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Abstract

For the purposes of manipulation, we would like to
know what parts of the environment are physically
coherent ensembles – that is, which parts will move
together, and which are more or less independent. It
takes a great deal of experience before this judgement
can be made from purely visual information. This
paper develops active strategies for acquiring that ex-
perience through experimental manipulation, using
tight correlations between arm motion and optic flow
to detect both the arm itself and the boundaries of
objects with which it comes into contact.

1 The elusive object

Sensory information is intrinsically ambiguous, and
very distant from the world of well-defined objects
in which humans believe they live. What criterion
should be applied to distinguish one object from
another? How can perception support such a phe-
nomenon as figure-ground segmentation? Consider
the example in Figure 1. It is immediately clear that
the drawing on the left is a cross, perhaps because
we already have a criterion, which allows segmenting
on the basis of the intensity difference. It is slightly
less clear that the zeros and ones on the middle panel
are still a cross. What can we say about the array
on the right? If we are not told, and we do not have
the criterion to perform the figure-ground segmenta-
tion, we might think this is just a random collection
of numbers. But if we are told that the criterion is
“prime numbers vs. non-prime” then a cross can still
be identified.

While we have to be inventive to come up with a
segmentation problem that tests a human, we don’t
have to go far at all to find something that baffles our
robots. Figure 2 shows a robot’s-eye view of a cube
sitting on a table. Simple enough, but many rules
of thumb used in segmentation fail in this particular
case. And even an experienced human observer, di-
agnosing the cube as a separate object based on its
shadow and subtle differences in the surface texture
of the cube and table, could in fact be mistaken –
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Figure 1: Three examples of crosses, following [12].
The human ability to segment objects is not general-
purpose, and improves with experience.

Figure 2: A cube on a table. The edges of the table
and cube happen to be aligned (dashed line), the col-
ors of the cube and table are not well separated, and
the cube has a potentially confusing surface pattern.

perhaps some malicious researcher is up to mischief.
The only way to find out for sure is to take action,
and start poking and prodding. As early as 1734,
Berkeley observed that:

...objects can only be known by touch. Vi-
sion is subject to illusions, which arise from
the distance-size problem... [2]

In this paper, we provide support for a more nuanced
proposition: that in the presence of touch, vision be-
comes more powerful, and many of its illusions fade
away.

Objects and actions. The example of the cross
composed of prime numbers is a novel (albeit un-



likely) type of segmentation in our experience as
adult humans. We might imagine that when we were
very young, we had to initially form a set of such cri-
teria to solve the object identification/segmentation
problem in more mundane circumstances. That such
abilities develop and are not completely innate is
suggested by results in neural science. For exam-
ple Kovacs [11] has shown that perceptual grouping
is slow to develop and continues to improve well be-
yond early childhood (14 years). Long-range con-
tour integration was tested and this work elucidated
how this ability develops to enable extended spatial
grouping.

Key to understanding how such capabilities could
develop is the well-known result by Ungerleider and
Mishkin [20] who first formulated the hypothesis that
objects are represented differently during action than
they are for a purely perceptual task. Briefly, they
argue that the brain’s visual pathways split into two
main streams: the dorsal and the ventral. The dor-
sal deals with the information required for action,
while the ventral is important for more cognitive
tasks such as maintaining an object’s identity and
constancy. Although the dorsal/ventral segregation
is emphasized by many commentators, it is signifi-
cant that there is a great deal of cross talk between
the streams[15].

The dorsal stream goes through the parietal lobe and
premotor cortex, which heavily project into the pri-
mary motor cortex to eventually control movements.
For many years the premotor cortex was considered
just another big motor area. Recent studies [9] have
demonstrated that this is not the case. Visual re-
sponsive neurons have been found: some purely vi-
sual but many with interesting visuo-motor charac-
teristics. In area F5 in the monkey neurons respond-
ing to object manipulation gestures are found.

Area F5 contains a neural analogue to the affor-
dances of Gibson [8]: neurons that activate both
when grasping an object and when fixating the same
object. Other neurons in the same area activate
when grasping an object or when watching someone
else manipulating that object. This “mirror” repre-
sentation may be important for mimicry behaviors
[6] and perhaps even language [19]. Another impor-
tant class of neurons in premotor cortex is found in
area F4 [7]. While F5 is more concerned with the
distal muscles (i.e. the hand), F4 controls more prox-
imal muscles (i.e. reaching). A subset of neurons in
F4 exhibit a joint somatosensory, visual, and motor
receptive field. The visual receptive field (RF) ex-
tends in 3D from a given body part – for example, the
forearm. The somatosensory RF is usually in register
with the visual one. Finally, motor information is in-
tegrated into the representation by maintaining the

receptive field anchored to the correspondent body
part (the forearm in this example) irrespective of the
relative position of the head and arm.

A working hypothesis. Taken together, these re-
sults from neuroscience suggest that relating motor
action to visual perception is fruitful. Certainly they
are intertwined at a very basic level in human vi-
sion. While an experienced adult can interpret vi-
sual scenes perfectly well without acting upon them,
linking action and perception seems crucial to the de-
velopmental process that leads to that competence.
We can construct a working hypothesis: that action
is required to object recognition in cases where an
agent has to develop categorization autonomously.
Of course in standard supervised learning action is
not required since the trainer does the job of pre-
segmenting the data by hand. In an ecological con-
text, some other mechanism has to be provided.
Ultimately this mechanism is the body itself that
through action (under some suitable developmental
rule) generates informative percepts.

Neurons in area F4 are thought to provide a body
map useful for generating arm, head, and trunk
movements. Our robot learns autonomously a crude
version of this body map by fusing vision and pro-
prioception. As a step towards establishing the kind
of visuomotor representations seen in F5, we then
develop a mechanism for using reaching actions to
visually probe the connectivity and physical extent
of objects without any prior knowledge of the ap-
pearance of the objects (or indeed of the arm itself).

2 The experimental platform

This work is implemented on the robot Cog, an up-
per torso humanoid [4]. The robot has previously
been applied to tasks such as visually-guided point-
ing [13], and rhythmic operations such as turning a
crank or driving a slinky [21]. Cog has two arms,
each of which has six degrees of freedom – two per
shoulder, elbow, and wrist. The joints are driven
by series elastic actuators [22] – essentially a mo-
tor connected to its load via a spring (think strong
and torsional rather than loosely coiled). The arm is
not designed to enact trajectories with high fidelity.
For that a very stiff arm is preferable. Rather, it
is designed to perform well when interacting with
a poorly characterized environment, where collisions
are frequent and informative events.

3 Perceiving direct effects of action

Motion of the arm may generate optic flow directly
through the changing projection of the arm itself,
or indirectly through an object that the arm is in
contact with. While the relationship between the
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Figure 3: Degrees of freedom (DOFs) of the robot
Cog. The arms terminate either in a primitive “flip-
per” or a four-fingered hand. The head, torso, and
arms together contain 22 degrees of freedom.

optic flow and the physical motion is likely to be ex-
tremely complex, the correlation in time of the two
events will generally be exceedingly precise. This
time-correlation can be used as a “signature” to iden-
tify parts of the scene that are being influenced by
the robot’s motion, even in the presence of other dis-
tracting motion sources. In this section, we show
how this tight correlation can be used to localize
the arm in the image without any prior information
about visual appearance. In the next section we will
show that once the arm has been localized we can go
further, and identify the boundaries of objects with
which the arm comes into contact.

Reaching out. The first step towards manipula-
tion is to reach objects within the workspace. If we
assume targets are chosen visually, then ideally we
need to also locate the end-effector visually to gen-
erate an error signal for closed-loop control. Some
element of open-loop control is necessary since the
end-point may not always be in the field of view (for
example, when it is in its the resting position), and
the overall reaching operation can be made faster
with a feed-forward contribution to the control.

The simplest possible open loop control would map
directly from a fixation point to the arm motor com-
mands needed to reach that point [14] using a stereo-
typed trajectory, perhaps using postural primitives
[17]. If we can fixate the end-effector, then it is
possible to to learn this map by exploring different
combinations of direction of gaze vs. arm position
[13, 14]. So locating the end-effector visually is key
both to closed-loop control, and to training up a feed-
forward path. We shall demonstrate that this local-
ization can be performed without knowledge of the
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Figure 4: An example of the correlation between
optic flow and arm movement. The traces show the
movement of the wrist joint (upper plot) and optic
flow sampled on the arm (middle plot) and away
from it (lower plot). As the arm generates a repeti-
tive movement, the oscillation is clearly visible in the
middle plot and absent in the lower. Before and after
the movement the head is free to saccade, generating
the other spikes seen in the optic flow.

arm’s appearance, and without assuming that the
arm is the only moving object in the scene.

Localizing the arm visually. The robot is not
a passive observer of its arm, but rather the initia-
tor of its movement. This can be used to distinguish
the arm from parts of the environment that are more
weakly affected by the robot. The arm of a robot was
detected in [13] by simply waving it and assuming it
was the only moving object in the scene. We take a
similar approach here, but use a more stringent test
of looking for optic flow that is correlated with the
motor commands to the arm. This allows unrelated
movement to be ignored. Even if a capricious engi-
neer where to replace the robot’s arm with one of
a very different appearance, and then stand around
waving the old arm, this detection method will not
be fooled.

The actual relationship between arm movements and
the optic flow they generate is complex. Since the
robot is in control of the arm, it can choose to move
it in a way that bypasses this complexity. In par-
ticular, if the arm rapidly reverses direction, the op-
tic flow at that instant will change in sign, giving
a tight, clean temporal correlation. Since our op-
tic flow processing is coarse (a 16 × 16 grid over a



Figure 5: Detecting the arm/gripper through mo-
tion correlation. The robot’s point of view and the
optic flow generated are shown on the left. On the
right are the results of correlation. Large circles rep-
resent the results of applying a region growing pro-
cedure to the optic flow. Here the flow corresponds
to the robot’s arm and the experimenter’s hand in
the background. The small circle marks the point
of maximum correlation, identifying the regions that
correspond to the robot’s own arm.

128 × 128 image at 15 Hz), we simply repeat this
reversal a number of times to get a strong correla-
tion signal during training. With each reversal the
probability of correlating with unrelated motion in
the environment goes down. This probability could
also be reduced by higher resolution (particularly in
time) visual processing.

Figure 4 shows an example of this procedure in oper-
ation, comparing the velocity of the arm’s wrist with
the optic flow at two positions in the image plane. A
trace taken from a position away from the arm shows
no correlation, while conversely the flow at a position
on the wrist is strongly different from zero over the
same period of time. Figure 5 shows examples of
detection of the arm and rejection of a distractor.

Localizing the arm using proprioception. The
localization method for the arm described so far re-
lies on a relatively long “signature” movement that
would slow down reaching. This can be overcome by
training up a function to estimate the location of the
arm in the image plane from proprioceptive informa-
tion (joint angles) during an exploratory phase, and
using that to constrain arm localization during ac-
tual operation. As a function approximator we sim-
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Figure 6: Mapping from proprioceptive input to a
visual prediction. Head and arm joint positions are
used to estimate the position of the projection of the
hand in the image plane. Redundant configurations
of the (7 DOF) head are mapped to a simpler (2D)
representation, and the wrist-related DOFs of the
arm are ignored.

ply fill a look-up table, reducing the 11-dimensional
input space of joint angles based on the much lower
number of degrees of freedom used in controlling
them (see Figure 6). Figure 7 shows the resulting be-
havior after about twenty minutes of real-time learn-
ing.

Figure 7: Predicting the location of the arm in the
image as the head and arm change position. The
rectangle represents the predicted position of the arm
using the map learned during a twenty-minute train-
ing run. The predicted position just needs to be suf-
ficiently accurate to initialize a visual search for the
exact position of the end-effector.

4 Perceiving indirect effects of action

We have assumed that the target of a reaching op-
eration is chosen visually. As discussed in Section 1,
visual segmentation is not easy, so we should not ex-
pect a target selected in this way to be a correctly
segmented. For the example scene in Figure 2 (a



Begin Find end-effector Sweep Contact! Withdraw

Figure 8: The upper sequence shows an arm extending into a workspace, tapping an object, and retracting.
This is an exploratory mechanism for finding the boundaries of objects, and essentially requires the arm to
collide with objects under normal operation, rather than as an occasional accident. The lower sequence shows
the shape identified from the tap using simple image differencing and flipper tracking.

cube sitting on a table), the small inner square on the
cube’s surface pattern might be selected as a target.
The robot can certainly reach towards this target,
but grasping it would prove difficult without a cor-
rect estimate of the object’s physical extent. In this
section, we develop a procedure for refining the seg-
mentation using the same idea of correlated motion
used earlier to detect the arm.

When the arm enters into contact with an object,
one of several outcomes are possible. If the object is
large, heavy, or otherwise unyielding, motion of the
arm may simply be resisted without any visible ef-
fect. Such objects can simply be ignored, since the
robot will not be able to manipulate them. But if
the object is smaller, it is likely to move a little in re-
sponse to the nudge of the arm. This movement will
be temporally correlated with the time of impact,
and will be connected spatially to the end-effector
– constraints that are not available in passive sce-
narios [3]. If the object is reasonably rigid, and the
movement has some component in parallel to the im-
age plane, the result is likely to be a flow field whose
extent coincides with the physical boundaries of the
object.

Figure 8 shows how a “poking” movement can be
used to refine a target. During a poke operation,
the arm begins by extending outwards from the rest-
ing position. The end-effector (or “flipper”) is lo-
calized as the arm sweeps rapidly outwards, using
the heuristic that it lies at the highest point of the
region of optic flow swept out by the arm in the im-
age (the head orientation and reaching trajectory are
controlled so that this is true). The arm is driven

outward into the neighborhood of the target which
we wish to define, stopping if an unexpected obstruc-
tion is reached. If no obstruction is met, the flipper
makes a gentle sweep of the area around the target.
This minimizes the opportunity for the motion of the
arm itself to cause confusion; the motion of the flip-
per is bounded around the endpoint whose location
we know from tracking during the extension phase,
and can be subtracted easily. Flow not connected to
the end-effector can be ignored as a distractor.

For simplicity, the head is kept steady throughout
the poking operation, so that simple image differ-
encing can be used to detect motion at a higher res-
olution than optic flow. Because a poking operation
currently always starts from the same location, the
arm is localized using a simple heuristic rather than
the procedure described in the previous section – the
first region of optic flow appearing in the lower part
of the robot’s view when the reach begins is assumed
to be the arm.

The poking operation gives clear results for a rigid
object that is free to move. What happens for non-
rigid objects and objects that are attached to other
objects? Here the results of poking are likely to be
more complicated to interpret – but in a sense this
is a good sign, since it is in just such cases that the
idea of an object becomes less well-defined. Poking
has the potential to offer an operational theory of
“objecthood” that is more tractable than a vision-
only approach might give, and which cleaves better
to the true nature of physical assemblages.



5 Discussion and Conclusions

The number of papers written on techniques for vi-
sual segmentation is vast. Methods for characteriz-
ing the shape of an object through tactile informa-
tion are also being developed, such as shape from
probing [5, 18] or pushing [16, 10]. But while it has
long been known that motor strategies can aid vi-
sion [1], work on active vision has focused almost
exclusively on moving cameras. There is much to be
gained by bringing a manipulator into the equation,
as we have shown in this paper. Many variants and
extensions to the experimental “poking” strategy ex-
plored here are possible. For example, a robot might
try to move an arm around behind the object. As the
arm moves behind the object, it reveals its occluding
boundary. This is a precursor to visually extract-
ing shape information while actually manipulating
an object, which is more complex since the object is
also being moved and partially occluded by the ma-
nipulator. Another possible strategy that could be
adopted as a last resort for a confusing object might
be to simply hit it firmly, in the hopes of moving it
some distance and potentially overcoming local, ac-
cidental visual ambiguity. Obviously this strategy
cannot always be used! But there is plenty of room
to be creative here.
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una teoria della coscienza per costruttori di menti e
cervelli. il Mulino, 2001.

[13] Matthew J. Marjanović, Brian Scassellati, and
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