
Behaviour-Based Control
in Mobile Robotics

Behaviour-Based Control
in Mobile Robotics

Paul Fitzpatrick



Definition of RoboticsDefinition of Robotics

Robotics is:

“the Intelligent 
Connection of 

Perception to Action”

Robotics is:

“the Intelligent 
Connection of 

Perception to Action”

Reality Robot

Actuators

Sensors Perception

Action



Sensors

“Pipelined” approach

Classical Robotic ControlClassical Robotic Control

Perception

M
odelling

Planning

Task Execution

M
otor C

ontrol

Actuators 



Practical Problems with 
Classical Control
Practical Problems with 
Classical Control

SlowSlow
to respondto respond

Perce
ptio

n

Modelling

Planning

Task E
xecution

Motor Control
Sensors

Actuators 

Delayed 
reaction to 
stop robot



Planning

Task Execution

Research Problems with 
Classical Control
Research Problems with 
Classical Control

Reality

L 20
R 00
F 00
B 10

EXEC

Perception

M
odelling

M
otor C

ontrol

Temptation to focus on model 
rather than reality

Other 
influences



Classical Control: SummaryClassical Control: Summary

Assumes a complete internal world 
model can be built, then manipulated

u Slow. Modelling must occur before robot 
can react to changes in environment

u Emphasis on using model is misleading-
u Makes complex tasks seem solvable by 

directing attention away from perception
u Makes potentially simple tasks complicated

u Requires crippling simplications



Alternatives to Classical 
Control
Alternatives to Classical 
Control

Traditional
AI

behaviour-
based systems

Environmental complexity

C
og

ni
tiv

e 
co

m
pl

ex
ity

reactive systems

complex cognition
simple environment simpler cognition

complex environment



Rather than functional decomposition, 
use “Behaviours”

u As much as possible, behaviours interact 
with each other through the environment, not 
the system

u The world is its own best model, so consult 
it directly whenever practical

u Use distributed representations tailored to 
the particular behaviours using them

Behaviour-Based ControlBehaviour-Based Control



Modules act in parallel, in layers of 
increasing priority

Behaviour-Based Control:
Subsumption Architecture
Behaviour-Based Control:
Subsumption Architecture

Sensors

Work usefully

Use maps

Explore

Wander

Avoid obstacles

Actuators 

All modules 
have access to 

sensors

All modules 
have access to 

actuators

Higher layers can view 
and modify the data 
flow in lower layers



Reacts immediately to 
stop robot

Fast!Fast!

Work usefully

Use maps

Explore

Wander

Avoidance

Advantages of SubsumptionAdvantages of Subsumption



Disadvantages of 
Subsumption
Disadvantages of 
Subsumption

u Rigid priority scheme and strict 
layering are limiting -
u Priorities must be evaluated and 

hardwired at design time
u Requires behaviours to fit into a simple 

single-inheritance hierarchy
u Behaviours cannot be combined, only 

enhanced linearly



Alternatives?Alternatives?

Traditional
AI

behaviour-
based systems

Environmental complexity

C
og

ni
tiv

e 
co

m
pl

ex
ity

reactive systems

Extend scope of
behaviour-based 
systems by improving
behaviour “glue”



“Lateral” Architecture“Lateral” Architecture

Work usefully

Use maps

Explore

Wander

Sensors

Avoid obstacles

Actuators 

All modules All modules All modules 
have access to have access to have access to 

sensorssensorssensors

All modules All modules All modules 
have access to have access to have access to 

actuatorsactuatorsactuators



Features of LateralFeatures of Lateral

u Lateral has a dynamic priority system 
designed to make it easy to build
behaviours using other behaviours

u A behaviour is given the priority its 
highest priority user at a given time 
thinks it should have (“sponsorship”)

u Behaviours expose a limited public 
interface to users, rather than allowing 
access to their internal data flows.



Example Behaviour: 
Edge Following
Example Behaviour: 
Edge Following

Compensate

Stroll

Waddle
Face

Start

Capture

Turn

iSide

Logical
Sensors

oNudge

oMotor

EdgeMan



Prowling BehaviourProwling Behaviour

Start Grab

Circle

Circle
sync

Explore
seek

Explore
fly

Leap
Leap
sync

Leap
Return

iSelect

Logical
Sensors

oEdge

oPatrol

oExplore

ProwlMan

Prowling uses edge 
following in its 
implementation



Prowling - Behaviours usedProwling - Behaviours used

ProwlMan

Priority Control

PatrolMan

Priority Control

ExploreMan

Priority Control

SeekMan

Priority Control

EdgeMan

Priority Control

AngleMan

Priority Control

NudgeMan

Priority Control

MotorMan

Priority Control

Prowling behaviour is 
built from a hierarchy 
of simpler behaviours.



Prowling - Edge FollowingProwling - Edge Following

ProwlMan

Priority Control

PatrolMan

Priority Control

ExploreMan

Priority Control

SeekMan

Priority Control

EdgeMan

Priority Control

AngleMan

Priority Control

NudgeMan

Priority Control

MotorMan

Priority Control

NudgeMan beats
SeekMan because, 
even though it is 
lower level, it has 
more sponsorship

ProwlMan active, and 
sponsoring edge 
following (EdgeMan)



Prowling - ExploringProwling - Exploring

ProwlMan

Priority Control

PatrolMan

Priority Control

ExploreMan

Priority Control

SeekMan

Priority Control

EdgeMan

Priority Control

AngleMan

Priority Control

NudgeMan

Priority Control

MotorMan

Priority Control

ProwlMan active, and 
sponsoring exploration 
(ExploreMan)



More BehavioursMore Behaviours

ProwlMan

Priority Control

PatrolMan

Priority Control

ExploreMan

Priority Control

SeekMan

Priority Control

EdgeMan

Priority Control

AngleMan

Priority Control

NudgeMan

Priority Control

MotorMan

Priority Control

RegionMan

Priority Control

ManualMan

Priority Control

New behaviours fit in 
transparently to the 
ones already present



CompetitionCompetition

ProwlMan

Priority Control

PatrolMan

Priority Control

ExploreMan

Priority Control

SeekMan

Priority Control

EdgeMan

Priority Control

AngleMan

Priority Control

NudgeMan

Priority Control

MotorMan

Priority Control

RegionMan

Priority Control

ManualMan

Priority Control

Competition between
behaviours is resolved 
by the “sponsor”



class ModuleA : public ZACProcess
{
private:

int localVariable;
public:

ZACInput<int> boredom;
ZACInput<Point> distance;
ZACOutput<MotorCtrl> motor;
ZACOutput<Message> msg;

int ZAC_Run ( int ZAC_state );
...

};

...

class ModuleA : public ZACProcess
{
private:

int localVariable;
public:

ZACInput<int> boredom;
ZACInput<Point> distance;
ZACOutput<MotorCtrl> motor;
ZACOutput<Message> msg;

int ZAC_Run ( int ZAC_state );
...

};

...

Lateral - ImplementationLateral - Implementation

Module A

Priority Control

PROCESS ModuleA
{

int localVariable;
INPUT(int, boredom);
INPUT(Point, distance);
OUTPUT(MotorCtrl, motor);
OUTPUT(Message, msg);

@CONTROL
// Priority control

@state1
DoSomething();
NEXT state2;

@state2
DoSomethingElse();
NEXT @;

};

PROCESS ModuleA
{

int localVariable;
INPUT(int, boredom);
INPUT(Point, distance);
OUTPUT(MotorCtrl, motor);
OUTPUT(Message, msg);

@CONTROL
// Priority control

@state1
DoSomething();
NEXT state2;

@state2
DoSomethingElse();
NEXT @;

};

Lateral C++

Simulator

Robot

Runtime
Support

Extended syntax for 
expressing parallel 
processes (as state 
machines) and data 
flow between them



“ Khepera ”Hardware:Hardware:

r Khepera miniature 
robot

r Processor: 68332
r Proximity sensors
r Light sensors
r Stepper motors

r Khepera miniature 
robot

r Processor: 68332
r Proximity sensors
r Light sensors
r Stepper motors



Khepera Simulator

Robot path tracer

Robot Control 
Panel





A

B

C

A, B or C
depending on

priority

Compete/Subsume

Priority Implementation: 
Connections
Priority Implementation: 
Connections

Copy

A A

A

Compete/Subsume
A

B

C

A, B or C
depending on

priority

A

B A or B
depending on

priority

Compete/Subsume


