
CHAPTER 4

The outer limits: learning about edges and orientation

The Disc, being flat, has no real horizon. Any adventurous sailors who got funny ideas
from staring at eggs and oranges for too long and set out for the antipodes soon learned
that the reason why distant ships sometimes looked as though they were disappearing
over the edge of the world was that they were disappearing over the edge of the world.

(Pratchett, 1986)

The previous chapter showed how elementary sensitivity to motion is sufficient to gather segmenta-
tions of objects in the robot’s vicinity, with some support from the robot’s behavior to evoke easily
processed scenarios. Once this data is coming in, there is a lot that can be learned from it. One
reasonable use of the data would be to learn about the appearance of specific objects, and the next
chapter (Chapter 5) will address that. But even before that, it is also possible to simply learn some-
thing about the appearance of boundaries, since the robot now has a collection of such boundaries
side by side with their visual appearance. In particular, this allows an orientation detector to be
trained on automatically annotated data. Orientation information is present in images at all scales.
It is typically detected using quadrature filters applied at many locations and scales (Freeman, 1992),
an approach developed to be independent of contrast polarity and to act equally well on edges and
lines. With the data the robot collects, the opportunity arises to take a complementary, empirical
approach, where the appearance of edges is learned from experience rather than derived theoreti-
cally. The main challenge is whether the appearance of edges can be sampled densely enough to
get good coverage on a reasonable timescale. The answer to this is shown to be yes, primarily be-
cause orientation information is quite robust to pixel-level transformations. It turns out that a useful
orientation filter can be constructed a a simple interpolating look-up table, mapping from a very
small window size (4 × 4 pixels) directly to orientation. This allows for extremely rapid access to
orientation information right down at the finest scale visible.

The contribution of this work is to demonstrate that orientation detection is amenable to empir-
ical treatment, and that it can be performed at a very high speed. This work is critical to a real-time
implementation of the object recognition method that will be proposed in Chapter 5.
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Figure 4-1: The goal of orientation detection is to take an image such as the one shown on the left
here, and annotate every point in it with a direction, if there is a well-defined orientation that can be
associated with it. For example, on the right is a color-coded orientation map corresponding to the
first image, where all horizontal lines and edges are colored red, etc. This map is produced by the
methods developed in this chapter. It shows only orientation that is clear from local information –
the “illusory contours” present in the Kanizsa triangles are not detected.

4.1 What is orientation?

Natural images are full of discontinuities and local changes. This anisotropy can be used to associate
directions with regions of the image. These directions are potentially more robust to image-wide
transformations than the individual pixels upon which they are based. The most obvious example
is a luminance edge, where there is a discontinuity between a dark and light region. The direction
associated with this edge remains unchanged even if overall illumination on the regions change their
appearance dramatically. Contours of constant luminance on a shaded surface behave somewhat
like edges also, with luminance change being minimal parallel to the contour and maximal when
measured perpendicular to them. For such directional changes in luminance, or any other property, it
is natural to associate a direction or orientation in which change is minimal. In this chapter, we will
be concerned with the orientation associated with edges in luminance at the finest scale available.
This is certainly not all that is to be said about orientation (see, for example, Figure 4-1). But it is
a useful case, particularly for object localization and recognition. Orientation detection will prove
key to achieving orientation and scale invariance in these tasks.

Orientation is associated with neighborhoods rather than individual points in an image, and so
is inherently scale dependent. At very fine scales, relatively few pixels are available from which to
judge orientation. Lines and edges at such scales are extremely pixelated and rough. Orientation
filters derived from analytic considerations, with parameters chosen assuming smooth, ideal straight
lines or edges (for example, Chen et al. (2000)) are more suited to larger neighborhoods with more
redundant information. For fine scales, an empirical approach seems more promising, particularly
given that when the number of pixels involved is low, it is practical to sample the space of all possible
appearances of these pixels quite densely. At very fine scales, the interpretation of an image patch
could hinge on a relatively small number of pixels. Noise sensitivity becomes a critical issue. But
even beyond that, it seems that the assignment of labels to image patches is likely to be quite a
non-linear process.

4.2 Approaches to orientation detection

Most methods for detecting local orientation fall into one of two categories. Gradient-based ap-
proaches such as that of Kass and Witkin (1987) are relatively direct, and operate by applying spa-
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Figure 4-2: An example of a steerable filter, following Freeman and Adelson (1991). G2 is the
second derivative of a Gaussian, and H2 is an approximation to its Hilbert transform. These two
filters are said to be in quadrature. From its even form, G2 will respond well to vertical lines. H2

is odd, and will respond well to vertically oriented step edges. The theory associated with steerable
filters shows that the response of an image with a small set of basis filters at discrete angles, as
shown here, can be used to compute the response of one of the filter rotated to any angle. Orientation
detection then becomes applying these filters and computing the angles that would give maximum
response.

tial derivatives to the output of an isotropic edge-detecting filter (such as a Laplacian or difference of
Gaussians). A different approach often used is to examine the response of each neighborhood in the
image to a set of oriented filters, chosen so that some of them respond to edges (‘cosine-phase’), and
some respond to bars (‘sine-phase’), analogous to the receptive fields found by Hubel and Wiesel
in the visual cortex of cats (Hubel and Wiesel, 1962). The filter set may be overcomplete and non-
orthogonal since image reconstruction is not the goal. Figure 4-2 shows an example of a possible
filter set. If the filter is chosen carefully, then it need only be replicated at a discrete number of orien-
tations, and the response of the image to any other orientation computed from the response to those
few. Such filters are said to be steerable (Freeman and Adelson, 1991). Orientation is computed by
finding the orientation that maximizes the response of the image to the filter (here the cosine-phase
and sine-phase filters can be thought of as the real and imaginary components of a single quadrature
filter).

4.3 Empirical orientation detection

Poking allows the robot to build up a reference “catalog” of the manifold appearances real edges
can take on. At fine scales, with relatively few pixels, we can hope to explore the space of pos-
sible appearances of such a neighborhood quite exhaustively, and collect empirical data on how
appearance relates to orientation. This chapter is basically an exploration of how edges in “natural”
images appear when viewed through an extremely small window (4 by 4 pixels). This window size
is chosen to be large enough to actually allow orientation to be well-defined, but small enough for
the complete range of possible appearances to be easily characterized and visualized. Even at this
scale, manual data collection and labelling would be extremely tedious, so it is very advantageous
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Figure 4-3: Sampling the appearance of edges at an object boundary. The object is detected and
segmented as described in Chapter 3. Its boundary is sampled, and quantized window appearance
is stored along with the actual angle of the boundary at that point.

Figure 4-4: Some examples of boundary samples. Dotted pixels belong to a segmented object. The
four-by-four grid overlaid on the boundary shows the result of thresholding.

to have a robot to take care of this. The robot automatically compiles a database of the appearance
of oriented features using the poking behavior.

Oriented features were extracted by sampling image patches along object boundaries, which
were in turn determined using active segmentation. The resulting “catalog” of edge appearances
proved remarkably diverse, although the most frequent appearances were indeed the “ideal” straight,
noise-free edge (Section 4.3). Finally, it is a simple matter to take this catalog of appearances and
use it as a fast memory-based image processing filter (Section 4.3).

The details of the robot’s behavior are as described in Chapter 3, and are briefly reviewed here.
A robot equipped with an arm and an active vision head was given a simple “poking” behavior,
whereby it selected objects in its environment, and tapped them lightly while fixating them. As
described in Chapter 3, the motion signature generated by the impact of the arm with a rigid object
greatly simplifies segmenting that object from its background, and obtaining a reasonable estimate
of its boundary. Once this boundary is known, the appearance of the visual edge between the ob-
ject and the background can be sampled along it (see Figure 4-3). These samples are labelled with
the orientation of the boundary in their neighborhood (estimated using a simple discrete deriva-
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Figure 4-5: Edges have diverse appearances. This figure shows the orientations assigned to a test
suite prepared by hand. Each 4 × 4 grid is a single test edge patch, and the dark line centered in
the grid is the orientation that patch was observed to have in the training data. The oriented features
represented include edges, thin lines, thick lines, zig-zags, corners etc.

tive of position along the boundary). The samples are assumed to contain two components that
are distinguished by their luminance. The pixels of each sample are quantized into binary values
corresponding to above average and below average luminance. Quantization is necessary to keep
the space of possible appearances from exploding in size. The binary quantization gives a very
manageable 65536 possible appearances. About 500 object boundaries were recorded and sampled.
49616 of the possible appearances (76%) were in fact observed; the remaining 24% were all within
a Hamming distance of one of an observed appearance. The orientation of these unobserved appear-
ances were interpolated from their immediate neighbors in Hamming space. If the same appearance
was observed multiple times, the orientations associated with these observations are averaged using
a double-angle representation (Granlund, 1978).

It is a straightforward matter to use the data we have collected to filter an image for fine scale
orientation features. A 4× 4 window is moved across the image, sampling it as described earlier in
Section 4.3. Each sample is used as an index into a table mapping appearance to orientation.

4.4 Results

Figure 4-5 shows that although the data collection procedure operates on views of simple physi-
cal edges, the appearance of these edges can be quite complex. Nevertheless, the most common
appearances observed are ideal, noise-free edges, as Figure 4-6 shows. The first four appearances
shown (top row, left) make up 7.6% of all observed appearances by themselves. Line-like edges
are less common, but do occur, which means that it is perfectly possible for the surfaces on either
side of an edge to be more like each other than they are like the edge itself. This was completely
serendipitous – it was anticipated that obtaining and automatically labelling such examples would
be very difficult.

Figure 4-5 shows the most frequently occurring image appearances with a particular orientation.
Here it is clearer that the most frequent patches are generally “ideal” forms of the edges, followed
by very many variations on those themes with distracting noise. Amidst the edge-like patterns
are examples of a line with single-pixel thickness, and a pair of such lines running parallel. It is
encouraging that examples of such appearances can be collected without difficulty and united with
more classical edge patches of the same orientation.
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Figure 4-6: The most frequently observed edge appearances. All patches observed are replicated
for all 90◦ rotations, mirror flips, and inversion of foreground/background. The most frequent (top)
are simple straight edges. The line in the center of each patch shows the orientation associated with
that patch. After the straight edges, the completely empty patch is common (produced in saturated
regions), followed by a tube-like feature (third-last row) where the boundary is visually distinct to
either side of the edge. This is followed corner-like features and many thousands of variations on
the themes already seen.
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Figure 4-7: The most frequently observed appearances whose orientation is within 5◦ of the hori-
zontal. There is a clear orientation assigned to many patches that deviate a great deal from “ideal”
edges/lines, showing a robustness that is examined systematically in Figure 4-5.
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Figure 4-8: The most frequently observed appearances whose orientation is in the range 40 − 50◦.
Again, there is a clear orientation assigned to many patches that deviate a great deal from “ideal”
edges/lines.
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Figure 4-9: The orientation filter applied to some synthetic test images (on left), modeled after an
example in (Freeman and Adelson, 1991). The second column shows the output of the orientation
filter, color coded by angle (if viewed in color). The third column shows the same information in
vector form. The fourth column shows the orientation determined using steerable quadrature filters
Folsom and Pinter (1998) applied on the same scale. The results are remarkably similar, but the
quadrature filters are much more computationally expensive to apply.
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Figure 4-10: Some more test images, but on a much smaller scale – the individual pixels
are plainly visible, and no smoothing is applied. These tests are modeled after an example in
(Folsom and Pinter, 1998), but significantly scaled down.
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Figure 4-9 shows the orientations measured for a 64×64 image consisting of a circle and square.
This is based on an example in (Freeman and Adelson, 1991). The detector gives good results for
solid edges with arbitrary contrast, and various kinds of lines. The response to edges is diffuse by
design – during data collection, samples are taken both along the boundary and slightly to either side
of it, and treated identically. If a sharper response is desired, these side-samples could be dropped,
or their offset from the boundary could be recorded. Figure 4-10 shows the filter operating on a
very small image of a cube. Each visible edge of the cube is clearly and faithfully represented in
the output.

Figure 4-13 systematically explores the effect of adding noise to an “ideal” edge. The resilience
of the orientation measure is encouraging, although a small number of gaps in coverage are revealed,
suggesting that further data should be collected.

4.5 Discussion and Conclusions

The orientation detection scheme presented in this chapter has an unusual combination of properties,
some of which are essential to the approach and some which are incidental details :-

. Data driven (versus model based). Detection relies heavily on the existence of training
data – it is not achieved directly based on a formal model of edges instantiated in an algorithm.

. Uses look-up table (versus neural network, support vector machine, etc.). The use of
training data is simply to populate a look-up table, rather than anything more elaborate.

. Autonomous data collection (versus human annotation). Training data is collected by the
robot, and not a human.

Data driven

Work on edge and orientation detection has historically been model based, rather than data driven.
To make progress analytically, the nature of edges was grossly simplified – for example, researchers
worked with additive Gaussian noise overlaid on a luminance step (see, for example Canny (1986)).
Before long it was pointed out that edges can take a diversity of forms beyond steps or lines
(Perona and Malik, 1990). With the introduction of diverse cases, an empirical approach becomes
more attractive. Jitendra Malik’s group are now looking at how to locate boundaries between objects
in images using features trained on human-produced segmentations (Martin et al., 2002). Many
other parameters of a modern edge detector can also profit from empirical training, and can be op-
timized per domain (Konishi et al., 2003). So there is clearly considerable scope for a data driven
approach to edge detection to improve performance.

Look-up table

The use of look-up tables has an important place in AI and computer science, from the Huge Look-
Up Table problem in philosophy (Block, 1978) to the implementation of elementary arithmetic
operations in CPU design (Wong and Flynn, 1992). An interpolating look-up table is also just about
the simplest possible learning module. When it can be used, the results of learning are much simpler
to understand than is the case for neural networks, support vector machines, etc. For example, the
work by McDermott (2000) on training a neural network to detect junctions ran into the problem
that, even with sensitivity analysis, it can be hard to understand a network’s failure modes. With a
look-up table, it is trivial. Chapter 4 exploited this fact to provide several visualizations of cross-
sections of the look-up table. The index into the look-up table used is quantized pixel values.
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This stays closer to the raw image than other work (Konishi et al., 2003; Martin et al., 2002) which
focuses on optimizing the combination of existing hand-designed features. In theory, this means
the approach could capture unanticipated domain-specific properties that will not show up in the
hand-designed cases. This possibility was not explored here since the work was implemented on a
robot inhabiting a single fixed space.

Populating a look-up table makes for fast run-time operation. It is possible to make a filter bank
approach that runs at comparable speeds – for example, orientation can be detected from the output
of two 3 × 3 filters, if we are willing to put some work into interpreting the different responses to
step and line edges (essentially line edges give doubled responses, and appear to be a pair of close
step edges). The look-up table approach encapsulates this interpretation step automatically, since it
is trained on the end-to-end judgement required (from pixels to angles).

Autonomy

Training examples of edges could be generated in many ways. For example, computer graphics
could be used to make images with known ground truth, or human labelled datasets could be used
as in Martin et al. (2002) and Konishi et al. (2003). The work of Konishi et al. (2003) has shown that
domain-dependent improvements can be made in edge detection, so in that sense an argument can
be made for adaptivity. An autonomous, empirical approach holds out the promise of developing
a ‘wise’ low-level perceptual system that makes good context-sensitive guesses, making the job of
higher level modules that much simpler. This was beyond the scope this thesis, but it was certainly
a motivating consideration and a direction for future work.

While this work has shown that idealized edges are empirically well grounded, in that they occur
more frequently than other variants, it also shows that many more exotic forms do occur and can
profitably be modeled. At fine scales, where the number of pixels used to compute orientation is
low, a practical approach is to sample the appearance of edges empirically and average over noise
(see Figure 4-17). With the large cache size of modern processors, this memory-based approach
to orientation detection can facilitate extremely rapid orientation detection, which is important for
real-time vision systems (Kubota and Alford, 1995).

Rectangular windows are the natural size for real-time machine vision applications. The memory-
based approach proposed here has the advantage that it can make use of every pixel in the window a
principled way. Filters for orientation detection are typically circular in nature, and so must ignore
pixels that lie outside the largest circle that fits inside the window.

Figure 4-11: Possibilities for expanding the size of the orientation filter.

Can this technique be applied to larger windows? Not easily. In fact the window size used
in one of the earliest papers on orientation detection, which had a diameter of eight pixels, seems
completely out of reach (Hueckel, 1971). A 5×5 window of binary pixels can take on 25×5 possible
values – about 33.6 million, or about 2.1 million allowing for symmetries. This would be hard to
sample exhaustively, but with some further quantization a look-up table of that size would not be
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impossible. An intermediate possibility shown in Figure 4-11 involves one fewer pixel, and has a
more symmetric shape: a 4 × 4 window augmented with 8 extra pixels to “round it off”.

Would an empirical approach work for features other than orientation? This isn’t clear, since
not all features are as robust to pixel-wise transformation as orientation is – and hence it may not be
as easy to explore their space of appearances as exhaustively.
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Figure 4-12: Here the orientation detector is applied to an image from Chabat et al. (1999). The
top row shows from left to right the original image, output of the Folsom detector, output of the
memory-based detector, and a simple enhancement of that output using region growing. The second
row filters that output by orientation range (within 22.5◦ of horizontal, vertical, +45◦ and −45◦

respectively). The final row shows the output of a steerable filter by comparison, steered to the
same nominal orientations, to reinforce that orientation does not pop out immediately from those
filters – note for example the significant response in the third column at −45◦ even though there
is nothing at that orientation in the image; they require a level of additional processing that the
memory-based approach bypasses.
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Figure 4-13: The top row shows an “ideal” view of a horizontal edge. The next two rows show
patches with a single pixel perturbation from this ideal. The estimated angle remains close to hori-
zontal. The rows that follow show 2-pixel perturbations (25% of the pixel weight of the edge). The
behavior of the orientation estimate is generally reasonable. In two cases there is insufficient data
for a good estimate (just one sample is available).

57



Figure 4-14: Perturbations from an “ideal” view of a diagonal edge. There are now several cases in
which little training data is available, and one example of a divergent direction estimate (fourth row
from bottom, third column from right).

58



Figure 4-15: Perturbations from an “ideal” view of a tube.
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Figure 4-16: Perturbations from an “idea” view of a line. Here the pixel weight of the line is low,
so the perturbations have a correspondingly more drastic effect. Lines are also seen less often in the
training data, since they require special conditions at the object boundaries sampled (the boundary
must be unlike the surface on either side of it). There is considerable room for improvement here
if other sources of ground truth could be acquired. For example, orientation information could be
propagated across time or space from neighboring patches of known orientation to less frequently
encountered patches.
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Figure 4-17: The plot on the left shows the frequency with which a thick step edge (as shown
in Figure 4-13) is labelled with each possible angle. The distribution has a peak at 0◦/180◦ as is
appropriate, but other values do occur. About 7% of the samples lie at close to right angles to the
nominally correct value. The plot on the right shows the same results for a thin line (as shown in
Figure 4-16). The basic shape is the same, but the pattern occurs much less frequently overall –
hundreds of times versus tens of thousands.
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