OWL & RULES

INTRODUCTION TO THE SEMANTIC WEB

Birte Glimm

November 7, 2010

OUTLINE

RULE-BASED FORMALISMS

RDF, RDFS & OWL 2

OWL 2 PROFILES

Bl OWL 2 RL & RULES

IMPLEMENTATIONS & CONCLUSIONS

Birte Glimm OWL & Rules

Rule-Based Formalisms

RULE-BASED FORMALISMS

Rules provide a natural of modelling “if-then” knowledge
General form of a rule

Body — Head alternative writing: Head :- Body

Body: (possibly empty) conjunction of atoms
Head: at most one atom (Horn) or a disjunction of atoms

Vx Yy (hasSister(x, y) — hasSibling(x, y))
vx (Male(x) A Female(x) — |)

= We use short names (hasSister) instead of fully qualified
(http://example.org/myExample#hasSister) or abbreviated
IRIs (ex:hasSister) throughout

= We use X, y, and z as variables throughout

Birte Glimm OWL & Rules

Rule-Based Formalisms

THE SEMANTICS OF RULES

m Syntactically, the rules we consider are just FOL formulae

m Can be interpreted under standard FOL semantics
m Other (non-monotonic) interpretations are possible
m well-founded semantics
m stable model semantics
m answer set semantics
m For Horn rules, these interpretations coincide (unless
negation of atoms is allowed)
m Here, we only consider the FOL (=open world) semantics

m Production rules consider the consequence to be an action
“If-then do” =- not considered here

Birte Glimm OWL & Rules

Rule-Based Formalisms

RULE INTERCHANGE FORMAT — RIF

m RIF is a W3C standard for expressing rules

m RIF has several dialects and features
m Basic Logic Dialect = RIF BLD (declarative)
m RIF Core, function-free subset of RIF BLD

m Production Rules = RIF PRD

m Datatypes and Built-in functions = RIF DTB

m Framework for Logic Dialects = RIF FLD (a general
framework for logic-based rule languages, covering RIF BLD
and RIF Core)

m Can be used in combination with RDF or OWL documents

RIF (PRESENTATION) SYNTAX EXAMPLE

Forall ?x ?y (
hasSibling(?x, ?y) :- hasSister(?x, ?y)
)

Birte Glimm OWL & Rules

Rule-Based Formalisms

WHAT WE CANNOT SAY WITH RULES

m With rules, one cannot require the existence of individuals
with certain properties except by explicitly naming them

m We can express that there are two persons are married by
giving them names

m We cannot express something like:“Every twin has some
sibling”

m Requires function symbols (in RIF BLD, not RIF Core)

hasSibling(Mary, Peter)
Twin(x) — hasSibling(x, Somebody)
Twin(x) — hasSibling(x, f(x))

= Program evaluation might not terminate ®
= One can/has to explicitly specify the desired inference steps.
OWL has a large set of predefined modeling constructs.

Birte Glimm OWL & Rules

RDF, RDFS & OWL 2

WHAT OWL TALKS ABOUT (SEMANTICS)

m No customizable rule set, but modeling constructs with
pre-defined semantics
= OWL ontologies talk about worlds that contain
m Individuals (constants) such as Mary, Peter
m Classes ~ unary predicates: Male(_), Female()
m Properties ~ binary predicates: hasSister(_,)
m Object properties linking a pair of individuals
m Data properties linking an individual with a concrete value
(string, integer, .. .)

————

’/

~~~~~~~~~~

xsd:string

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

RDF-BASED VERSUS DIRECT SEMANTICS

m The OWL RDF-Based Semantics (aka OWL Full) is an
extension of the RDFS Semantics
m Individuals, Classes, and Properties are interpreted as
elements of the domain
m Classes have an extension that is a subset of the domain
m Properties have an extension of pairs of elements from the
domain
m The OLW Direct Semantics (aka OWL DL) is directly
model-theoretic
m Based on Description Logics
m Classes are interpreted as subsets of the domain
m Properties are interpreted as sets of pairs of elements from
the domain
= Syntactic restrictions on well-formed sets of RDF triples

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

STATING ASSERTIONAL KNOWLEDGE

Asserts information about concrete, named individuals

CLASS ASSERTION EXAMPLE

OWL Functional Style Syntax
ClassAssertion(Male Peter)

Turtle Syntax
Peter rdf:type Male

RDF/XML Syntax
<Male rdf:about="Peter’/>

Rules Syntax
— Male(Peter)

Birte Glimm

OWL & Rules




RDF, RDFS & OWL 2

STATING ASSERTIONAL KNOWLEDGE

Asserts information about concrete, named individuals

OBJECT PROPERTY ASSERTION EXAMPLE
OWL Functional Style Syntax
ObjectPropertyAssertion(hasSister Peter Mary)

Turtle Syntax
Peter hasSister Mary

RDF/XML Syntax
<rdf:Description rdf:about="Peter’>
<hasSister rdf:resource="Mary”/>
</rdf:Description>

Rules Syntax
— hasSister(Peter, Mary)

= That is all that can be said in plain RDF

Birte Glimm OWL & Rules




RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

Information about how classes and properties relate in general

SUBCLASS AXIOM EXAMPLE

OWL Functional Style Syntax
SubClassOf(Male Person)

Turtle Syntax
Male rdfs:subClassOf Person

RDF/XML Syntax
<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="Male">
<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>

Rules Syntax
Male(x) — Person(x)

Birte Glimm OWL & Rules

g
Person®™——=
2



RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

Information about how classes and properties relate in general

SUBPROPERTY AXIOM EXAMPLE

OWL Functional Style Syntax
SubObjectPropertyOf(hasSister hasSibling

)
Turtle Syntax & :
hasSister rdfs:subPropertyOf hasSibling %

RDF/XML Syntax
<owl:ObjectProperty rdf:ID="hasSibling"/>
<owl:ObjectProperty rdf:ID="hasSister">
<rdfs:subPropertyOf rdf:resource="hasSibling"/>
</owl:ObjectProperty>

Rules Syntax
hasSister(x, y) — hasSibling(x, y)

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

m RDFS can further specify domain and range classes for
properties.

m For example, the domain and range of hasSibling could be
specified as Person.

= Careful, this is not a constraint, but an implication.

RANGE EXAMPLE

hasSister rdfs:range Female
Peter hasSister Mary
Mary rdf:itype Male

= Mary rdf:type Female

Contradiction only when Male and Female are defined as
disjoint!

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

PetOwner

INTERSECTION AND UNION

ObjectintersectionOf(Male PetOwner)

ObjectUnionOf(Male PetOwner)

SubClassOf(ObjectintersectionOf(Male PetOwner) Friendly)
Male(x) A PetOwner(x) — Friendly(x)

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

Complement of M:
COMPLEMENT & CLOSED CLASSES W

ObjectComplementOf(Male)

ObjectOneOf(Peter Mary John)

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

RESTRICTIONS

ObjectSomeValuesFrom(
hasSibling Female)
= Peter

ObjectAllValuesFrom(
hasSibling Female)
= Mary, John

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS IN AXIOMS

RESTRICTIONS IN AXIOMS

ClassAssertion(Twin Peter)
SubClassOf(Twin ObjectSomeValuesFrom(hasSibling Twin))

Twin(Peter)
Twin(x) — hasSibling(x, f(x)
Twin(x) — Twin(f(x))

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

There are more constructors available:
m At least, at most and exact cardinality restrictions
m Self restriction
m Restrictions on data ranges
m Constructors for data ranges

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL BUILT-INS

Special Classes

m owl:Thing = contains all individuals of the domain

m owl:Nothing = the empty class containing no individuals
Special Object Properties

= owl:topObjectProperty = connects all possible pairs of
individuals

m owl:bottomObjectProperty = does not connect any pair of
individuals

Special Data Properties

m owl:topDataProperty = connects all possible individuals
with all literals

m owl:bottomDataProperty = does not connect any individual
with a literal

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

PROPERTY AXIOMS

Can define characteristics of properties

INVERSES & FUNCTIONALITY

InverseObjectProperties(
hasSister isSisterOf)

Mary

i, oSl
isSisterOfi= !

hasSister(x, y) — isSisterOf(y, x)

FunctionalObjectProperty(hasMother) hasMothe'r\ AasMother
hasMother(x, y1) A hasMother(x, y»)
— Y1=)2 =

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

PROPERTY AXIOMS

Can define characteristics of properties

Mary
& nassiipelss
SymmetricObjectProperty(hasSibling) hasSiinnm /
hasSibling(x, y) — hasSibling(y, x)
]
TransitiveObjectProperty(hasAncestor) ‘é ,-" T hasAncestor
(%) : N\ 48
hasAncestor(x, y) A hasAncestor(y, z) & i%
— hasAncestor(x, z) 8t
) \ T hasAncestor

&

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

PROPERTY CHAIN AXIOMS

Allow for inferring the existence of a property from a chain of
properties

PROPERTY CHAINS

SubObjectPropertyOf(
ObjectPropertyChain(hasParent hasBrother)
hasUncle)

hasParent(x, y) A hasBrother(y, z) — hasUncle(x, z)

hasBrother

i [

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

PROPERTY AXIOMS

More property axioms available
m Reflexive, irreflexive, asymmetric, inverse functional, and
disjoint object properties
= Functional and disjoint data properties

Birte Glimm OWL & Rules



RDF, RDFS & OWL 2

OWL SEMANTICS

m OWL RDF-Based Semantics (OWL Full)
m All constructors can be used in an unrestricted way
m Reasoning works with any RDF document
m Depending on the input, reasoning might not terminate

m OWL Direct Semantics (OWL DL)
Based on Description Logics

Accepts only certain well-formed RDF documents as input
Makes restrictions one the usage of constructors (e.g.,
regularity restrictions on role chains)

Guarantees termination

Birte Glimm

OWL & Rules



OWL 2 Profiles

OWL 2 PROFILES

m OWL 2 DL is decidable, but computationally hard
= not scalable enough for many applications

m OWL Full is not even decidable

= not many implementations that support all of OWL Full are
available

m |dea: identify subsets of OWL 2 which are
m sufficiently expressive, but
m of lower complexity (tractable)
m Profiles tailored to specific reasoning services

m Terminological/schema reasoning:
= OWL EL

m Query Answering via database engines:
= OWL QL

m Assertional/data reasoning with rule engines:
= OWL RL

Birte Glimm OWL & Rules



OWL 2 Profiles

OWL 2 PROFILES

OWL 2 Full (RDF-Based Semantics) undecidable

OWL 2 DL (Dlrect Semantics) ic’J\er;IpeIéme-

/ /)WL 1DL NExpTime-
complete

PTime-
complete

[OWL2 RL | [OWLz EL |

OWL 2 QL

Birte Glimm OWL & Rules



OWL 2 Profiles

OWL 2 EL

= A (near maximal) fragment of OWL 2 such that
m Satisfiability checking is in PTime (PTime-Complete)
m Data complexity of query answering also PTime-Complete
m Class hierarchy (all subclass relations between classes) can
be computed in “one pass”
m Exploits saturation-based techniques developed for £L£
description logics
= Can be extended to the Horn (non-disjunctive) fragment of
OWL DL [Kazakov 2009]
m Allowed:

m SubClassOf axioms with intersection, someValuesFrom,
owl:Thing, owl:Nothing, closed classes with one member
(nominal)

m Property chain axioms, range restrictions (under certain
conditions)

m Disallowed:

m Negation (complement), disjunction (union), allValuesFrom,

inverse properties

Birte Glimm OWL & Rules



OWL 2 Profiles

OWL 2 QL

= A (near maximal) fragment of OWL 2 such that
» Data complexity of conjunctive query answering is in AC®
m Can exploit query rewriting based reasoning technique
= Data storage and query evaluation can be delegated to
standard RDBMS
m Benefits from research in DL-Lite description logics

= Novel technique to prevent exponential blowup from
rewritings [Kontchakov et al. 2010, Rosati & Almatelli 2010]

= Can be extended to more expressive languages by using a
Datalog engine [Perez-Urbina et al. 2009]

= Allowed:
m Subproperties, Domain, Range
m SubClassOf axioms with left hand side: class name or
SomeValuesFrom(op owl:Thing), right hand side:
intersection of class names, SomeValuesFrom(op c), and
negations of Ihs expressions

Birte Glimm OWL & Rules



OWL 2 Profiles

OWL 2 RL

= A (near maximal) fragment of OWL 2 such that
m Reasoning is PTime-complete (ontology consistency, class
expression satisfiability, class expression subsumption,
instance checking, and conjunctive query answering)
m Reasoning is sound and complete when the input RDF graph
has certain properties, and sound on arbitrary RDF graphs
m Can work directly on RDF triples to enrich instance data
(materialize schema inferences for facts)

m Reasoning can be implemented in a rule engine (with
equality support)

@ In OWL RL RIF and OWL meet since any RIF (Core) rule
engine can be used to implement OWL RL

= W3C Working Group Note: “OWL 2 RL in RIF” at
http://www.w3.org/TR/rif-owl-rl/

Birte Glimm OWL & Rules



OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

m OWL 2 RL specification provides complete rule set
m Each RDF triple is encoded via a ternary predicate T(_, , )

EXAMPLE RULE FOR SUBPROPERTY REASONING

prp-spo1  T(?p1, rdfs:subPropertyOf, ?p2) A T(?x, ?p1, ?y)
— T(?x, ?7p2, ?y)

hasSister rdfs:subPropertyOf hasSibling
Peter hasSister Mary
= Peter hasSibling Mary

Birte Glimm OWL & Rules



OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

EXAMPLE RULE FOR FUNCTIONALITY REASONING
prp-fp  T(?p, rdf:itype, owl:FunctionalProperty) A
T(?x, 7p, ?y1) A T(7%, 7p, ?y2)
— T(?y1, owl:sameAs, ?y2)

g

hasMothe’r\ A\asMother

hasMother rdf:type owl:FunctionalProperty
John hasMother Anna

John hasMother Ann

= Anna owl:SameAs Ann

Birte Glimm OWL & Rules



OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

Person rdfs:subClassOf _:c SubClassOf(Person
_:c rdf:type owl:Restriction ObjectAllValuesFrom(hasChild
_:c owl:allValuesFrom Person Person))

_:c owl:onProperty hasChild ObjectPropertyAssertion(hasChild
Anna hasChild Mary Anna Mary)
Anna rdf:type Person ClassAssertion(Person Anna)

CLASS EXPRESSION & AXIOM REASONING

cax-sco T(?c1, rdfs:subClassOf, ?¢c2) A
T(?x, rdf:itype, ?c1)

— T(?x, rdf:type, ?c2)
T(?x, owl:allValuesFrom, ?y) A
T(?x, owl:onProperty, ?p) A
T(?u, rdf:type, ?x) A
T(?u, ?p, ?v)

— T(?v, rdf:type, ?y)

cls-avf

Birte Glimm OWL & Rules



OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

Person rdfs:subClassOf _:c = Anna rdf:itype _:c
_:c rdf:type owl:Restriction = Mary rdf:type Person
_:c owl:allValuesFrom Person

_:c owl:onProperty hasChild
Anna hasChild Mary
Anna rdf:type Person

CLASS EXPRESSION & AXIOM REASONING

cax-sco T(Person, rdfs:subClassOf, _:c) A
T(Anna, rdf:type, Person)
— T(Anna, rdf:type, _:c)
:c, owl:allValuesFrom, Person) A
:c, owl:onProperty, hasChild) A
Anna, rdf:type, _:c) A
Anna, hasChild, Mary)
— T(Mary, rdf:type, Person)

cls-avf

—|—|—|—|

-
C
(
(

Birte Glimm OWL & Rules



OWL 2 RL & Rules

OWL 2 RL IN RIF

m More optimized implementation than via the fixed OWL 2 RL
rule set possible

m The OWL 2 RL rules can be implemented in the RIF Core
dialect

= Either as fixed or ontology-specific rule set

m W3C Working Group Note: “OWL 2 RL in RIF” outlines
different algorithms for OWL RL reasoning in RIF

= http://www.w3.org/TR/rif-owl-rl/

Birte Glimm OWL & Rules



Implementations & Conclusions

RIF IMPLEMENTATIONS

= RIF BLD

m Eye, IBM DB2 XML, IRIS, OntoBroker (partial), riftr, Silk,
VampirePrime

= RIF Core

m all above plus fuxi, IBM Websphere ILOG JRules, RIFle
m RIF PRD

m IBM Websphere ILOG JRules, OBR, RIFle
= RIF DTB

m Eye, IRIS, OBR (partial), RIFle, riftr

See http://www.w3.0rg/2005/rules/wiki/Implementations

Birte Glimm OWL & Rules



Implementations & Conclusions

OWL IMPLEMENTATIONS

s OWL 2 DL
m FaCT++, HermiT, Pellet, RacerPro (partial)
m OWL 2RL

m ELLY, Jena, Oracle, OWLIM, OWLRL
m Essentially any rule engine
m E.g., via RIF Rules in the RIF Core dialect

s OWL2QL

m Owlgres, Quill, QuOnto, REQUIEM
m Essentially any SQL engine (with query rewriting on top)

s OWL 2 EL
m CB, CEL, ELLY, JCEL, Pellet, SHER, snorocket

See http://www.w3.0rg/2007/OWL/wiki/Implementations

Birte Glimm OWL & Rules



Implementations & Conclusions

CONCLUSIONS

m OWL 2 defines several modeling constructs for which OWL
reasoners provide automated inference services
m OWL Direct Semantics: set-theoretic semantics, based on
description logics
m OWL RDF-Based Semantics: extension of RDFS, works
directly on triples
m OWL 2 Profiles for efficient and scalable reasoning
m Rules allow for customizable inferences
m RIF W3C standard for applying rules to semantic web data
m RIF dialects (Core, BLD, PRD) for different purposes
m Further RIF FLD dialects: RIF Core Answer Set
Programming Dialect, RIF Core Logic Programming Dialect,
RIF Uncertainty Rule Dialect

= OWL RL can be implemented via RIF Core rules

= Also OWL EL can be implemented in a rule engine

= SPARQL Entailment Regimes lift SPARQL to RDF(S), OWL,
and RIF reasoning: http:/www.w3.org/TR/spargl11-entailment/

Birte Glimm OWL & Rules



Implementations & Conclusions

REFERENCES

m OWL 2: http://www.w3.org/TR/owl2-overview/
m RIF: http://www.w3.org/TR/rif-overview/

m SPARQL Entailment Regimes:
http://www.w3.org/TR/sparqgl11-entailment/

= Book “Foundations of Semantic Web Technologies”. P.
Hitzler, M. Krétzsch, S. Rudolph. CRC Press, 2009

[Kazakov 2009] Y. Kazakov. Consequence-Driven Reasoning for
Horn SHIQ Ontologies. IJCAI, 2009

[Kontchakov et al. 2010] R. Kontchakov, C. Lutz, D. Toman, F.
Wolter and M. Zakharyaschev. The Combined Approach to
Query Answering in DL-Lite. KR, 2010

[Rosati & Almatelli 2010] R. Rosati, A. Almatelli. Improving
Query Answering over DL-Lite Ontologies. KR, 2010
[Perez-Urbina et al. 2009] H. Pérez-Urbina, I. Horrocks, B. Motik.
Efficient Query Answering for OWL 2. ISWC, 2009

Birte Glimm OWL & Rules



	Rule-Based Formalisms
	RDF, RDFS & OWL 2
	OWL 2 Profiles
	OWL 2 RL & Rules
	Implementations & Conclusions

