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Pre-attentive filtering for robot perception of patterned activity

Paul Fitzpatrick

What: The aim of this work is to give a robot the ability to rapidly perceive simple repeated patterns
in its sensory input, without prior knowledge of the senses and events involved in the pattern. Such
an ability is most useful if it is massively parallel and pre-attentive in nature, analogous to early visual
processing [4].

Why: Real-time machine perception benefits greatly from heuristics for quickly filtering out irrelevant
stimuli and thus focusing computational effort where it is most likely to pay off. The robots built by
the Humanoid Robotics Group all use one form or another of such heuristics for visual perception, such
as biases towards skin-colored regions, moving objects, and bright stimuli [2]. More recently, we have
investigated the utility of periodicity as a perceptual bias, demonstrating cross-modal priming where
visually periodic motion influenced the perception of the sound of tools and toys [1]. But are such
biases limited to low-level perceptual features? The goal of this work is to apply similar filtering to
the detection of patterned activity, both to facilitate autonomous learning and as a building-block for
intuitive human-robot communication (see Figure 1).

How: Perception involves many ‘missing information’ problems which are straightforward to model
but difficult to invert. For example, transforming a 3D scene into a 2D view such as our eye might
see is a much more tractable mathematical problem than that of recovering the 3D scene given just
the 2D view. The basic difficulty is that many possible world states could have produced the same
sensory impression, so there is a fundamental ambiguity to contend with. Of course, not all those world
states are equally likely to occur, and this fact is explicitly or implicitly used in all computer vision
algorithms to generate plausible interpretations of raw sensory input. For our work, which requires real-
time parallel processing of images, there is little time to weigh alternative hypotheses – either algorithms
must be very simple, or the results must be pre-computed. This work makes use of the second approach,
where many possible interpretations of each possible event sequence are considered, and a favored
interpretation and measure of confidence is assigned off-line prior to operation.

For an alphabet of k symbols, there are kn possible sequences of length n. However, if we are
concerned only with the pattern of symbol recurrence (that is, if we consider a sequence abbbac and
zdddza to be the same pattern), then the number of possibilities is much, much less. The Bell numbers
count these:

sequence distinct sequences distinct patterns
length n (with n symbols) (Bell number)

5 3,125 52
6 46,656 203
7 823,543 877
8 16,777,216 4,140
9 387,420,489 21,147

10 10,000,000,000 115,975
11 285,311,670,611 678,570
12 8,916,100,448,256 4,213,597

These numbers are important because they suggest that an exhaustive enumeration of patterns (not
sequences) is practical, both for off-line evaluation and on-line storage in RAM, for non-trivial pattern
lengths.

For short patterns, human expertise can be captured directly by examining the patterns by hand (this
was done for patterns of length 5 in less than an hour). Human judgement is particularly important
for short patterns since they can be very ambiguous. For longer patterns, an automated evaluation
process is preferable, and can be achieved by exhaustively evaluating a set of models, and comparing
the probability of the patterns they generate to find the most plausible interpretations.
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Human speech Human action Robot speech Robot action
. . . . . . . . . . . .
yellow [shows yellow toy] yelo [looks at toy]
left [moves toy left] left [tracks toy]
green [shows green toy] green [looks at toy]
right [moves toy right] right [tracks toy]
yellow [shows yellow toy] yelo [looks at toy]
left [moves toy left] left [tracks toy]
. . . . . . . . . . . .
yellow [shows yellow toy] yelo [looks at toy]
next? ahm left? [nods left]
yes! [moves toy left] left!
green [shows green toy] green [looks at toy]
next? ahm right? [nods right]
yes! [moves toy right] right!
. . . . . .

Left Yelo

GreenRight

Figure 1: Extracts from a dialogue with a humanoid robot, showing how a simple sorting activity (yel-
low toys go left, green toys go right) can be verbally communicated to the robot. To the right is shown
the simple state machine model of the activity deduced by the robot using a FSM-learning method. The
goal of the current work is to facilitate such learning across a much wider range of perceptual inputs
than is possible with heavy-weight algorithms.

Progress: Tables have been built automatically for sequences of length up to 10, and by hand for se-
quences of length 5. Preliminary testing shows results superior to analytic methods previously used
(primarily because those methods needed to be weakened to run in real-time, a trade-off not needed
for off-line preparation). Some initial experiments have been done with noisy sequences – this requires
longer to build tables, but has little impact on run-time operation. Currently the model of activity used
is equivalent to regular expressions augmented with the ability to refer to previous sub-expressions.
Models are compared based on their description length and specificity.

Future: This work is motivated by recent advances in processor speed and cache size. Much previous
work needs to be re-evaluated, to see what algorithms have input spaces that are small enough to allow
them to be converted to look-up tables (and ‘small enough’ can now be quite large!) for fast real-time
operation. Of course, this conversion is not always possible, especially if there is significant contextual
information that needs to be factored into the interpretive process. But for pre-attentive biases, it seems
to make sense.
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