope
justified? Clearly this can only be answered by further
research — but what I can do is show that if he is wrong,
he is at least in good company. When Beer compares his
approach to related work, he focuses on current research
on evolving or building agents. I intend to instead discuss
Beer’s work in relation to literature explicitly dealing
with the idea of inventing simple artificial creatures to
explore issues in cognitive behavior.

In this and other work, Beer’s interest lies in devel-
oping general principles for a dynamical theory of adap-
tive behavior [3]. To this end, he choses to work with a
very simple idealized model agent. It can be argued that
since “general principles” by definition cannot be specific
to any particular system that exhibits them, we are free
to trade off biological plausibility for simplicity in the
models we use to elucidate those principles. A similar
point was made in the context of cognitive organization
by Dennett in a much-cited commentary:

. . . one does not want to get bogged down with
technical problems in modeling the cognitive ec-
centricities of turtles if the point of the exercise
is to uncover very general, very abstract princi-
ples. . . So why not then make up a whole cog-
nitive creature, a Martian three-wheeled iguana,
say, and an environmental niche for it to cope
with? [11, original italics]

In a sense this is exactly what Beer has done, and ex-
actly the reason why he has done it. Some very early
work by Toda also resonates with Beer’s notion of min-
imally cognitive behavior. Toda sketched a design for
a fungus-eating3 robot uranium miner which lived in a
simplified environment and performed a specific cogni-
tive task (collecting uranium) involving visual orienta-
tion and discrimination [16]. His stated goal was to “be-
gin with an environment, and attempt to design a sub-
ject with the minimal optimal qualities to function ef-
fectively in this environment.” It is worth noting that a
considerable amount of Toda’s design relates to choosing
an appropriate distribution of receptors over the robot’s
retina to suit its particular task. This illustrates an ad-
vantage to working with a complete model of an agent
and its environment: there are now few places to sweep
hard problems such as perception “under the rug”, as
arguably happened unwittingly in later AI work [6].

A criticism that could be leveled at Beer is that there
is no reason a priori to expect adaptive behavior to
have particularly strong general principles. The contrary
could in fact be argued, given how strongly specific be-
haviors tend to be tied to a particular environment and
agent morphology. I should stress here that Beer is cau-
tious in his stated objectives: “the goal is to explore the
space of possible dynamical organizations of agents that
engage in minimally cognitive behavior”. Such an ex-
ploration may reveal constraints inherent in the nature
of adaptive behavior, if such exist, and if not it at least
gives a glimpse of “life as it could be” [6] to contrast with
the extant biological world. Again to quote Dennett, this
time commenting on the philosophical underpinnings of
modeling work in AI:

. . . getting the cat skinned at all can be a major
accomplishment. . . This sort of research strategy
permits highly abstract constraints and difficul-
ties to be explored (how could anything learn a
natural language? how could anything achieve a
general capacity for pattern recognition in an un-
stereotypic environment?) . . . [10, original italics]

The work of Braitenberg offers perhaps the most con-
vincing justification for Beer’s model. Braitenberg, in
a celebrated series of thought-experiments [4], designed
vehicles that exhibited seemingly complex behavior from

3Note that this research took place in the sixties.
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relatively simple components. He noted that it is far eas-
ier to invent such systems than it is for an observer to
analyze their mechanism after the fact. He called this
observation the “law of uphill analysis and downhill in-
vention”. Applying this lesson in the current context, it
suggests that it may be far simpler to construct adaptive
behaviors than it is to analyze pre-existing ones. This is
close to what Beer does. He designs an environment,
a body, and a nervous system such that the resulting
dynamical system gives rise to a desired behavior. If
there are in fact general principles of adaptive behavior,
Braitenberg’s evidence suggests that we might discover
them far more rapidly by invention rather than by the
horrendously difficult task of reverse-engineering nature.

There was a little sleight of hand in that last paragraph
because Beer does not in fact design the entire dynamical
system by hand. In particular, only the architecture of
the nervous system is specified, with the actual parame-
ters being chosen by artificial evolution. Understanding
the resulting agent therefore requires some “uphill anal-
ysis” after all. This is in fact an interesting extension to
the situation Braitenberg considered. What happens if
there is a part of a device you are trying to invent that
you have no idea how to build? Artificial evolution allows
us to put our ignorance in a “black box” and still make
progress. If we can successfully analyze the solution that
evolution came up with, that is ideal. But even if we can
only partially analyze the solution, then we may at least
learn something about the space of viable solutions —
for example, that representation-free strategies are pos-
sible in a given context. And even if we can’t analyze
the solution at all, we have an existence proof that the
particular model we evolved parameters for is capable of
exhibiting the desired behavior.

8 Conclusions

This paper has shown that a simple “circle-loving” vi-
sual discrimination task can be performed without mak-
ing use of anything identifiable as a “representation” in
the conventional sense. This answers a question posed by
Beer in [2]. It seems likely that the corresponding agent
that Beer evolved, but did not analyze, discriminated
between objects based on their width rather than on a
measure of smoothness as Beer may have intended. This
cannot be stated definitively because there is no guaran-
tee that evolution led to the same strategy in both cases.
It did prove possible to evolve an agent to discriminate
between objects which no longer differed in width, but
the best strategy found was not particularly robust.

In general, Beer’s model holds promise as one way to
investigate the abstract properties of adaptive behavior.
By working with an agent whose body and environment
we are free to invent as we choose, and in a simulated en-
vironment, we have enormous experimental control com-
pared with what is possible in biology (consider, for ex-

ample, the experiment in Section 4 where an object was
effectively one shape for one sensor and a different shape
for all the rest). This means that if we evolve part of our
design for an agent — either because we don’t yet know
how to construct that part, or because we are interested
in exploring the space of possible designs — we have very
strong leverage with which to analyze the result.

One cause for concern might be that the model does
not incorporate noise, which can significantly alter the
dynamics of a system [12] and may well play a crucial
role in adaptive behavior generally.
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