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Abstract

Humans use a set of exploratory procedures

to examine object properties through grasp-
ing and touch. Our goal is to exploit similar
methods to enable developmental learning on
a humanoid robot. We use a compliant robot
hand to find objects without prior knowledge
of their presence or location, and then tap
those objects with a finger. This behavior lets
the robot generate and collect samples of the
contact sound produced by impact with that
object. We demonstrate the feasibility of rec-
ognizing objects by their sound, and relate this
to human performance under situations anal-
ogous to that of the robot.

1. Introduction

Grasping and touch offer intimate access to objects
and their properties. In previous work we have
shown how object contact can aid in the development
of haptic and visual perception (Natale et al., 2004,
Metta and Fitzpatrick, 2003). We now turn our at-
tention to audition: developing perception of contact
sounds. Hearing is complementary both to touch
and vision for contact sounds. Unlike touch, hear-
ing doesn’t require the robot to be the one causing
the contact event. And unlike vision, hearing doesn’t
require line of sight – it won’t be blocked by the arm,
hand, or the object itself. We are motivated by an
experiment we report in this paper, where human
subjects successfully grasped objects while blindfold-
ed. Several studies have revealed the importance of
somatosensory input (force and touch); for example
human subjects with anesthetized fingertips have dif-
ficulty in handling small objects even with full vi-
sion (Johansson, 1991). The extensive use of vision
rather than haptic feedback in robotics may be due
to technological limits rather than merit. The robot-
ic hand used in this paper was designed to overcome
these limitations. It is equipped with dense touch
sensors and series elastic actuators which allow pas-
sive compliancy and to measure force at the joints.
Force feedback and intrinsic compliance are exploited
to successfully control the interaction between robot
and environment without relying on visual feedback.

Humans use exploratory procedures in their per-
ception of the world around them. This has in-

spired work on robotics. An analog of human
sensitivity to thermal diffusivity was developed by
(Campos et al., 1991), allowing a robot to distinguish
metal (fast diffusion) from wood (slow diffusion). A
robotic apparatus for tapping objects was developed
by (Richmond and Pai, 2000) to characterize sounds
so as to generate more convincing contact in haptic in-
terfaces. In (Femmam et al., 2001), a special-purpose
robot listens to sounds of the surface it “walks” on.

We use a tapping exploratory procedure, applied
to natural objects by a general purpose, compliant
hand (rather than a rigid, special purpose tapping
device). Repetitive contact between the fingers and
the object (the tapping behavior) allows the robot to
collect information about the object itself (the sound
produced by the collision of the fingers and the object
surface) which is used for object recognition.

The paper is organized as follows: in Section 2.
we present a motivating experiment with human sub-
jects. Section 3. describes our robotic platform. Sec-
tion 4. and 5. respectively detail the tapping experi-
ment and the results we obtained. Section 6. discusses
the results and places them on a broader perspective.

2. Simulating our robot with humans

Human haptic perception is impressive, even under
serious constraint (Lederman and Klatzky, 2004). To
get an “upper bound” of what we could expect from
our robot, we evaluated human performance when
wearing thick gloves that reduced their sensitivity and
dexterity to something approaching our robot. We
blocked their vision, since we know our robot cannot
compete with human visual perception, but let them
hear.

We sat 10 subjects in front of a padded desk covered
with various objects – a wooden statue, a bottle, a
kitchen knit, a plastic box, a paper cup, a desktop
phone, a tea bag and a business card. The subjects
wore a blindfold and a thick glove which reduced their
haptic sensitivity and the number of usable fingers.
The glove only allows them to use their thumb, their
index and middle finger.

A goal of the experiment was to determine how
much and in what way humans can manipulate un-
known objects in an unknown environment with ca-
pabilities reduced to something approximating our
robot. Here are a summary of our observations:



Figure 1: Subjects exploring a desk while blindfolded and

wearing a thick glove. Top: light objects were inevitably

knocked over, but the sound of their fall alerted the sub-

jects to their presence, location, and (often) identity. Bot-

tom: the sound of object placement was enough to let this

subject know where the cup was and suggest a good grasp

to use.

. Exploration strategies vary. Some subjects face
their palm in the direction of motion, others to-
wards the desk. The speed at which people swing
their arm is generally slow and cautious, with oc-
casional contact with the table.

. Very light objects were consistently knocked over.

. Subjects quickly reorient their hand and arm for
grasping if either their hand or their wrist makes
contact with an object.

. Subjects exhibited a short-term but powerful
memory for object location.

. Sounds produced by objects and surfaces were
used to identify them, compensating partially for
the reduction in tactile sensitivity (see Figure 1).
This was occasionally misleading: one subject un-
wittingly dragged a teabag over the desk, and
thought from the sound that the surface was cov-
ered in paper.

Inspired by the last observation, in this paper we fo-
cus on exploiting the information carried by sound in
combination with tactile and force sensing.

3. The robot Obrero

The humanoid robot used in this work, Obrero, con-
sists of a hand, arm and head, shown in Figure 2.
Obrero was designed to approach manipulation not as
a task mainly guided by a vision system, but as one
guided by the feedback from tactile and force sens-
ing – which we call sensitive manipulation. We use
the robot’s limb as a sensing/exploring device as op-
posed to a pure acting device. This is a convenient
approach to operate in unstructured environments,
on natural unmodeled objects. Obrero’s limb is sen-
sor rich and safe – it is designed to reduce the risk of
damages upon contact with objects.

The arm used in Obrero is a clone of a force-
controlled, series-elastic arm developed for the robot

Figure 2: The robot Obrero (left) has a highly sensitive

and force controlled hand, a single force controlled arm

and a camcorder as a head (used simply as a microphone

in this paper). Obrero’s hand (right) has three fingers, 8

DOF, 5 motors, 8 force sensors, 10 position sensors and 7

tactile sensors.
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Figure 3: Force readings from the fingers (bottom) re-

veal when tapping may occur. Swings in the force are

compared against sound intensity (top), looking for syn-

chronized sounds. Peaks within one fifth of a period from

a force swing are accepted. This process lets the robot

filter out environmental sounds that occur when the arm

is not moving, and even during tapping. In this example,

the first three peaks of sound are clean, but the last two

are corrupted by a phone ringing (see Figure 4).

Domo (Edsinger-Gonzales and Weber, 2004). The
hand consists of three fingers and a palm. Each
one of the finger has two links that can be opened
and closed. Two of the fingers can also rotate.
Each one of the joints of the hand is controlled us-
ing an optimized design for a series elastic actua-
tor (Torres-Jara and Banks, 2004). Series elastic ac-
tuators reduce their mechanical impedance and pro-
vide force sensing (Williamson, 1995). Summary in-
formation about the hand is given in Figure 2.

4. The robot’s behavior

The behavior of the robot is very simple. It alter-
nates between sweeping its hand back and forth over



Figure 4: This is the spectrogram of the sounds in Fig-

ure 3 (time on the x-axis, increasing frequency on the

y-axis, dark color corresponds to activity). The top of

the spectrogram is marked to show the five sample times

selected automatically. Between these times, there are

patches of sound corresponding to the sound of springs

in the fingers. The last two samples have the sound of a

phone superimposed on them.

a table, and tapping any object it comes in contact
with. Both the arm and hand are position controlled,
but with the gains of the PD tuned so that, togeth-
er with the springs in series with the motors, they
realize a certain degree of compliance at the level of
the joints. The hand in particular is extremely com-
pliant; as a result during the “sweeping behavior”
the fingers slightly bend upon contact with an ob-
ject. Whenever a watchdog module detects such a
collision it stops the arm and interrupts the sweep-
ing movement. The hand then starts the “tapping
behavior”; this is achieved by controlling the fingers
with a periodic reference signal. The tapping lasts a
few seconds, after which the arm is repositioned and
the sweeping behavior reactivated.

During the experiment we recorded vision and
sound from the head along with the force feedback
from both the arm and hand. The visual feedback
was not used in the robot’s behavior; it was simply
recorded to aid analysis and presentation of results.
All other streams were considered candidates for de-
tecting contact. The force feedback from the hand
proved the simplest to work with. Peaks in the hand
force feedback were successfully employed to detect
the impact of the fingers with the object during both
the exploration and tapping behaviors. Force and
sound were aligned as shown in Figure 3. Once the
duration of a tapping episode was determined, a spec-
trogram for the sounds during that period was gener-
ated as shown in Figure 4. The overall contact sound
was represented directly as the relative distribution of
frequencies at three discrete time intervals after each
tap, to capture both characteristic resonances, and
decay rates. The distributions were pooled across all
the taps in a single episode, and averaged. Recogni-
tion is performed by transforming these distributions
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Figure 5: Receiver-operator characteristic curve. Tap-

ping episodes from one day are matched against episodes

from a previous day. Matches are ranked, then truncated

based on a quality threshold. This plot shows the effect

of that threshold on the trade-off between false matches

and missed matches.

Figure 6: There were four overlapping objects in both

the training and test run. Three of them were matched

perfectly (using a best-match rather than threshold-based

strategy) for every episode: a bottle (left), a spray-can

(middle), and a CD case (right). Images on the bottom

are from the test run, images on the top are from the best

matching episode in the training run. These objects have

quite distinctive sounds. A plastic toy (left corner of each

lower image) failed to be recognized – it was quiet, and

made just a dull thud.

into significance measures (how far frequency levels
differ from the mean across all tapping episodes) and
then using histogram comparison.

5. Results

We evaluated our work by performing an object
recognition experiment. We exposed the robot one
evening to a set of seven objects, and then in the
morning tested its ability to recognize another set,
which had an overlap of four objects with the train-
ing set.

Three of these objects were chosen (Figure 6) to
represent three different materials, plastic, glass and
steel (metal). The idea is that the sound produced by
each object depends on its size, shape and the materi-



al with which it is made; accordingly we expected the
tapping to produce three different distinct sounds. A
fourth object (a plastic toy) was relatively silent.

For each run, we placed randomly selected objects
on the table in front of the robot, and it was respon-
sible for finding and tapping them. Overall the robot
tapped 53 times; of these episodes 39 were success-
ful, meaning that the sound produced by the tapping
was significantly loud; in the other 14 cases the tap-
ping did not provoke useful events either because the
initial impact caused the object to fall, or the object
remained too close to the hand. The high number of
successful trials shows that given the mechanical de-
sign of hand and arm, haptic feedback was sufficient
to control the interaction between the robot and the
environment.

We evaluated the performance of our spectrum
comparison method by ranking the strength of match-
es between episodes on the second day and episodes
on the first day. Figure 5 shows what detection accu-
racy is possible as the acceptable false positive rate is
varied. This predicts that we can on average correct-
ly match an episode with 50% of previous episodes
involving the same object if we are willing to accept
5% false matches.

6. Conclusions

We have demonstrated a compliant robot hand ca-
pable of safely coming into contact with a variety of
objects without any prior knowledge of their presence
or location – the safety is built into the mechanics and
the low level control, rather than into careful trajec-
tory planning and monitoring. We have shown that,
once in contact with these objects, the robot can per-
form a useful exploratory procedure: tapping. The
repetitive, redundant, cross-modal nature of tapping
gives the robot an opportunity to reliably identify
when the sound of contact with the object occurs,
and to collect samples of that sound. We demon-
strated the utility of this exploratory procedure for a
simple object recognition scenario.

This work fits in with a broad theme of learning
about objects through action that has motivated the
authors’ previous work (Fitzpatrick et al., 2003). We
wish to build robots whose ability to perceive and
act in the world is created through experience, and
hence robust to environmental perturbation. The in-
nate abilities we give our robots are not designed to
accomplish the specific, practical, useful tasks which
we (and our funders) would indeed like to see, since
direct implementations of such behaviors are invari-
ably very brittle; instead we concentrate on creating
behaviors that give the robot robust opportunities for
adapting and learning about its environment. Our
gamble is that in the long run, we will be able to build
a more stable house by building the ground floor first,
rather than starting at the top.
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