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Classical Control: SummaryClassical Control: Summary

Assumes a complete internal world 
model can be built, then manipulated

u Slow. Modelling must occur before robot 
can react to changes in environment

u Emphasis on using model is misleading-
u Makes complex tasks seem solvable by 

directing attention away from perception
u Makes potentially simple tasks complicated

u Requires crippling simplications



Alternatives to Classical 
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Rather than functional decomposition, 
use “Behaviours”

u As much as possible, behaviours interact 
with each other through the environment, not 
the system

u The world is its own best model, so consult 
it directly whenever practical

u Use distributed representations tailored to 
the particular behaviours using them

Behaviour-Based ControlBehaviour-Based Control



Modules act in parallel, in layers of 
increasing priority

Behaviour-Based Control:
Subsumption Architecture
Behaviour-Based Control:
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Disadvantages of 
Subsumption
Disadvantages of 
Subsumption

u Rigid priority scheme and strict 
layering are limiting -
u Priorities must be evaluated and 

hardwired at design time
u Requires behaviours to fit into a simple 

single-inheritance hierarchy
u Behaviours cannot be combined, only 

enhanced linearly



Alternatives?Alternatives?
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“Lateral” Architecture“Lateral” Architecture
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Features of LateralFeatures of Lateral

u Lateral has a dynamic priority system 
designed to make it easy to build
behaviours using other behaviours

u A behaviour is given the priority its 
highest priority user at a given time 
thinks it should have (“sponsorship”)

u Behaviours expose a limited public 
interface to users, rather than allowing 
access to their internal data flows.



Example Behaviour: 
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Prowling BehaviourProwling Behaviour
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Prowling uses edge 
following in its 
implementation



Prowling - Behaviours usedProwling - Behaviours used
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Prowling behaviour is 
built from a hierarchy 
of simpler behaviours.



Prowling - Edge FollowingProwling - Edge Following
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Prowling - ExploringProwling - Exploring
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More BehavioursMore Behaviours
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transparently to the 
ones already present



CompetitionCompetition
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class ModuleA : public ZACProcess
{
private:

int localVariable;
public:

ZACInput<int> boredom;
ZACInput<Point> distance;
ZACOutput<MotorCtrl> motor;
ZACOutput<Message> msg;

int ZAC_Run ( int ZAC_state );
...

};

...
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Lateral - ImplementationLateral - Implementation

Module A

Priority Control

PROCESS ModuleA
{

int localVariable;
INPUT(int, boredom);
INPUT(Point, distance);
OUTPUT(MotorCtrl, motor);
OUTPUT(Message, msg);

@CONTROL
// Priority control

@state1
DoSomething();
NEXT state2;

@state2
DoSomethingElse();
NEXT @;

};

PROCESS ModuleA
{

int localVariable;
INPUT(int, boredom);
INPUT(Point, distance);
OUTPUT(MotorCtrl, motor);
OUTPUT(Message, msg);

@CONTROL
// Priority control

@state1
DoSomething();
NEXT state2;

@state2
DoSomethingElse();
NEXT @;

};

Lateral C++

Simulator

Robot

Runtime
Support

Extended syntax for 
expressing parallel 
processes (as state 
machines) and data 
flow between them



“ Khepera ”Hardware:Hardware:
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r Light sensors
r Stepper motors

r Khepera miniature 
robot

r Processor: 68332
r Proximity sensors
r Light sensors
r Stepper motors



Khepera Simulator

Robot path tracer

Robot Control 
Panel





A

B

C

A, B or C
depending on

priority

Compete/Subsume

Priority Implementation: 
Connections
Priority Implementation: 
Connections

Copy

A A

A

Compete/Subsume
A

B

C

A, B or C
depending on

priority

A

B A or B
depending on

priority

Compete/Subsume


