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Abstract

Robot projects are often evolutionary dead ends, with the software and hardware
they produce disappearing without trace afterwards. In humanoid robotics, a small
field with an avid appetite for novel devices, we experience a great deal of “churn”
of this nature. In this paper, we explore how best to make our projects stable and
long-lasting, without compromising our ability to constantly change our sensors, ac-
tuators, processors, and networks. We also look at how to encourage the propagation
and evolution of hardware designs, so that we can start to build up a “gene-pool” of
material to draw upon for new projects.

We advance on two fronts, software and hardware. For some time, we have been de-
veloping and using the YARP robot software architecture [11], which helps organize
communication between sensors, processors, and actuators so that loose coupling is
encouraged, making gradual system evolution much easier. YARP includes a model
of communication that is transport-neutral, so that data flow is decoupled from
the details of the underlying networks and protocols in use. Importantly for the long
term, YARP is designed to play well with other architectures. Device drivers written
for YARP can be ripped out and used without any “middleware.” On the network,
basic interoperation is possible with a few lines of code in any language with a socket
library, and maximally efficient interoperation can be achieved by following docu-
mented protocols. These features are not normally the first things that end-users
look for when starting a project, but they are crucial for longevity.

We emphasize the strategic utility of the Free Software social contract [15] to soft-
ware development for small communities with idiosyncratic requirements. We also
work to expand our community by releasing the design of our ICub humanoid [25]
under a free and open license, and funding development using this platform.
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1 Introduction

Robotics development is, in some ways, like natural evolution. Consider robot
software. Every piece of software has its niche: the environmental conditions
within which it can be used. Within this niche it will grow and change and
perhaps expand to nearby niches. Some niches are large (standard PCs),
some are medium-sized (for example robots like Khepera [21], Pioneer [18]
and AIBO [23] to mention a few), and some are tiny (a newly developed
humanoid). Software evolves quickly as new technologies get proposed and
hardware changes; if trapped in too narrow a niche it tends to become obso-
lete and die, together with the efforts of the developers who have contributed
to it. Robot hardware is subject in turn to the changes in the commercial
and industrial environment. In academia, software and hardware designed for
robotic projects are prone to obsolescence, because although graduate students
may be talented developers they are rarely experienced and disciplined system
engineers. Also, usually the development of a robotic platform is not the main
goal of the people who are working on it but simply a means to an end. For
such researchers hardware and software development are time consuming and
tedious tasks that take away time and energy that could be better spent doing
research. Yet at the same time, the design of a robotic platform is a delicate
and crucial task that cannot be easily delegated to untrained personnel. In
research laboratories fast changing hardware and lack of human resources too
often narrow the niche in which robotic platforms live.

In this paper, we are concerned about how robotics researchers can avoid being
caught in tiny niches, and how to prevent “genetic isolation” from setting in.
We want to find a way to avoid this trap, without sacrificing the freedom
to radically change hardware and software, a freedom that will be crucial in
“bleeding-edge” research for years to come.

For software development, the best long-term solution to these problems is to
facilitate code reuse both in time (from past to future) and space (between
geographically dispersed people and institutions). For projects of a reason-
able size this means following a modular approach, where software is ideally
divided in independent components, that can be developed and maintained
by different people so that efforts are shared among groups having distinct
competences. A modular software platform is flexible. Obsolete modules are
removed and substituted for newer ones without catastrophic effects. It is
difficult to take advantage of code written by other people in different con-
texts unless that code avoids extraneous constraints and dependencies at all
levels, from the hardware architecture to the development environment and
programming language. In robotics, dependencies between modules need to
be minimized also from the point of view of run-time performance; as long as
resources are available the addition of new components should not clash with
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Figure 1. Our model of a humanoid robot’s “brain”. We assume a set of processors,
some of which may be on the robot, some of which may not be. We draw no distinc-
tion; for research purposes, it makes sense to have off-board processing to do today
what robots will be able to do on-board tomorrow. We assume diversity: different
devices, operating systems, processors, different languages, libraries, etc. (of course,
within our own project we have standards, but we don’t expect everyone using our
robot to agree). We exploit key Free Software tools for smoothing over differences in
operating systems, build systems, and programming languages. We develop YARP,
for smoothing over differences in networking, devices details, and libraries relevant
to robotics. We release YARP as Free Software and use it to support our open robot
platform, the ICub humanoid, whose design will be available under free and open
licensing.

the overall behavior of existing ones (in terms of throughput, latency, etc).
And from the hardware development point of view, the robotic platform can
be seen as another factor in the equation of code reuse. Common hardware,
common protocols, electrical standards, sensors, etc. can certainly make our
life easier. As it does for software, modularity can play a role in the hardware
design too.

In this paper we describe our efforts to build a modular humanoid robot
platform (see Figure 1). We describe YARP [11], an open source library that
we have developed to support software development on humanoid robotics.
With YARP we try to facilitate code exchange between researchers, especially
when this speeds up the time it takes to develop a platform and use it for
research. We here report aspects of YARP that we hope will contribute to
longevity and interoperability of software developed for robotics. Analogously
for hardware, we describe our efforts to create an open robotic platform, the
ICub that can be shared among several research groups worldwide.

Following the Open Source philosophy we make the code of our software and
the design of our hardware available so that other researchers can better un-
derstand it and have the freedom to improve and better adapt it to their needs.
We think it is relevant to any small research group, either academic or indus-
trial, who wishes to develop novel robots (as opposed to build applications on
third party robots). We want to maximize the reach of such research groups,
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Figure 2. With the aid of a set of free and open source tools, a C/C++ based project
like YARP can have a very wide reach. C/C++ source code is quite portable and
widely supported, but the infrastructure needed to compile such programs varies a
great deal. Tools like autoconf and automake have smoothed over the differences for
UNIX-like systems. CMake (left) goes further and makes projects easy to compile
within a wide range of integrated development environments (including UNIX-like
systems, but also Microsoft Visual C++, Apple Xcode, Kdevelop, etc). For operat-
ing-system dependent functions, we use the free and open source ACE library [7].
SWIG (right) takes C/C++ source code and generates “wrappers” for it, usable from
many different languages (including Matlab via Java).

being mindful of the fundamental tension between providing a consolidated
system and giving enough freedom to change every single part via upgrades
and replacements.

2 A software ecology

Our initial motivation was that many robot projects are “black holes”, in
terms of software. A lot of software gets sucked in, but very little comes
out. Once a piece of software has been adapted to a particular robot, it
takes a lot of work to extricate it again and apply it to another. Obvi-
ously the answer to this problem is modularity. So there are now several ar-
chitectures/middleware/frameworks for modular robot systems, YARP being
one of them. A major concern for any such middleware (including YARP)
should be that it not also become in turn a “black hole” – the danger is
that once a piece of software has been adapted to a particular architec-
ture/middleware/framework, it may take a lot of work to extricate it again
and apply it to another. That would be somewhat self-defeating in the long-
run, since reuse would only be practical as long as the same middleware was
in use. So modularity alone is not a solution to software reuse, since dif-
ferent organizing architectures, middleware, or frameworks may be mutually
incompatible. It is important that modules developed can fit into a broader
“ecology”: the complicated, sometimes messy collection of niches world-wide
in which software development occurs.
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2.1 C/C++

We decided to use C++ as the main language for development. This is moti-
vated by the fact that C++ is an object oriented language that is widely used
by many developers in the world, and is well supported and portable on al-
most all the available platforms. Perhaps more importantly for robotics, C++
allows writing very efficient code and interfacing with the hardware at the low-
est level. The drawback is that the compile process varies a lot depending on
the platform and development environment. For example Linux and Cygwin
developers use mostly Makefiles, whereas Microsoft Windows developers may
prefer Visual Studio project files. Although C++ has reached a fairly good
level of portability which allows, with a reasonable effort, writing applications
that compile on all platforms, it is still very common to have to wrestle to
port code that was written for one platform onto another. On the other hand,
following a modular approach, we would like our software to be as flexible as
possible and be adaptable to the needs of users and the platform that they
work on. In YARP, unavoidable dependencies have been made as localized as
possible to modules that can be compiled or not depending on the underlying
system and user choices. So for example applications that require a GUI get
compiled only when the supporting libraries are installed on the system, and
all the essential operations of YARP are independent of GUIs. We take similar
care for dependencies on mathematical and image processing libraries.

Among the tools available for automatic configuraton of software packages,
we decided to use CMake [19]. CMake is a cross-platform, open-source build
system. It produces build files for the environment of choice (e.g. makefiles
for Unix, Borland and MinGW and project files for all Microsoft compilers)
starting from a language independent description. The language of CMake
is powerful enough to support a flexible configuration process based on the
packages that are available in the system and the preferences of the user
(see Figure 2). Through CMake the build process of YARP is robust, simple
and flexible. CMake is free and open-source, with a healthy community of
developers. We also maintain an autoconf build procedure for those UNIX
users who prefer not to use CMake. We use another free and open-source tool
called SWIG to make YARP easy to use from many different languages. In
all these choices, we are following the practices of large successful open-source
projects.

2.2 Free Software

The ability to integrate software modules into a system depends not just on
the technical constraints attached to their use, but also the cultural constraints
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Figure 3. A potted history of YARP (for more details, see [11]). YARP was born
on Kismet [2], grew up on Cog [3] and BabyBot [12], and serves as the software
architecture for the iCub humanoid [25]. Along the way other humanoids have also
used the system. With ICub, we are trying to create some hardware “genes” that
can travel along too, so each robot does not need to be designed from scratch. There
are currently 9 copies of the ICub head.

(be they social, legal, or commercial) they carry. For example, whether two
modules can be integrated can depend not just on their interfaces but also on
the conditions under which use of the modules is permitted by their respective
creators, and what conditions the integrator wishes to apply to the aggregated
system. This adds a great deal of complexity to the process of integration.
In general, software produced under conditions where the creator has strong
opinions about how it should be used, and enforces those opinions in licensing
and other measures, does not make a good module to build on. It is possible,
but painful.

The Free Software model is an alternative that strikes a different balance be-
tween creator and integrator. It proposes a set of standard freedoms which
should be granted with software. Taken together these freedoms make the
software actually useful as building blocks without excessive social, legal, or
commercial complexity. The freedoms are enforced using copyright law prin-
ciples that apply to most of the world.

The Free Software model says nothing about the cost of software, although it
does tend to contribute to commoditization, driving the cost of infrastructure-
related software such as web-servers and operating systems down. Free soft-
ware should not be confused with “freeware”. Freeware software is available
without charge but may have complex social, legal, and commercial terms at-
tached, and may or usually will not grant the freedoms associated with free
software.

The effectiveness of free and open software is becoming better understood from
a business perspective [28]. The free and open model has had a crucial effect
in the field of embedded devices, a large and growing market that overlaps
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with robotics, spurred by the existence of embedded Linux [6]. We release
all our work under free and open licenses, in order to encourage their use as
building blocks. Historically, our “YARP” software grew and developed this
way, principally through a collaboration between robotics groups at MIT and
the University of Genoa (Figure 3).

2.3 Interoperating

The closest project in spirit to YARP is that of the Player project [27]. The
Player/Stage software collection is widely used in the field of mobile robotics,
and is the nucleus of a healthy, pragmatic community of developers. YARP
and Player were developed independently in different robotics communities
(humanoids and mobile robots respectively) over a similar time period. Both
over time became open source projects; Player was registered on sourceforge
(a commonly used repository for open software) in 2001, and YARP in 2002.
Initially there was little overlap or mutual awareness between the projects. In
2005, YARP began refactoring its device API, influenced by a Player paper
on this topic [26]. In particular, the existing “thin wrapper” of the hardware
was augmented with a factory and remotization procedure. At about the same
time, Player’s networking was refactored to be more flexible (“Player 2.0”, see
[4]) in order to break out of a client/server communication model and allow
a more flexible network and transport choices – an area where YARP has
historically been strong.

Culturally, Player is biased towards mobile (wheeled) robots, with sensing and
algorithms for navigation being of central importance, while YARP is biased
towards humanoid robots, where there are many loosely coupled behaviors
involving different sets of sensors and actuators. In our opinion (speaking of
course just for ourselves, and not the Player developers), both projects are now
at a state where if either project had existed in mature form before the other
was started, the other could most certainly have been built by extension rather
than as a separate development. To make YARP, Player would need to have
its device and networking model decoupled further, its networking model and
transport interface generalized yet again, and have some new drivers devel-
oped; to make Player, YARP would need to have many new devices developed,
its use of ACE and some C++ features excised, and many localization and
mapping related algorithms added. The extensions would be quite a bit of
work, but certainly less than beginning from zero. So what should we say to
a new researcher starting a project and not sure which to use? How bad is it
to be faced with a choice of systems rather than a single coherent one?

The free software ecology contains many cases of long term side-by-side projects
with somewhat different cultures and goals. We see diversity at every level:
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the operating system (GNU/Linux, FreeBSD, etc.), the desktop environment
(Gnome, KDE), the command-line shell (bash, tcsh, etc.), and so on. When
licensing permits it, code flows quite freely from project to project. In any
case, the projects are mutually visible, in terms of source code, mailing lists,
documentation etc. There is duplication of effort, but in the long run there
is a growing consensus that this diversity is proving healthy. Since choice and
change at every level is expected, individual parts tend to be more modular
and robust than they would otherwise be in a “monoculture.”

Ideally, with free and open software, the software “genes” (abstract program-
mer interfaces, protocols, actual implementation code, etc.) in different projects
can flow back and forth or be aggregated. Useful genes will tend to be picked
up, less useful genes will tend to languish. Software trapped behind propri-
etary or otherwise-awkward licenses is unlikely to survive the death of the
organization it belongs to.

It is instructive to look at two instances of YARP/Player aggregation:

• Since 2006, Player contains a “yarpimage” driver which can accept images
from a YARP Network (see acknowledgements section for credits). The mo-
tivation for the driver was that YARP can transmit data using multicast, a
transport not implemented in Player. This driver let Player treat YARP as
a camera, just like any of the other more regular cameras for which Player
already had drivers.

• Since 2007, YARP contains a “stage” driver which gives access to a 2D robot
simulator associated with the Player project from a YARP Network. This
driver lets YARP treat Player/Stage as a motor control system, just like
any of the other more regular control boards for which YARP already had
drivers.

These instances have the property that they “scratched an itch” – they met
a need that a particular developer had. They also have the property that the
impact each system has on the other is well-localized, to a single module.
Much deeper integration would be possible, but already just by being free and
open source the projects can get along for any developer who needs something
from both.

In the redesign of YARP’s device approach, active steps were taken to reduce
the coupling between devices and networking. This was motivated by general
concerns of modularity, and also to make it simpler to take YARP devices, rip
them out of the YARP library, and use them in other projects. The YARP
device framework mandates a very thin C++ wrapper which permits direct
function calls, rather than forcing operation through a message passing frame-
work. The value added by YARP’s wrapper is to simplify the externalization
of device configuration (Player also has an equivalent of this) and to factor the
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device into interfaces corresponding to different device families (which is just
good software engineering, shared by any good implementation of a hardware
abstraction layer). The key extra value added by YARP is to stop precisely
there. When writing a driver for a particular device, we make no assumptions
about how it will be communicated with (this is an area in which YARP differs
from Player). There is no mention of message queues, buffering, etc., unless
the device already has such things internally.

It seems strange to claim that not doing something adds value. But this is
the fundamental point of modularity, to refrain from making a dependency
if you can avoid it. The reason why one might want to intertwine devices
and networking is to achieve the important ability to control and monitor a
device remotely. For YARP, this ability is implemented at the device family
level rather than the level of individual devices. We provide proxy devices that
can wrap any devices belonging to a given family (such as cameras or motor
control boards) and make them accessible remotely. These proxies use YARP
networking, but there’s nothing to stop someone else writing Player proxies,
or proxies for standard RPC-based systems.

We are often asked why we do not use CORBA for communication. Certainly,
it would be possible. But we believe CORBA is a very good example of a
middleware that has over-reached. Using CORBA imposes a cost in terms of
complexity and learning-curve that is hard to justify or pay for in an open-
source project. KDE and GNOME, two major desktop environments, began
with ambitions to use CORBA, but eventually backed away from it to sim-
pler, more specialized libraries. One of those is called D-Bus, an interprocess
communication library for desktop environments. Responding to the “why not
use CORBA” question in their FAQ [20], they answer that an “IPC system
API should not leak all over a program; it should come into play only just
before data goes over the wire.” We agree with this ideal.

3 Devices and Drivers

Code reuse becomes difficult at the level where algorithms communicate with
the low-level hardware. The OS layer of YARP tries to minimize dependencies
between algorithms and the hardware for which we define a constant interface
(threading, memory, network, filesystem). Unfortunately more specific hard-
ware (motor control boards and frame grabbers are popular examples) requires
a more sophisticated mechanism. In these cases vendors provide device drivers
and a set of APIs to the user. The API comes in the form of a static or dy-
namic library which is linked to the user’s code. Unfortunately APIs vary a
lot even within devices that belong to the same family. Even worse the API
of the same hardware may vary on different operating systems or change on
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h=vaopen(“/dev/tty1”);
vasetBaudRate(57600);
vasetDataBits(8);
vasetParity(false);
…
int newpos=100;
vamove_to(h,newpos);
…
vaclose(h);

User Code

h=vbopen(“/dev/usb”);
…
double newpos=100;
vbgoto(h,newpos);
…
vbclose(h);

A)

B)

VABoard API

R
S

23
2

VBBoard

U
S

B

User Code

API

Figure 4. Example of code dependency. A) VABoard is a motor control board which
interface to the robot through serial port. The user’s code contains code to initialize
the board and control the robot through the API library provided by the vendor.
B) A new motor control board is connected to the robot; this new device has a
USB interface and a different API. The differences are propagated to the user’s code
which must be rewritten.

future releases of the hardware. User code becomes dependent on the particu-
lar board for which it was initially developed and bound to the decisions and
assumptions of the vendor. For example vendor A might decide to use integers
to represent the position of a motor joint, wheras vendor B might decide to use
a floating point variable. Otherwise interchangeable devices may have different
“initialization” procedures. Consider for example a motor control board which
has a serial interface to the host computer; the API of this board will probably
require that some parameters (port number, baud rate, number of data bits,
etc) are specified when the device is created. Suppose now that we obtain a
more recent release of the same board that now has a USB interface. In this
case the parameters to initialize the board are different and we are forced to
rewrite all processes that use it (the situation is represented in Figure 4).

We call devices which can only be accessed using vendor supplied material
“sticky devices” because they tend to make the particular set of assumptions
chosen by the vendor stick to the user’s code. A logical step in such a situation
is to wrap the functionality supplied by the vendor in a facade, so that source
code dependencies are reduced. In YARP wrappers can be made individually,
compiled and built separately, and optionally used across the network. This
mechanism produces a level of separation between device-specific code and
user code that is effective for “quarantining” the sticky devices. This is achieved
in three ways: (i) definition of interfaces for families of devices (ii) localization
and separation of device initialization and creation (iii) creation of network
wrappers and separation between devices and communication.

Note that when we talk about “interfaces” here we do not refer to the interface
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description languages (IDLs) used in CORBA and other systems, but simply
to a consistent API in C++. We avoid using IDLs because they impose extra
constraints on the user’s toolchain. Concerns related to communication are
addressed in point (iii), not (i). We keep communication and device interfaces
separate, so that users can exploit one and not the other as they wish, and
also code written to use a device remotely can later be made local with only a
cost of a single extra virtual method call compared to calling the vendor’s API
directly. This is important so that users do not need to go through a painful
porting process if they discover at some point that remote operation is too slow
for their application – for example, an implementation of inertial-driven sta-
bilization eye movements (the so-called vestibular-ocular reflex) might require
a very tight loop between sensors and motors.

3.1 Device Interfaces

An interface to a YARP device is the specification of the functionalities it
provides. In practice in C++ an interface is a virtual base class, whose member
functions define the ensemble of functionalities a device must implement in
order to provide that interface. A YARP device is a “wrapper” class which
implements all methods declared in its interface. A single device can of course
expose more than a single interface (in C++ this is implemented through
multiple inheritance). All details specific to the hardware (vendor’s API and
library) are handled in the wrapper class and are hidden behind its interfaces.
The idea is that changes in the hardware are caught by the wrapper class and
never propagated to the user code. As a result, if interfaces are well designed,
the impact on the code due to hardware change is minimized. Of course,
unique features of a device can be exposed in a new interface, but without
much benefit over using the vendor’s code directly for that specific feature.
And any code written using that novel interface will need to be reworked if
another device is substituted.

As discussed previously, initialization parameters may introduce annoying de-
pendencies in the user’s code. To solve this we have defined a common interface
to all devices (the DeviceDriver interface) which normalizes how devices are
initialized and un-initialized, and, more importantly, how initialization param-
eters are passed to them. In particular this interface defines two methods:

virtual bool open(yarp::os::Searchable& config)=0;
virtual bool close()=0;

This open method initializes the device. Initialization parameters are passed
to the function as a (typically nested) list of key-value entries represented as
a Searchable object. A Searchable can contain all possible parameters that
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VABoard.ini
Name=VABoard
Port=/dev/tty1
Baud=57600
Bits=8

Name=VBBoard
Port=/dev/usb

VBBoard.ini

Figure 5. Interfaces allow code reuse. VABoard and VBBoard (see Figure (4)) now
implement the same interfaces (through their respective wrapper classes). The user’s
code accesses the hardware through these interfaces and is not aware of the details of
how the methods are actually implemented. The different initialization parameters
are listed in configuration files and are thus separated. VABoard and VBBoard are
now completely interchangable.

devices might require for initialization. Initialization parameters for devices
are stored in “.ini” files (again in the form of a list of key-value entries). A
process that wants to open a device reads the file and transfers its content
into a Searchable object. This class plays a role in YARP similar to that of
the ConfigFile class in Player/Stage, except generalized to work for parameters
expressed as command line arguments, or passed across the network, or created
in a GUI, etc. – we abstract across all the possible sources of configuration
settings. The configuration object is passed to the device through the open
function. It is worth stressing that up to now this procedure is totally device
independent, because the parameters are just copied and not interpreted by
the process. It is only in the implementation of the open method (in the
wrapper class of the device) where the Searchable object is parsed to extract
the parameters that will be used to inizialize the device. The Searchable object
is designed so that it can collect information about how it is used, yielding
some basic documentation about the parameters relevant to a given device.

The close method performs all the operations required to shut down the device
properly and release all the resources it was using. No parameters are required
by this function.

YARP also defines interfaces to board families of devices, like frame grab-
bers or motion control boards. Overall interfaces captures similarities among
devices and allows separating device dependent code from user code. To the
extent that user code uses interfaces shared by other devices, another device
can be substituted later without change to that part. This includes devices
with different initialization procedures, or different APIs (see Figure 5). De-
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Figure 6. Network wrappers allow device remotization. A generic Server Network
Wrapper exports the YARP interface of VABoard so that it can be accessed re-
motely by another machine. At the other side of the communication link the Client
Network Wrapper exports the same interface of the remote device so that it can be
transparently accessed by the client code. The local device and the Client Network
Wrapper are totally interchangable, the only difference between the two is in term
of performance (the time it takes to execute a function) and initial configuration.

vices can also be nested or assembled into composite structures if necessary.

3.2 A factory of devices

Encouraging device access through interfaces achieves a good level of sep-
aration between vendor/device specific APIs and user level code. Interfaces
alone, however, do not guarantee a complete level of separation. In practice
users must still specify the type of device they want to create. Care must
be taken to avoid this introducing unwanted coupling between device specific
code and user code. A common software engineering practice is to localize ob-
ject creation so to minimize the amount of code that is responsible for object
creation and initialization. We have seen that in YARP part of this is realized
by the DeviceDriver interface, which encourages all initialization procedures
to be performed inside a standard open method. We then go one step further,
and encourage device creation to be delegated to a factory. The factory con-
tains a list of all devices available in YARP and the corresponding functions
to call to create them. It receives a list of initialization parameters, creates the
device, and initializes it through the DeviceDriver interface (this is similar to
the DeviceTable in Player). If the process is successful a valid pointer to the
device is returned. This pointer is the only “access point” to the device and
(via dynamic casts) its interfaces.
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3.3 Device Remotization: Network Interfaces

A final level of separation is achieved by supporting device remotization, or
operation across the network via proxies. This feature is desirable for many
reasons. It allows separate compilation and execution of different parts of the
system, to avoid (for example) the existence of motor control libraries on just
a single OS constraining you to also do image processing on that same OS.
It makes distributed processing easier, letting you shift processing to extra
machines when the load becomes high. Remotization is in practice one of the
major benefits offered by YARP and Player. In YARP, message production
is done at the level of device families. The use of standard YARP APIs for
families of devices makes it straightforward to substitute in a proxy instead
of a local device. By using YARP ports for communication, with their defined
protocols, remotization also gives us portability across different platforms, as
it naturally defines a network interface that can be used to make resources
available on one platform to processes compiled and running on a different
one. This decouple the compilation, build environment, libraries, operating
system and language dependencies of hardware and user software.

The remotization mechanism relies on the communication layer (see Section 4)
and on two Network Wrapper devices, one acting as a Server and the other
acting as a Client. Both network devices implement the very same interface of
the device they wrap: the only difference is that they do not connect directly
to the hardware but act as network proxies, talking to each other using a
predefined protocol, which involves one or more YARP Ports configured for
RPC and/or streaming as the nature of the device dictates (see Figure 6).

A process that wishes to connect to the remote device using the YARP code-
base creates an instance of the Client Network Wrapper (the YARP code-base
could be avoided by working with the network protocol directly, as described in
Section 4). This wrapper exports exactly the same interface of the “wrapped”
device so the process can pretend that it is connected to a real device. The
Client Network Wrapper converts calls from the process into messages, sends
them to the other end of the communication link, and, in case a reply is ex-
pected, waits for data and dispatches it to the calling process. The Server
Network Wrapper waits for incoming connections from the network. In addi-
tion it creates an instance of the wrapped device to which it forwards requests
from the network. If requests involve a reply theses are sent back to the call-
ing port so that they are received by the remote client. The Server Network
Wrapper gains access to the local device through its interface; as such it is a
total independent entity that can be reused for devices of the same family.
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4 Transporting data

A very basic problem that keeps cropping up in robotics projects is simply
how to move data around between sensors, processors, and actuators. There’s
a universe of “middleware” solutions in existence for communication (see the
survey in [10] and the related-work review in [4]). Our own preferred solution
in YARP has the following features:

. We use an abstract model of communication that is transport-neutral and
peer-to-peer.

. The underlying transport used for each individual connection between peers
can be selected independently. Choices such as network versus shared mem-
ory, tcp versus udp, unicast versus multicast, text versus binary, which of
several networks to transmit on, etc can be made on a case by case basis.
We encourage such details to be external configuration choices rather than
properties embedded in programs.

. We are careful to have one text-mode transport that is extremely easy to
implement, for those who wish to interact with a YARP system without
using any of the YARP libraries or executables. We believe this is very
important for supporting interoperability, and providing a gentle slope to
integrating YARP into an existing system or vice versa.

. The model of communication is not intertwined with our ideas about how
devices work or how processes should be started/stopped. Thus users can
“cherry-pick” the parts that work for them.

Communication in YARP generally follows the Observer design pattern. Spe-
cial port 1 objects deliver messages to any number of observers (other ports),
in any number of processes, distributed across any number of machines, using
any of several underlying communication protocols.

4.1 The YARP Network

For the purposes of YARP, communication takes place through “connections”
between named entities called “ports”. These form a directed graph, the “YARP
Network”, where ports are the nodes, and connections are the edges. Each port
is assigned a unique name, such as “/icub/camera/left”. Every port is registered
by name with a “name server”. The goal is to ensure that if you know the
name of a port, that is all you need in order to be able to communicate with
it from any machine. The YARP name server (YNS) is a generalization of
DNS name service on the public internet for converting from domain names

1 Don’t confuse YARP ports with TCP/IP socket port numbers. We use the word
“port” to refer to the former and “port number” to refer to the latter.
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Ports can be on different machines and OSes

machine 1 (Linux)

yarpdev

tracker

machine 2 (Linux)

motor_control

machine 3 (Windows)

yarpview

yarpview

/camera /tracker/imagemcast

/viewer1

mcast

/tracker/position

/motor/position

tcp

/viewer2udp

Figure 7. Example of a network of ports. Images are transmitted from a camera
(“/camera”) port to a viewer (“/viewer1”) port and the input of a visual tracker
(“/tracker/image”). The tracker annotates the image, for example by placing a
marker on a tracked point, and transmits that to another viewer (“/viewer2”).
The tracker also sends just the tracked position from a position output port
(“/tracker/position”) to a input controlling head position (“/motor/position”). Every
port belongs to a process. They do not need to belong to the same process or be on
the same machine as each other. Every individual connection can take place using
a different protocol or physical network – in the figure multicast, udp, and tcp are
shown.

to IP addresses. It is not concerned just with machines but all the details
necessary to make a connection with a specific resource. The YARP name
server is designed to be easily used by clients who are not themselves using
the YARP libraries or executables.

The purpose of ports is to move data from one thread to another (or several
others) across process and machine boundaries. The flow of data can be manip-
ulated and monitored externally (e.g. from the command-line) at run-time. It
can also be accessed without using the YARP libraries or executables, since the
relevant protocols are documented. If messages follow YARP guidelines, then
they can be automatically converted to and from a “text mode” connection,
enabling human monitoring and intervention in the system, and providing an
easy way to experiment with integration with non-YARP modules.

A port can send data to any number of other ports. A port can receive data
from any number of other ports. Connections between ports can be freely
added or removed, and may use different underlying transports. The use of
several different transports and protocols allows us to exploit their best char-
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acteristics. TCP is reliable, it can be used to guarantee the reception of a
message. UDP can be faster than TCP, but without guarantees. Multicast
is efficient for distributing the same information to large numbers of targets.
Shared memory can be employed for local connections. Text-mode operation
is much more human-friendly, and a good place to get started with external
integration. Figure 7 shows a very simple network of ports for a visual tracking
application.

Connections between ports in YARP can carry replies if desired (and if the
underlying protocol supports that), so conventional “RPC” (remote procedure
call) style synchronous operation is possible. We encourage streaming rather
than RPC whenever possible, because RPC can make a network brittle by
introducing strong coupling of timing between processes. For our implemen-
tation of ports, we have broken them down into several logically separable
parts:

. The carrier factory (called “Carriers”); carrier is our generic name for any
different transport or protocol that can carry a connection. This factory
maintains a list of managers for different kinds of connection. The user can
extend this list with their own custom types of connection (for example, for
a kind of network we’ve never considered, or a different implementation of
an existing carrier).

. The core communications module (called “Port”). This will manage connect
requests, disconnects, reading, writing, and various administrative details.
It defers to the carrier factory to create specific connections and knows very
little about their nature.

. Reader and writer buffers (called “PortReaderBuffer” and “PortWriterBuffer”).
In order for communication to be efficient and avoid unnecessary copies,
objects being transmitted generally need to be left untouched until commu-
nication is complete. With the variety of possible connections and options
possible, the details of this can become complicated. YARP implements a
certain set of policies we think are good in the reader/writer buffer classes.
These are wrapped around the Port class to provide a BufferedPort class
that gives both a simple interface and efficient implementation, while keep-
ing buffering and communication separable for those with strong opinions
about how one or the other should be done.

. The YARP network interface (called “Network”). Provides methods for ma-
nipulating parts of the network, such as creating or removing connections
between ports.

The YARP name server is a simple program using a single ordinary port as
its input; in the past, it had its own special protocol but now it is just like
any other YARP program. This is possible because ports can operate without
access to a name server if desired; it is another separable component.
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4.2 Human readable/writable communication

There is a constant tension between using binary formats and human-readable
formats. Binary formats can be much more efficient, but text mode formats can
be easier to work with and study experimentally. The value of text formats and
protocols has been seen time and time again in the short history of computing
(postscript, http, html, xml, etc.). YARP is constructed so that both binary
and text mode operation is possible.

The YARP communications system is written in two parts. The first part is a
set of “carriers” which do the work of providing connections between ports, so
that data can be faithfully transmitted from a source to a destination byte-for-
byte. The second (separable) part of the communication system is a standard
data format. This standard is specified independently from the carriers, so
that the carriers could be reused by someone with different opinions about
data representation, but helper functions and classes make it easy to meet.
This format is called the “bottle” format for historical reasons 2 . The bottle
representation is based on a nested structure of certain familiar primitive types
– lists, integers, floating point numbers, strings, binary blobs, and a special
“vocab” type that is basically an integer in binary mode (for fast dispatching)
and a string in text mode (for easy reading and writing). The important point
is that binary and text representations are interchangeable. Under normal
operation, ports can be sending easy-to-parse binary messages to each other,
but then when a human eavesdrops on that data or tries to insert a message,
they can still understand and generate the messages in text mode. Bottle-
style messages can be expressed in several interchangeable representations:
binary, text, command-line options, configuration files etc. We find that under
various conditions sometimes we want the same kind of data coming from file,
command line options, or across the network, so is convenient to have all the
various representions mapping to a homogeneous structure.

In principle, evolution of communication protocols in YARP can be relatively
painless. Since new “carriers” can be added freely, new and old versions could
live side by side for a release or two. Ideally, something like today’s text mode
format should be honored for a long time, as a connection protocol of last
resort.

The important point about the communication protocol is that is polymorphic
and allows heterogeneous use – the protocol on each connection between two
ports can be controlled independently. This allows for system evolution, where

2 From YARP’s online documentation: The name of this class comes from the idea
of throwing a "message in a bottle" into the network and hoping it will eventually
wash ashore somewhere else. In the very early days of YARP, that is what commu-
nication felt like.
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new protocols are introduced, potentially mapping onto radically different
physical networks, virtual networks, or external middleware.

4.3 YARP without YARP

Suppose some YARP programs are running and we want to send or receive
data from them. For example, suppose there is a YARP port called “/motors”
which will accept commands to move a motor. For concreteness, let’s imag-
ine we have started the following standard YARP programs (on the same or
different machines):

yarp server
yarpdev --device test_motor --axes 2 --single_port --name /motors

The “yarpdev” program here creates a port called “/motors” that can accept
command to a fake set of motors (2 axes or degrees of freedom), and report
on their state. Normally we would interact with the motor through a device
API that takes care of communication details. But if for some reason we can’t
use the YARP codebase, what can we do?

YARP ports listen to incoming connections of a certain default initial carrier
(tcp), always ready to make new connections for input or output. Suppose we
can discover that “/motors” is listening on port number 10022 of our current
machine (we could discover that using netstat on Linux, or by querying the
YARP server as we’ll see shortly). We can then connect manually to the port
as follows:

user types system responds

$ telnet 127.0.0.1 10022 (telnet startup message)

CONNECT foo Welcome foo

help (an explanation of available commands)

* This is /demo at tcp://127.0.0.1:10032 ...

Everything so far would be basically the same for any YARP port. For people
who have used MUDs, IRC, or serial interfaces to hardware, it should all seem
vaguely familiar. Of course we don’t suggest actually using telnet, it is just a
placeholder for socket communications in the user’s language of choice. So far
all our communications have been “administrative” – we have communicated
with the port but not really with the program that owns it. To do that, we
send payload data. For the text-mode carrier we’ve chosen (determined by the
8 initial bytes we sent, “CONNECT␣” in this case – a different “magic number”
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would give multicast, UDP, TCP-binary, shared memory, etc.), this is done
by typing “d”, hitting return, and then writing a text-mode representation of
the data we want to send. Let’s try it:

user types system responds

d (no response, waiting for data)

help (a list of available yarpdev commands)

d (no response, waiting for data)

[get] [axes] [is] [axes] 2 [ok]

d (no response, waiting for data)

[set] [pos] 0 100.0 [ok]

We have determined that there are indeed two axes available as we requested
when starting yarpdev, and have set the position target for the first axis to
100.0 units. We could go on to query positions, use other interfaces, etc. We can
disconnect by closing our connection (or, more politely, sending the message
“q”).

By default, the motor port will stream encoder readings from the motors to
any reader that connects. To subscribe to this stream, we simply connect as
above and then type “r” to reverse the connection. Reversing means to invert
which side should take the initiative in sending data.

Suppose we wanted to send messages more efficiently? We start out the same
way, connecting via TCP, and then give the “magic number” of the carrier we
want to use (tcp binary, udp, mcast, shmem, etc). Understanding these carriers
is a bit harder than basic text-mode operation, but they are documented.

One part we skipped at the start was how to discover how to access ports
in ths first place. If we know the port we want is called “/motors”, how do
we discover where it is? We can in fact talk to the yarp name server using
exactly the same protocol that we have described here. What socket port the
name server listens to is reported when it starts (and can be configured, or
discovered using a broadcast protocol).

So, with a running YARP system, we can discover and communicate with
running programs, sending commands and reading data, without using any
YARP libraries or executables. All the steps we’ve gone through are trivial in
any language with a basic socket library (we’re not using any special features
of telnet, it is just for demonstration purposes). It is important to remember,
though, that while we’ve been communicating with the “/motors” port using
text across tcp, at the same time the same port could be communicating with
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other programs via binary messages over udp or multicast etc. We believe
the existence of the bottle format for communicating with YARP processes
makes it much easier to experiment with and build bridges to in text-mode
(like http for the web), while gracefully supporting switching to binary-mode
communication when the situation demands it.

5 RobotCub and ICub

RobotCub is a collaborative project funded by the European Commission un-
der the Framework 6 program and it is part of the Cognitive Systems effort
coordinated by the Unit E5 [30]. One of the goals of RobotCub is that of cre-
ating an open platform where many other projects could thrive by exploiting
a common hardware and software infrastructure. RobotCub has also the goal
of making the ICub (this is the name of the robot) the platform of choice for
several other research groups worldwide and, simultaneously, to advance our
knowledge of natural and artificial cognitive systems.

One of the tenets of the RobotCub stance on cognition is that manipulation
plays a key role in the development of cognitive capability. Consequently, the
design is aimed at maximizing the number of degrees of freedom of the upper
part of the body (head, torso, arms, and hands). The lower body (legs) is
made to support crawling on the four limbs and sitting on the ground in a
stable position with smooth autonomous transition from crawling to sitting.
This allows exploration of the environment, grasping and manipulation of ob-
jects lying on the floor. The total height is estimated to be around 105cm.
The total number of degrees of freedom (DOF) is 53 of which 41 in the upper
body (7 for each arm, 9 for each hand, 6 for the head and 3 for the torso and
spine). Each leg consists of six additional degrees of freedom. The sensory sys-
tem will include binocular vision and haptic, cutaneous, aural, and vestibular
sensors. We cared particularly in placing the sensors as in the human body
and consequently there are two moving eyes with cameras, two microphones
surrounded by pinnae, the inertial sensing is located in the head and tactile
sensors are planned to cover as much as possible of the robot body. Each joint
is also equipped with position and temperature sensors (for safety of opera-
tion). There are plans for adding joint-level torque measurement and eventu-
ally implement force/impedance control. Functionally, the system should be
able to coordinate the movement of the eyes and hands, grasp and manipulate
lightweight objects of reasonable size and appearance, crawl using its arms
and legs, and sit up. This allows the system to explore and interact with the
environment not only by manipulating objects but also through locomotion.

The philosophy adopted by RobotCub is that of the free software movement,
as codified by the General Public License (GPL). On the software side, the
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Figure 8. The ICub at various stages of construction. Panel A) shows the head of
the robot with part of the embedded electronics and sensors; in B) the upper torso
showing also the left hand; C) shows a first realization of the legs (now improved);
D) a tentative assembly of the entire robot, showing its scale; E) a more recent
assembly, showing the robot supporting its own weight passively.

RobotCub project adopted YARP and contributed to the development of some
new specific features. For the hardware, we selected the GPL license for the
sources and FDL for documentation and drawings. While it is clear how to
apply these licensing schemes to source code (e.g. C++), we need to clarify
how to apply them also to hardware designs.

5.1 Open Source hardware

The phrase “Open Source hardware” might sound strange, but in fact it is
a plain transfer of the open source philosophy to the entire design of the
RobotCub platform. Open Source hardware is starting to be heard more fre-
quently, together with its quasi-synonym of “Open Design”. On the Wikipedia
under the chapter “Open Design”, we can read:
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[...] open design may provide a framework for developing very advanced projects
and technologies that might be beyond the resource of any one company or
country and involve people who, without the copyleft mechanism, might not
otherwise collaborate.

This sentence summarizes one important point of the RobotCub idea, that is,
the development of an advanced project that requires resources beyond those
available in any one laboratory and involving people that collaborate through
the copyleft mechanism.

The design of the robot started from the preparation of specifications (e.g.
estimation of torque, speed, etc.), a typical 3D CAD modeling, and eventually
in the preparation of the executive files which are used to fabricate parts and
for assembly. Without good documentation it is very complicated to build
and assemble a full robot. This means that documentation (as for software) is
particularly important.

The CAD files, in some sense, can be seen as the source code, since they
are the “preferred form of the work for making modifications to it”, in the
language of the GPL. They get “compiled” into 2D drawings which represent
the executive drawings that can be used by any professional and reasonably
well-equipped machine shop either to program CNC machines or to manually
prepare the mechanical parts. This compilation process is not fully automated
and requires substantial human intervention. There is a clear dependency of
the 2D drawings on the original 3D CAD model. To enable the same type of
virtuous development cycle as occurs in open source software, the 3D CAD is
required, since changes happen in 3D first and get propagated to 2D later. In
addition, assembly diagrams, part lists, and all the material produced during
the design stage should be included to guarantee that the same information
is available to new developers.

One difference between software and the hardware design is that there are cur-
rently no effective formats for interchange of 3D models. Proprietary systems
such as SolidWorks and Pro/E can import and export a range of formats, but
going from one to another is lossy, destroying information needed for produc-
tion and leaving just the basic geometrical shape. So in practice, designs are
tied to tools produced by a particular vendor, and interoperability between
hardware design tools is limited. In RobotCub we were forced to choose a
specific set of tools for mechanical and electronic CAD and future upgrades
will have to strictly adhere to these standards. Due to the absence of open
source professional design tools, RobotCub uses proprietary products. This is
an unfortunate situation, but there is no practical alternative at the moment.
The “C++” and “gcc” of CAD do not yet exist.

As a practical matter, the simple duplication of RobotCub parts does not
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require the use of any of these tools since we provide all executive drawings
and production files (e.g. Gerber files for the PCBs). For modification, the
design tools are somewhat expensive (educational discounts or educational
releases exist). Free of charge viewers are currently available for all file types
in question.

For RobotCub, we decided to license all the CAD sources under the GPL
which seems appropriate given their nature. Associated documentation will
be licensed under the FDL. These will be made available through the usual
source code distribution channels (e.g. repositories, websites).

Another difference with respect to GPL on software is that the cost of du-
plication is significant and variable. Copying and duplicating software has
a negligible cost and the copy is as functional as the original. To copy the
hardware requires access to a well-equipped machine shop and to specialized
machines for fabrication of the electronics. The process of assembling the parts
is also non-trivial with possibly additional use of special tools and machining.
Copying software is almost error-free, hardware incurs in additional cost re-
lated to mistakes and parts that needs to be brought within specs. A similar
consideration applies to open source microprocessor cores although this is an
area where open design might become effective quickly because of the avail-
ability of FPGAs (see for example www.opencores.org). In practice, the cost of
the copy of the microprocessor core is getting reasonably low and sufficiently
bug free. It is difficult to foresee though how this technology could compete in
the tough market of microprocessors where it seems that performance and in-
novation equates with large investment. This would represent an achievement
similar to Linux, which has started being used as a serious alternative base to
server applications (e.g. databases, web servers).

5.2 The design process

The design process of RobotCub has been a distributed effort as for many
open source projects. Various groups developed various subcomponents and
contributed in different ways to the design of the robot including mechanics,
electronics, sensors, etc. In particular, a whole design cycle was carried out for
the subparts (e.g. head, hand, legs) and prototypes built and debugged. The
final CAD and 2D drawings were discussed and then moved to the integra-
tion stage. Clearly, communication was crucial at the initial design stage to
guarantee a uniform design and a global optimization.

The distributed design broke down at the integration stage where the indus-
trial partner 3 stepped in to carry out integration, verification and consistency

3 Telerobot Srl, Genoa
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checks. The design and fabrication of the control electronics was also subcon-
tracted to a specialized company. It is important to stress the collaboration
with industry for a project of this size and with these goals and requirements.
For many reasons building a complete platform involves techniques and man-
agement that is better executed by applying industrial standards. One example
that applies to RobotCub is the standardization of the documentation.

A further strategy used in RobotCub is that of building early. Each subsystem
was built as soon as possible and copied also as soon as possible. In several
cases debugging happened because the copies of the robot did not work as
expected or easy to fix problems were spotted. Sometimes the documentation
had to be improved. Unfortunately, this strategy was applied less extensively
to some of the subparts which are or were still under design and debugging.

The design stage will be completed by the realization of ten copies of the ICub.
This will further test the documentation and in general the reliability of the
overall platform including software, debugging tools, electronics, etc. The first
release of the ICub will be consolidated after this final fabrication stage.

The actual design of the robot had to incorporate manipulation by provid-
ing sophisticated hands, a flexible oculomotor system, and a reasonable bi-
manual workspace. On top of this, the robot has to support global body
movements such as crawling, sitting, etc. These many constraints were consid-
ered in preparing the specifications of the robot and later on during the whole
design process.

The behaviors we set forward for representing the robot’s skills generate two
types of constraints:

• kinematics: about the geometrical construction of the robot;
• dynamics: about the forces and torques we require from the robot.

The possibility of achieving certain tasks is favored by a suitable kinemat-
ics, and in particular this translates into the determination of the range of
movement and the number of controllable joints (where clearly replicating the
human body in detail is impossible with current technology). Kinematics is
also influenced by the overall size of the robot. We decided a priori to target
the size of a three and a half year old child (approximately 1m tall). Actual
dimensions were taken from studies in ergonomics and x-ray images [24]. This
size can be achieved with current technology. QRIO [29] is an example of a
robot similar in size although with less degrees of freedom. In particular, our
specifications had to consider hands and moving eyes. Also, we wanted to
consider the workspace and dexterity of the arms and thus a three degree of
freedom shoulder was a requirement.

Considering dynamics, the most demanding requirements appear in the inter-
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action with the environment. Impact forces, for instance, had to be considered
for the crawling behavior, but also and more importantly, developing cogni-
tive behaviors such as manipulation might require exploring the environment
erratically. As a consequence, it is likely that impacts will occur with various
parts of the robot structure. This turns out to require strong joints, gearboxes,
and powerful actuators or alternatively passive compliance and soft materials.
In order to evaluate the scale (order of magnitude) of the required forces we
ran simulations of various behaviors in a reasonable model of the robot. These
dynamic simulations provided data for starting the design of the robot.

At a more general level we had then to evaluate the available technology,
compared to the experience of the RobotCub consortium and the targeted size
of the robot: it was decided that electric motors represent the most suitable
technology for the ICub, given also that it has to be ready according to a
very tight schedule in the span of the RobotCub project. Other technologies
(e.g. hydraulic) are left for a “technology watch” activity and they were not
considered further.

In addition, given the size of the robot, and given the power density available,
considerations of speed for certain joints lack significance: i.e. given the power
and the torques required, speed is a consequence rather than a design param-
eter. In certain cases, in comparing to human data, clearly also the power
density is much lower than desired (e.g. the wrists cannot possibly support
the weight of the robot).

Finally, the ICub is not only about motors, sensors are equally important. Also
in this case, we had to deal with and exploit the available technology as best
we could. The robot has vision, audition, joint sensors, force sensors, tactile
sensors - where possible - and temperature sensors in many of the motors. The
robot can give feedback through a speaker. ICub will thus include a plethora of
sensors as cameras, microphones, gyroscopes, linear accelerometers, encoders
(or other positional sensors), temperature and current consumption sensors,
force/torque, and tactile sensors. The choice of these components is clearly
related to the robot specifications.

To recapitulate, the constraints of size and available technology determine a
good part of the design choices - i.e. our freedom in deciding which components
to use. In parallel, we simulated some of the robot’s behaviors to determine
the required joint torques. These two pieces of information were then used in
selecting the best available motors compatible in size, torque, and strength. As
we mentioned earlier, speed is a consequence rather than a design parameters
here, although, in simulation we examined the dependency of speed to torque
for crawling.

Other design choices are related to the embedded electronics and the structure
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of the software. The ICub will have many sensors and actuators working in
parallel. We would like to exploit this parallelism also at the computational
level and, consequently, the ICub API was mapped one-to-one onto YARP.

There is a more profound and somewhat philosophical consideration to be
factored in about the design of a robotic platform, especially when the claim
is that it is designed to support investigation on the development of cognitive
behaviors. The core of the question is whether a given structure of the body
and corresponding dynamics can support certain cognitive skills: e.g. can a
robot with limited manipulation abilities learn certain properties of objects?
Does the lack of certain skills prevent learning certain concepts about the envi-
ronment? What type of dynamics can favor behavioral and energy efficiency?
This relates to the question of discovering the affordances of the environment
given the agent’s body. A full discussion of these issues is clearly outside the
scope of this paper: for an extended treatment the reader is referred to [16].

In theory, understanding the dynamics of cognition should be eventually re-
flected into the design of the robot. In practice, this is a full research program
in itself. Mindful of this potential problem, the ICub has been designed follow-
ing the more traditional approach discussed earlier. The truth is that there
is no formalism and not to mention understanding of cognition that could
support such a “complete” design process. What we propose though is that
the ICub is the starting point, which supported by the open source approach,
can become part of the virtuous development cycle that created Linux and
support an ever growing repository of open software (e.g. sourceforge.net with
more than 150.000 registered projects).

5.3 Modularity

The ICub design is modular across two dimensions, namely, the mechanical
hardware and the control structure. Mechanically, the robot has a certain
degree of modularity which allows for improvements without a full-blown re-
design activity. The controller is modular in the sense that it is made of several
layers. Each layer can be replaced with a different technology and/or imple-
mentation without much suffering.

When we consider hardware modularity, we need to strike a balance between
the desirability of a global optimization and the advantages of modular and
dependable design. The current design probably reflects more the desire to
achieve certain functionalities, within a given size, in a constrained setting
of three years dedicated to design rather than the search for the quality and
maintainability of the robot in the long term. In essence, the ICub is and will
remain a research platform. It cannot be considered akin to the AIBO, nor a
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more industrial realization like the HRP2.

In spite of these stringent requirements the ICub shows modularity and macro-
subgroups can be identified in the hand plus forearm, in the arm (entire arm),
in the head, the torso, and the legs. These parts can be built and maintained,
developed, and assembled separately. Finer grained modularity is not possible
because of the placement of the motors and the routing of the tendons. The
electronics represent another element of complication since the control cards
for certain groups are not localized within the groups (e.g. the hand controllers
are in the upper arm section).

Assembly techniques have been considered for mechanical parts and details
have been optimized to favor mechanical realization (e.g. tendon routing has
been considered and the assembly sequence optimized whenever possible).
Nonetheless the realization of the hands (the most complicated parts of the
robot) requires considerable time and effort.

At the controller level, modularity is described by at least three layers:

• the DSP-controller level;
• the HUB-coordination level (interface);
• the control architecture.

The DSP level consists of a set of controller cards that can drive the motors
directly but also by virtue of programmability enable the preparation of lo-
cal sophisticated control algorithms. These controller cards were specifically
designed for the ICub. They communicate through a set of four CAN bus
backbones to a Pentium-based HUB card which can do both synchronization
of sensorial and motoric data and run simple control loops in case they are
needed to be local to the hardware (for very tight timing). The Pentium, a
PC104 format CPU card, is interfaced to YARP processes through a Gbit Eth-
ernet cable. The interface at this level is fully YARP-compatible and specified
at the level of ports or device drivers. The YARP processes form the control
architecture and can implement complex cognitive behaviors (as indicated in
Figure 9).

Protocols are specified at each level. Electrical between the controllers and
the motors (determined by the motor specifications), software and electrical
(CAN) between the DSP and the PC104 HUB, also software at the level
of the YARP packets that travel on the GBit Ethernet cable, and clearly
software between the modules of the cognitive architecture. Replacement of
components, as long as the protocols remain unchanged, is likely to require
only the redesign of the appropriate layer. For example, the obsolescence of
the DSP microcontroller currently in use may lead to a new version that can
be made compatible with the current CAN bus specification.

28



Software 
ArchitectureMultiple YARP processes

Running on multiple processors

Gbit Ethernet

Level 0 APIs: data acquisition & motor control

DSP

iCub
Embedded
Systems

HUB

DSP DSP DSP

Sensors & Actuators

Level 1 APIs: perception/action behaviors

Cognitive 
Architecture

Innate perception/action primitives 
loose federation of behaviors

Based on 
phylogenic 

configuration

own 
learning 
model

Level 2 APIs: Prospective Action Behaviors

Coordinated operation: Ontogenic Development

pc104

Figure 9. The layered structure of the ICub. The lowest level is the DSP layer
which directly connects to the motors and/or sensors. The next hardware level is
represented by the PC104 HUB which interfaces on one side to all data sources
and controllers and on the other to the GBit Ethernet network. The next layer is a
distributed computation engine made of a set of standard PCs which communicate
through YARP. On top of this the RobotCub partners will develop a cognitive
architecture. Communication is defined by protocols as for example, from the DSP
to the motors, from the PC104 to the DSP, and from the YARP processes to the
PC104. Standardization at this level favors reusability and dependability of the
system.

A simulator is being developed for the robot (in fact, two simulators, see
Figure 10). This is useful for testing algorithms prior to execution on the
actual robot, to check for any gross problems. We also anticipate that it will
be useful for those wishing to get to know about the platform prior to actually
having the hardware.

6 Conclusions

In recent years we have seen the beginning of many new and ambitious robotic
projects [1, 8, 9, 17]. However research to provide intelligence to these com-
plicated robots is advancing at a snail’s pace. Accumulating knowledge in the
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Figure 10. The ICub robot has two simulators. One uses the (propietary) Webots
package, and the other uses the Open Dynamics Engine (ODE) library directly. The
Webots interface is shown in the top image, and is currently the most complete
simulation. The ODE simulation (lower row) is currently of the robot’s upper torso.
Shown from left to right: the ICub simulation tracking its hand visually; the view
from the “dominant” camera used for tracking; the view from the non-dominant
camera; the robot arm hitting a table, causing the blue ball to roll off. See the
acknowledgements section for simulator author credits. The two simulators and the
actual robot have the same interface either when viewed via the device API or across
network, and so are all more or less interchangeable from a user perspective. There
are of course differences in the detailed behavior of all three, which we hope to reduce
over time.

form of working demonstrable systems is plagued by the difficulty of forming
teams, on agreeing on standards, and in general by the lack of a critical mass
in any existing laboratory no matter the size or funding.

The problem of artificial intelligence is a deep one, and since it began to be
investigated, each generation of researchers has grossly underestimated the
problems. For example, the Summer Vision Project of 1966 at the MIT AI
Lab planned to implement figure/ground separation and object recognition
on a set of objects such as balls and cylinders in the month of July, and then
extend that to cigarette packs, batteries, tools and cups in August [14]. As
it turns out, if they had written decades rather than months, it would still
have been over-ambitious. Significant progress can certainly be made either
because of a breakthrough in our understanding of the problems or through
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a slower accumulation of knowledge. Or it can be due to a combination of
these two elements. We, like many others, are drawn to robotics as a way to
confront the “real” problems of intelligence head on. This has the advantage
of exposing unforeseen opportunities that embodiment brings with it [16], but
the downside that it requires a lot of time spent building hardware. It would
be beneficial to build a community that can accumulate knowledge and make
effective progress, and to expand the niche of humanoid robotics and artificial
intelligence to the point where it is healthy and self-sustaining.

In this respect, the parallel with the commercial PC is easily made. The success
of the PC was determined, among other factors, by the definition of hardware
standards that everybody could understand, copy, and reimplement. From
time to time new standards were required (e.g. the ISA bus slowly left space
to PCI slots) but the system flourished. Under the hood, the PC is a few
orders of magnitude faster and of larger storage capacity. On the software
side, the benefit of a common architecture allowed the creation of operating
systems and application software consisting of several millions of lines of code.
Without a standard hardware things might have been more difficult. A PC of
today is the modern version of the Ship of Theseus 4 , everything changed but
the PC is still considered a PC.

Is robotics really facing the same challenges as the computer industry three
decades ago [5]? It is clearly difficult to foresee the future of humanoid robotics.
However a few dedicated software platforms are appearing as either commer-
cial [22] or academic [27] products (see also [10] for a survey). It is easier to
imagine a scenario where common standards both in software and hardware
will find the fertile soil to flourish when isolated breakthroughs will happen.

The problem of dealing with diverse hardware and software in robotics is a
complicated one – see [13] for a good description of the many and various prob-
lems. The key insight from the Free Software community is the value a common
social contract, granting mutually beneficial rights that greatly reduce both
the direct and organizational cost of software integration. Regardless of the
technical measures we pursue, adopting such a social contract in at least a
part of the humanoid robotics community would be a key advance. We be-
lieve that this will occur naturally “bottom-up” through pseudo-evolutionary
forces: models of software development that are long-lived and fertile will sur-
vive, other forms will die off. The rate at which this will occur is hard to
say, and could be influenced by education. For example, a common fear is
that such approaches are incompatible with commercial exploitation; in fact
they are not, as has been learned in many other fields including embedded

4 The Ship of Theseus – the mast gets replaced, the planks get replaced, over time
everything may get replaced, but it is still in some important sense the same ship
(“paradox of identity”)
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devices [6]. They do change the rules of the game though, which is disruptive.
We should welcome that disruption.
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