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Abstract

When storing, communicating, or processing information,
we are often forced to make decisions earlier than we
would like. Perhaps we can only afford to store a subset
of our data, and must choose what to discard long before
we know which parts are truly important. Or perhaps we
only have time to compute responses for a certain number
of scenarios, and must decide which to prepare before the
situation we face becomes into focus. This paper examines
whether quantum resources can help us to delay those de-
cisions until they can be made in an informed manner.

Quantum Procrastination

The possible states of a quantum system form a continu-
um. We could theoretically encode as many classical bits
as we like in such a system, the catch being that when we
measure it we can extract just a small part of that data. But
there are many situations of practical interest where we
care about just a small part of a large body of information.
In particular, when we prepare for some future event, we
need to cover many contingencies – despite the fact that
once we reach that event, only one set of preparations will
be relevant. In a situation like this it might be possible to
prepare a compact quantum store covering all the contin-
gencies, such that when the time comes to read the store
we can choose our measurement carefully to extract the
information relevant to the contingency we care about. Of
course, the price paid for this compactness is likely to be
that the store can only be used once – reading it may de-
stroy its quantum state and any potential information about
other contingencies.

The first part of this paper shows that the procedure
just described is in fact feasible. For example, it is possi-
ble to code two classical bits in a single qubit, later decide
which bit we care about, and read it out with an accura-
cy of 85%. And in a variant of the teleportation process,
it turns that that this qubit can be passed to a party with
whom we share an Einstein-Podolsky-Rosen pair by trans-
mitting a single classical bit.

Another situation in which procrastination would be
useful occurs for computation. Suppose we expect some
input in the future that we wish to react to as quickly as
possible, but the computation needed to respond is very
long and involved. Is there any way to go ahead and do the
computation and decide later what input we care about?
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Fig. 1. Bloch sphere viewed along they axis (with the positive
sense of the axis pointing into the page). The gray shading shows
pairs of states that have the same behavior when the observableZ
is measured. When the observableX is measured instead, differ-
ent pairs form, now grouped vertically. We can therefore choose
a state to give whatever behavior we want forX andZ indepen-
dently.

The second part of this paper reviews the work of Brukn-
er, Pan, Simon, Weihs & Zeilinger (2001), in which the
authors propose a mechanism for doing just this with some
(small) probability.

Two Bits per Qubit

Suppose we have two classical bits of information that
we might need to consult at some future time. We know
that only one of the bits will actually be important, but we
don’t yet know which one. Can we trade the fact that we
will only want to measure one bit for some reduction in
the storage capacity required? This section shows that we
can in fact store the two bits in a single qubit, if we are
willing to accept some possibility of error (15%).

Figure 1 shows one way to achieve this. Two classi-
cal bits together can take on four possible values. We will
associate one bit with thex axis and one with thez axis
of the Bloch sphere. There are four states that are within
45◦ of both axes, as shown in the figure. If theZ observ-
able is measured, the states segregate horizontally into the
pairs shown in gray, in terms of measurement statistics. If
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theX observable is measured, the states segregate verti-
cally. So we can encode the two classical bits by picking
whichever of the four states will give appropriateX and
Z measurements. Describing the four states in the compu-
tational basis gives:

|ψ00〉 = ∆|0〉 + δ|1〉
|ψ01〉 = ∆|0〉 − δ|1〉
|ψ10〉 = δ|0〉 +∆|1〉
|ψ11〉 = δ|0〉 −∆|1〉

where

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉

δ = sin
π

8
=

1√
(1 +

√
2)2 + 1

= 0.38

∆ = cos
π

8
=

√
1 − δ2 = 0.92

Measuring|ψ00〉 or |ψ01〉 in the computational basis
will result in a|0〉 with probability∆2 = 0.85, while mea-
suring|ψ10〉 or |ψ11〉 in this basis will result in a|1〉 with
probability 0.85. Similarly, measuring|ψ00〉 or |ψ10〉 in
the basis formed by the eigenvectors ofX will result in
one basis vector with probability0.85, while measuring
|ψ01〉 or |ψ11〉 will result in the other basis vector with the
same probability. Notice that the pairs of states with the
same behavior with respect to theX observable are differ-
ent from those that behave the same with respect to theZ
observable.

Putting it all together, the procedure is as follows. Sup-
pose Alice has two classical bits, A and B. First she gen-
erates a qubit in the state|ψAB〉 – for example by prepar-
ing the state|0〉 and then applying the appropriate rota-
tion around they axis,Ry((1+2A)(1− 2B)π

4 ). She then
sends this qubit to Bob (or waits to read it herself at a
later point – the situations are equivalent). Bob decides if
he wants to know about the value of A or the value of B.
If he wants A, he immediately measures the qubit in the
computational basis and gets the value of A with proba-
bility 0.85. If he wants B, he measures the observableY
(or equivalently he first rotates the qubit byRy(−π

2 ) and
then measures in the computational basis), and gets the
value of B with probability0.85. In either case, once he
makes one measurement he cannot make the other.

If we were unwilling to accept some chance of error in
our measurement, then storing two bits would clearly be
impossible. To guarantee the outcome of a measurement
with probability one, the qubit would need to be in one of
the two eigenstates of the corresponding observable, leav-
ing no room to encode information about a second bit.
But if some possibility of error is acceptable, that opens
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Fig. 2.Bloch sphere with they axis pointing into the page. These
states are similar to those in Figure 1, but rotated to make one
pair impervious to bit flips and the other pair impervious to phase
flips.

up enough wiggle-room for storing information about the
two bits. A later section shows that if we can tolerate a
somewhat higher probability of error, even more wiggle-
room opens up and we can squeeze a third bit into our
long-suffering qubit.

Two Bits per Bit (offer subject to terms and conditions)

If we combine the procedure from the previous section
with teleportation, it turns out that we can send two bits
from Alice to Bob using a single classical bit and a shared
EPR pair – subject to the important constraints that Bob
must only care about one of the bits and be willing to tol-
erate some probability of error. The key observation is that
while quantum teleportation in general requires two clas-
sical bits to be sent, for a qubit in a known state drawn
from one of four states separated by 90◦ on some plane
through the Bloch sphere as in Figure 1, we can make do
with a single bit.

If Alice and Bob share a pair of qubits in a Bell state,
Alice can pass a qubit|ψ〉 = α|0〉 + β|1〉 to Bob by
interacting |ψ〉 with her side of the Bell state pair. In
the normal procedure, Bob will end up with a bit-flipped
and/or phase-flipped variant ofψ, |ψ′〉 = α|0〉 ± β|1〉 or
|ψ′〉 = β|0〉±α|1〉. During the teleportation process, Alice
learns which of these four variants Bob will have. By send-
ing Bob this information encoded in two classical bits, Al-
ice gives Bob everything he needs to transform|ψ′〉 into
the desired state|ψ〉.

Suppose we have a qubit prepared as described in the
previous section. If we rotate the state of the qubit by 45◦

around they axis, we get one of the four states shown in
Figure 2. Bob can easily undo this rotation if Alice can
transmit the qubit state correctly. When|ψ〉 is in one of
these four states, Alice need only send Bob a single bit of
information, telling him whether the|ψ′〉 he has access to
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after teleportation is the same as|ψ〉, or a variant. She does
not need to tell him which variant it is. Each of the states in
Figure 2 is left unchanged by one type of variation, either
bit-flips or phase-flips. Since Alice constructed|ψ〉, she
can easily tell whether|ψ′〉 will in fact be identical to|ψ〉
based on which kinds of flips occurred. If Bob is told that
|ψ′〉 is a variant, he can recover|ψ〉 by simply applying
the operatorXZ to the qubit. Whatever the state is, it will
be invariant to either the bit-flipX or the phase-flipZ,
so Bob doesn’t need to know which flip occurred in order
to correct it. Hence one bit of classical information is all
Alice need send to give Bob access to a state prepared as
described in the previous section.

So with the expenditure of a shared pair of qubits in
a Bell state, Alice can send Bob a single bit of classical
information that allows him to answer one of two binary
questions with 85% accuracy, where the choice of which
question to ask is his and not Alice’s.

It is worth comparing this process to superdense cod-
ing (Bennett & Wiesner 1992). In both cases, Alice has
two classical bits she would like to send to Bob. They
share an EPR pair of qubits. Alice performs some manip-
ulation on her qubit to encode the two bits – in the case
of superdense coding by directly applying one of four op-
erators, and in our case by applying one of four operators
to an intermediate qubit and then using the teleportation
machinery to transfer the state. In superdense coding, Al-
ice sends Bob her qubit, allowing him to recover the two
bits exactly by determining which of four operators Alice
applied to it. In our case, Alice only needs to send Bob a
classical bit. The price for this is that Bob can only recov-
er (his choice of) one of the bits, and even that has some
probability of error – so this coding scheme is by no means
superdense, but it is nevertheless moderately well packed.

Three Bits per Qubit

What if we want to pack three bits into a qubit? This is
possible, although at the cost of lower accuracy (79%).
Imagine growing cones around each direction along the
three axes of a Bloch sphere, as shown in Figure 3. The
intersection of these cones with the sphere represents the
set of states that will give a particular result for the ob-
servable associated with an axis, with a certain probability
that approaches chance as the cone becomes wider. We
need to expand the cones until we get intersections be-
tween triplets of cones representing all the axes:

x2 + y2 = sin2 θ

x2 + z2 = sin2 θ

y2 + z2 = sin2 θ

The angleθ controls the size of the cones. This set of
equations has eight solutions:

y
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Fig. 3. Deriving a three-bit code. We need to find eight states to
encode our three bits. This figure shows what can be coded for a
given acceptable error rate (determined by the angleθ). We need
to increaseθ until x, y, andz cones intersect with each other
– otherwise there will be some states that we cannot represent.
Note that asθ grows, pairs of cones intersect before first, giving
three two-bit codes equivalent to that described in the previous
section.

(x, y, z) =
1√
3
(±1,±1,±1)

Letting (sx, sy, sz) be the signs of(x, y, z), chosen to
correspond to three classical bits we wish to encode, we
can translate this result into the following states:

|ψ〉 = 0.89|0〉+ 0.32(sx + syi)|1〉 if sz = +1
|ψ〉 = 0.46|0〉+ 0.63(sx + syi)|1〉 if sz = −1

The expected value of the observableX works out
to be0.58sx. Similarly 〈Y 〉 is 0.58sy and〈Z〉 is 0.58sz.
These results show that for whichever one of the three ob-
servables we choose to measure, we get the value of the
corresponding classical bit with probability 79%.

More Bits?

If we try to pack four bits into a single qubit using a similar
procedure, we run into trouble. It is easiest to see why by
looking at how the three qubit case would fail if we were
constrained to two dimensions. We require an arrangement
of three axes, such that there is a point within 90◦ of any
combination of poles of those axes. If this is not possible,
then we will be unable to represent all the settings of the
three bits. With three axes in two dimensions, for a solu-
tion that is symmetric in the bits we need the six poles
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Fig. 4. A circuit for quantum teleportation is used to supply
the input to a function. This circuit is adapted from Nielsen
& Chuang (2001).|β00〉 = 1√

2
(|00〉 + |11〉) is an Einstein-

Podolsky-Rosen pair. With some probability the measurements
M1 andM2 will reveal that neither of the bit flip or phase flip
corrections implemented byX andZ are necessary, and we are
free to rearrange the circuit as shown in Figure 5.

of the three axes to be 60◦ apart from their nearest neigh-
bors. If we choose three poles that are 120◦ apart from
each other, then it is clear that we cannot find a state that
is within 90◦of all of them. Hence we cannot represent at
least one setting of the three bits. If we switch around the
senses of the axes, or move them from the equi-angular
arrangement, this fact will remain true. Another dimen-
sion is needed. The same is true of the four bit case in the
three-dimensional Bloch sphere; we simply run out of di-
mensions, and can’t represent all the possible settings of
the four bits within the hyper-cone constraints.

We might also consider what happens when the num-
ber of qubits is increased. Suppose we haven qubits, from
which we will later want to extract just a single bit with
reasonable accuracy. How many bits can be encoded? I
don’t yet have any result better than simply coding two or
three bits in the individual qubits and then choosing which
to measure. Intuitively, it seems that this should be sub-
optimal, since it permits multiple of the original bits to be
read rather than just one – we are retaining more informa-
tion than is required. If it is possible to do better it will
clearly require moving away from simple product states.
Since the number of dimensions required to specify the
state of an unentangledn qubit system is just3n, we can
encode at most3n bits this way.

Procrastination and Computation

The previous sections have shown that if we are willing to
take a moderate gamble, it is possible to procrastinate on
a choice that would otherwise need to be made up front:
namely, which of a set of bits should be encoded for fu-
ture use. Another choice we would often like to delay is
which input to feed to a computation. Might it be possible
to perform a computation before we have decided what the
actual input should be? This could be useful if the compu-
tation is very long and we want to be prepared to make a
fast response to an event.
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Fig. 5.With some probability the measurementsM1 andM2 will
reveal that no transformation need be applied to the unmeasured
partner in the EPR pair in order for it to become|ψin〉. The cen-
tral idea of Brukner et al. (2001) is that in this case, we can begin
computing on that qubit as early as we like. In fact, we are free to
compute with it long before|ψin〉 even becomes available, and
need only wait forM1 andM2 to reveal that we can trust the
result.

In Brukner et al. (2001), the authors show that it is in
fact possible to perform a quantum computation before its
input has been specified, with some (unfortunately small)
probability. To simplify their argument a little, let us con-
sider a computation performed with just a single qubit as
input. Suppose that qubit is supplied via the machinery of
quantum teleportation, as shown in Figure 4. With telepor-
tation, there is one chance in four that the qubit is trans-
mitted unpermuted. So if we start computing with it im-
mediately (Figure 5), before the input has actually been
defined, there is some chance that when the teleportation
procedure is finally applied we will end up with the correct
result without any further processing required.

If there aren input qubits, the odds of success are just
1 in 4n. This result is not interesting when applied to clas-
sical inputs, since we can do just as well here by simply
picking a random input, computing for it, then accepting
the result if we eventually find out we guessed the right
input (our odds are1 in 2n, which is also what we would
get in Figure 5 if we know that|ψ〉 is |0〉 or |1〉 and hence
immune to phase flips). It is potentially useful for quan-
tum inputs, but the low odds of success limit any obvious
applications.

Suppose we are willing to give a mistaken result with
some probability for a computation on a classical input.
Can we do any better than simply computing for a ran-
dom input and then using the result if it turns out that
we chose the right input, or just guessing at the answer
otherwise? This gives the right answer with probability
2m+2n−1

2m+n , wherem andn are the number of inputs and
outputs of the computation. This probability is tiny if the
number of inputs and outputs are large.

For a single qubit input and output, it is hard to think
of a way to do any better than this classical strategy (which
gives a 75% probability of success in this case). The tele-
portation mechanism doesn’t help for classical inputs. And
if we instead compute on a superposition of the possible
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inputs, then we need some way to amplify the input we
care about at a later point. But this is at least as hard as the
problem faced in quantum search algorithms, where terms
of a particular sign need to be amplified (Grover 1997).
In our case we are after terms with a particular value of
|ψ〉, which can be tagged with a negative sign by apply-
ing a controlled NOT to an ancillary1√

2
(|0〉 − |1〉) state.

More significantly, we could change the oracle in a search
problem to tag solutions by giving them a particular val-
ue of |ψ〉 rather than changing their sign – so if we could
solve our problem, we could solve quantum search. This
reduction of our problem to quantum search shows that
we shouldn’t expect to be able to pull out the term we want
without reapplying the function many times, as in Grover’s
algorithm. But if we have to reapply the function, than the
whole procedure is moot, since once the correct input is
known we might as well discard any earlier computations
and apply the function directly to the real input! So there
seems to be disappointingly little room to maneuver when
it comes to procrastinating on which input to feed a com-
putation.

Conclusions

This paper has shown that, to a certain extent, it is possi-
ble to delay decisions about which piece of information is
important and worth transmitting until after the transmis-
sion has taken place. But it seems harder to delay deci-
sions about what should be computed until after the com-
putation has been made, since it is difficult to pull out
the component we care about from a superposition with-
out knowing what the other components are – requiring
that we repeat the computation. Perhaps such procrasti-
nation will call for more drastic and fanciful measures
(Moravec 1992).

Obligatory Quantum Story

Suppose an epic intergalactic war is being fought between
two alien races, the S’hor and the Grvr. The Grvr have di-
vided into two strike forces, separated for generations, that
are approaching the S’hor stronghold from different direc-
tions. They have adopted this tactic because they are not
quite sure of the location of the S’hor homeworld. As they
draw closer, the S’hor detect a one bit message passing be-
tween the two Grvr forces. This is the only such message
these groups have been able to pass because of continual
electromagnetic jamming by the S’hor (the Grvr had antic-
ipated this and bypassed the jamming by a prior agreement
to encode the bit in the destruction of one of a pair of bi-
nary stars). What can the S’hor infer about this message?
They know that the Grvr were uncertain whether a third
race, the Bel, would be providing the S’hor with their rare
and powerful weaponry – a key piece of strategic informa-
tion that would dwarf any other considerations. The S’hor

had recently deployed Bel weapons against the Grvr group
that sent the message, so it seems logical for them to con-
clude that this is what the message indicates – and in fact
that it is a waste, since they had also revealed their posses-
sion of Bel weapons to the second group during an attack.
But their assumption that the message was a simple single
bit of information turns out to be a grave mistake. The use
of Bel technology was of crucial strategic concern to the
Grvr, true, but a close second was the location of the S’hor
homeworld. And in fact the Grvr group sending the mes-
sage had detected the homeworld on their long-distance
sensors. By prior agreement, and using shared EPR pairs
and the techniques of this paper, that group encoded both
the use of Bel weapons and their detection of the home-
world in the one-bit message. The other group, having in-
dependently learned of the weaponry, chose to read the
homeworld-detection bit, saw it was set (with 85% proba-
bility, a virtual certainty amidst the vagaries of battle), and
converged on the other group’s trajectory to join forces
and win the day.
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