Behaviour-Based Control

Defmltlon of Robotics

SENSOrS — Perception\
Robotics Is:
the | nte! ligent Robot
Connection of

Perception to Action”

Actuators ARG

A

ctuators

<

Motor Control

Task Execution

Planning

O
-
e
-
o
O
O
Iw m
O o
-
x g .
r= © Modelling
S b
=
(O > Perception
o
© o 4
— " @)
VIR 7))
) C
; o D
AN |

42 Practical Problems with
~5? Classical Control

Delayed
reaction to
top, robot

C Buluue|d
%

L

&2 Research Problems with
~5? Classical Control

Temptation to focus on model

rather than reality_
Other

Influences / >
\ J. |

Reality

uondaais
ButjspoiN

Buluue|d

|0J3U0D J0JON
A

L., { | uonnosx3 ysey

qmn, Classical Control: Summary

Assumes a complete internal world
model can be built, then manipulated

Slow. Modelling must occur before robot
can react to changes in environment

Emphasis on using model is misleading-

+ Makes complex tasks seem solvable by
directing attention away from perception

+ Makes potentially simple tasks complicated
Requires crippling simplications

iy Alternatives to Classical
*z.® Control

Traditional
Al

complex cognition
simple environment

simpler cognition
complex environment

behaviour-
based systems

Cognitive complexity

reactive systems

Environmental complexity

4=, Behaviour-Based Control

Rather than functional decomposition,
use “Behaviours”

As much as possible, behaviours interact
with each other through the environment, not
the system

The world i1s 1ts own best model, so consult
It directly whenever practical

Use distributed representations tailored to
the particular behaviours using them

Behaviour-Based Control:

¥ Subsumption Architecture

Modules act in parallel, in layers of
INncreasing priority

Work usefully) »?

Use maps

Sensors >

All modules
have access to
Sensors

Explore

Higher layers can view

Wander

and modify the data
flow In lower layers

Actuators >

All modules
have access to

Avoid obstacles

actuators

Explore

Wander

Reacts immediately to
stop robot —

Avoidance

)]
qan, Advantages of Subsumption

Use maps

Work usefully

& Disadvantages of
" Subsumption

¢ Rigid priority scheme and strict
layering are limiting -

Priorities must be evaluated and

nardwired at design time

Requires behaviours to fit into a simple
single-inheritance hierarchy

Behaviours cannot be combined, only
enhanced linearly

& _
g=h, Alternatives?

Extend scope of

A behaviour-based
> Traditional systems by improving
'z Al behaviour “glue’
(€B)

o

=

o

O [J

(b

2

I= behaviour-

g based systems
reactive systems

Environmental complexity

; All. modules
SENVERIESS tO have access to
SEIEIOIE actuators

4=, Features of Lateral

+ Lateral has a dynamic priority system
designed to make It easy to build
behaviours using other behaviours

+ A behaviour Is given the priority Its
highest priority user at a given time
thinks it should have (“sponsorship”)

+ Behaviours expose a limited public
Interface to users, rather than allowing
access to their internal data flows.

¥ Example Behaviour:
bk Edge Following

EdgeMan g
Capture —» Compensate
iSide > ONud}
Start / \g

stroll
\ / ol\/loto>
.. Face
— > Waddle
Logical OO O
Sensors / é

Prowling Behaviour [srowiing uses eage

following in its

/\ Implementation
PrOWI Man Clrcle
_ sync d R
ISelect / ok g(?
Circle Explore
seek
Start Grab oPatro>
_ sync Y
Logical \ OEXplo'@
Senso rsj_
...................................... 55 Leap
Return

Prowling - Behaviours used

Prowling behaviour is
bL”It from a hlerarChy Priority Control Priority Control

of simpler behaviours. H H
P EdgeMan NudgeMan
Priority Control) Ly Gl Priority Control Priority Control
ProwIM - AngleM %'l MotorM
rowlivian PatrolMan H ngleivian otorivian
Priority Control Priority Control

|_
ExploreMan SeekMan |

Prowling - Edge Following

ProwlMan active, and
SpOﬂSOI’I ng edge Priority Control Priority Control

following (EdgeMan) i EdgeMan H NudgeMan

Priority Control) Ly Gl Priority Control Priority Control
ProwlMan H PatrolMan 4 AngleMan 4 MotorMan

NudgeMan beats

Priority Control Priority Control SeekMan because,

Hexploreman® ™| seekman [even though_lt IS
lower level, it has
more sponsorship

Prowling - Exploring

ProwlMan active, and

SpO nSOI’I ng eXploratI On Priority Control Priority Control
H H
(ExploreMan) EdgeMan NudgeMan
Priority Control) Ly Gl Priority Control Priority Control
|_
ProwlMan H PatrolMan H AngleMan ¥'| MotorMan
Priority Control Priority Control

H H
ExploreMan SeekMan |

Priority Control

RegionMan

Priority Control

Priority Control

ManualMan

ProwlMan

Priority Control

|_
PatrolMan

Priority Control

|_
ExploreMan

. ————

—_——

—_——
~—

Priority Control

Priority Control

EdgeMan

|_
NudgeMan

Priority Control

T

AngleMan

Priority Control

Priority Control

SeekMan

|_
= MotorMan

New behaviours fit in
transparently to the
ones already present

Priority Control

——p-H
5 RegionMan

>

| N
ManualMani 3 s N
’ \\ \\
\\ |I
g Priority Control Priority Control |
| |
| |
| H H !
I S
i Y| EdgeMan NudgeMan i
=T |
- | |
| |
| |
| 1
] e - v
o ——mm— e ———— 1 1
\\ 1 Priority Control :,,4‘ Priority Control
\ L v,2
AN e —m e — - 1
N ! S _".
s ' AngleMan | | . MotorMan
» ; 2 4
‘ y [=
« ¥ -
/ _-
/ -
/ _-
/ _-
!
!
/ -
II -7 -y =
ety e | , Competition between
1 //// - -
l _-
seekMan | - behaviours is resolved

by the “sponsor”

Lateral

————» | Priority Control —>
—>
Module A
PROCESS ModuleA
[4

{

int localVariable;
INPUT(int, boredom);
INPUT (Point, distance);
OUTPUT (MaotorCtrl, motor);
OUTPUT(Message, msg

@CONTROE
90);
T state2;
@state2
DoSomethingElse();

NEXT @:
I3

2\

Implementation

Extended syntax for
expressing parallel
processes (as state
machines) and data
flow between them

Simulator

class ModuleA public ZACProcess

{

private:

int localVariable;
public:

ZACInput<int> bored

ZACInpUi<Poirg> di%
ZA tpUt< trl otor;
ZA@utput<sMeMBage> msg;

intZAC_Run (int ZAC_state);

i

Runtime
Support

\

Robot

=]
=

_ |0 Khepera miniature
robot

- 10 Processor: 68332

T e PrOXimity Sensors
J Light sensors
0 Stepper motors

rmu Illll” |

n 1

I

Landmark setting
and seeking

S e e e Lip S:]:ppud. activity
Sel Mark 1| Sesk Mark 1] [~ Meainbap Gl

Sel Mark 2| Sesk Mark 2| m S i

Sot Mark 3| Beak Mark 3|

Sel Mark 4] Seek Mark 4 T NOLL e TEL
I | Pl I o Baght . Same

Set Mark 5| Seek Mark 5| TakahverWortd | Edye |

CYCEa=50 ms ey e=20 worst=20 puil=Z atge=0 lsa=3720 k=240

Path of Loco-Mote

l_l—l—liﬁli

2000 F

Khepera Simulator

—2000 |

Robot Control
Panel

-4000 |

Robot path tracer .

-BO00
-E000 —4000 —2000 0 2000 4000 G000 2000

BO0O

Path of Loco-tote

BO00

4000

F000

2000

1000

-E000

-5000

-4000

L] o =
]
o
[
i
[
[
| o -
a o 2
-3000 -2000
¥

v Path of Loco-tote
. 5000 . . .
. S 5000

i
R - 4000
5000
a B
2000
a =3
1000

P
. o . . .

1000 1000 6000 -5000 3000 2000

%
.
& o B a
' Fath of| | .
6000 . . v T
5000 - ot o = =
4000 — a 1 1 1
3000 f
13 T
[] 8
b i
2000 . . U
1000 n
& et = o o o -
B o a ;9
o by
° e B S W :
- b
1000) . i
8000 <7000 -BOD0 -B0O0 -4000 -3000 —200& 1000 i 10

Priority Implementation:

W=m Connections

Copy

iy

| » A

A
Compete/Subsume

>
A, BorC

depending on
priority

Compete/Subsume
AorB

depending on
I » priority

B

A

X
/

C

Compete/Subsume

C

>
A, BorC

depending on
priority

~
A

