
OWL & RULES
INTRODUCTION TO THE SEMANTIC WEB

Birte Glimm

November 7, 2010

OUTLINE

1 RULE-BASED FORMALISMS

2 RDF, RDFS & OWL 2

3 OWL 2 PROFILES

4 OWL 2 RL & RULES

5 IMPLEMENTATIONS & CONCLUSIONS

Birte Glimm OWL & Rules 2/38

Rule-Based Formalisms

RULE-BASED FORMALISMS

Rules provide a natural of modelling “if-then” knowledge
General form of a rule

Body → Head alternative writing: Head :- Body

Body: (possibly empty) conjunction of atoms
Head: at most one atom (Horn) or a disjunction of atoms

EXAMPLE

∀x ∀y (hasSister(x, y) → hasSibling(x, y))
∀x (Male(x) ∧ Female(x) → ⊥)

⇒ We use short names (hasSister) instead of fully qualified
(http://example.org/myExample#hasSister) or abbreviated
IRIs (ex:hasSister) throughout

⇒ We use x, y, and z as variables throughout

Birte Glimm OWL & Rules 3/38

Rule-Based Formalisms

THE SEMANTICS OF RULES

Syntactically, the rules we consider are just FOL formulae
Can be interpreted under standard FOL semantics
Other (non-monotonic) interpretations are possible

well-founded semantics
stable model semantics
answer set semantics

For Horn rules, these interpretations coincide (unless
negation of atoms is allowed)
Here, we only consider the FOL (=open world) semantics
Production rules consider the consequence to be an action
“If-then do” ⇒ not considered here

Birte Glimm OWL & Rules 4/38

Rule-Based Formalisms

RULE INTERCHANGE FORMAT – RIF

RIF is a W3C standard for expressing rules
RIF has several dialects and features

Basic Logic Dialect ⇒ RIF BLD (declarative)
RIF Core, function-free subset of RIF BLD

Production Rules ⇒ RIF PRD
Datatypes and Built-in functions ⇒ RIF DTB
Framework for Logic Dialects ⇒ RIF FLD (a general
framework for logic-based rule languages, covering RIF BLD
and RIF Core)

Can be used in combination with RDF or OWL documents

RIF (PRESENTATION) SYNTAX EXAMPLE

Forall ?x ?y (
hasSibling(?x, ?y) :- hasSister(?x, ?y)

)

Birte Glimm OWL & Rules 5/38

Rule-Based Formalisms

WHAT WE CANNOT SAY WITH RULES

With rules, one cannot require the existence of individuals
with certain properties except by explicitly naming them
We can express that there are two persons are married by
giving them names
We cannot express something like:“Every twin has some
sibling”
Requires function symbols (in RIF BLD, not RIF Core)

EXAMPLE

hasSibling(Mary, Peter)
Twin(x) → hasSibling(x, Somebody)
Twin(x) → hasSibling(x, f(x))

⇒ Program evaluation might not terminate /
⇒ One can/has to explicitly specify the desired inference steps.

OWL has a large set of predefined modeling constructs.

Birte Glimm OWL & Rules 6/38

RDF, RDFS & OWL 2

WHAT OWL TALKS ABOUT (SEMANTICS)

No customizable rule set, but modeling constructs with
pre-defined semantics
OWL ontologies talk about worlds that contain

Individuals (constants) such as Mary, Peter
Classes ; unary predicates: Male(_), Female(_)
Properties ; binary predicates: hasSister(_, _)

Object properties linking a pair of individuals
Data properties linking an individual with a concrete value
(string, integer, . . .)

Birte Glimm OWL & Rules 7/38

RDF, RDFS & OWL 2

RDF-BASED VERSUS DIRECT SEMANTICS

The OWL RDF-Based Semantics (aka OWL Full) is an
extension of the RDFS Semantics

Individuals, Classes, and Properties are interpreted as
elements of the domain
Classes have an extension that is a subset of the domain
Properties have an extension of pairs of elements from the
domain

The OLW Direct Semantics (aka OWL DL) is directly
model-theoretic

Based on Description Logics
Classes are interpreted as subsets of the domain
Properties are interpreted as sets of pairs of elements from
the domain

⇒ Syntactic restrictions on well-formed sets of RDF triples

Birte Glimm OWL & Rules 8/38

RDF, RDFS & OWL 2

STATING ASSERTIONAL KNOWLEDGE

Asserts information about concrete, named individuals

CLASS ASSERTION EXAMPLE

OWL Functional Style Syntax
ClassAssertion(Male Peter)

Turtle Syntax
Peter rdf:type Male

RDF/XML Syntax
<Male rdf:about=“Peter”/>

Rules Syntax
→ Male(Peter)

Birte Glimm OWL & Rules 9/38

RDF, RDFS & OWL 2

STATING ASSERTIONAL KNOWLEDGE

Asserts information about concrete, named individuals

OBJECT PROPERTY ASSERTION EXAMPLE

OWL Functional Style Syntax
ObjectPropertyAssertion(hasSister Peter Mary)

Turtle Syntax
Peter hasSister Mary

RDF/XML Syntax
<rdf:Description rdf:about=“Peter”>

<hasSister rdf:resource=“Mary”/>
</rdf:Description>

Rules Syntax
→ hasSister(Peter, Mary)

⇒ That is all that can be said in plain RDF

Birte Glimm OWL & Rules 10/38

RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

Information about how classes and properties relate in general

SUBCLASS AXIOM EXAMPLE

OWL Functional Style Syntax
SubClassOf(Male Person)

Turtle Syntax
Male rdfs:subClassOf Person

RDF/XML Syntax
<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="Male">

<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>

Rules Syntax
Male(x) → Person(x)

Birte Glimm OWL & Rules 11/38

RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

Information about how classes and properties relate in general

SUBPROPERTY AXIOM EXAMPLE

OWL Functional Style Syntax
SubObjectPropertyOf(hasSister hasSibling)

Turtle Syntax
hasSister rdfs:subPropertyOf hasSibling

RDF/XML Syntax
<owl:ObjectProperty rdf:ID="hasSibling"/>
<owl:ObjectProperty rdf:ID="hasSister">

<rdfs:subPropertyOf rdf:resource="hasSibling"/>
</owl:ObjectProperty>

Rules Syntax
hasSister(x, y) → hasSibling(x, y)

Birte Glimm OWL & Rules 12/38

RDF, RDFS & OWL 2

STATING TERMINOLOGICAL KNOWLEDGE

RDFS can further specify domain and range classes for
properties.
For example, the domain and range of hasSibling could be
specified as Person.

⇒ Careful, this is not a constraint, but an implication.

RANGE EXAMPLE

hasSister rdfs:range Female
Peter hasSister Mary
Mary rdf:type Male

⇒ Mary rdf:type Female

Contradiction only when Male and Female are defined as
disjoint!

Birte Glimm OWL & Rules 13/38

RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

INTERSECTION AND UNION

ObjectIntersectionOf(Male PetOwner)

ObjectUnionOf(Male PetOwner)

SubClassOf(ObjectIntersectionOf(Male PetOwner) Friendly)

Male(x) ∧ PetOwner(x) → Friendly(x)

Birte Glimm OWL & Rules 14/38

RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

COMPLEMENT & CLOSED CLASSES

ObjectComplementOf(Male)

ObjectOneOf(Peter Mary John)

Birte Glimm OWL & Rules 15/38

RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

Complex classes can be build by means of constructors

RESTRICTIONS

ObjectSomeValuesFrom(
hasSibling Female)

⇒ Peter

ObjectAllValuesFrom(
hasSibling Female)

⇒ Mary, John

Birte Glimm OWL & Rules 16/38

RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS IN AXIOMS

RESTRICTIONS IN AXIOMS

ClassAssertion(Twin Peter)
SubClassOf(Twin ObjectSomeValuesFrom(hasSibling Twin))

Twin(Peter)
Twin(x) → hasSibling(x, f(x)
Twin(x) → Twin(f(x))

⇒

Birte Glimm OWL & Rules 17/38

RDF, RDFS & OWL 2

OWL CLASS CONSTRUCTORS

There are more constructors available:
At least, at most and exact cardinality restrictions
Self restriction
Restrictions on data ranges
Constructors for data ranges

Birte Glimm OWL & Rules 18/38

RDF, RDFS & OWL 2

OWL BUILT-INS

Special Classes
owl:Thing ⇒ contains all individuals of the domain
owl:Nothing ⇒ the empty class containing no individuals

Special Object Properties
owl:topObjectProperty ⇒ connects all possible pairs of
individuals
owl:bottomObjectProperty ⇒ does not connect any pair of
individuals

Special Data Properties
owl:topDataProperty ⇒ connects all possible individuals
with all literals
owl:bottomDataProperty ⇒ does not connect any individual
with a literal

Birte Glimm OWL & Rules 19/38

RDF, RDFS & OWL 2

PROPERTY AXIOMS

Can define characteristics of properties

INVERSES & FUNCTIONALITY

InverseObjectProperties(
hasSister isSisterOf)

hasSister(x, y) → isSisterOf(y, x)

FunctionalObjectProperty(hasMother)

hasMother(x, y1) ∧ hasMother(x, y2)
→ y1=y2

Birte Glimm OWL & Rules 20/38

RDF, RDFS & OWL 2

PROPERTY AXIOMS

Can define characteristics of properties

SYMMETRY & TRANSITIVITY

SymmetricObjectProperty(hasSibling)

hasSibling(x, y) → hasSibling(y, x)

TransitiveObjectProperty(hasAncestor)

hasAncestor(x, y) ∧ hasAncestor(y, z)
→ hasAncestor(x, z)

Birte Glimm OWL & Rules 21/38

RDF, RDFS & OWL 2

PROPERTY CHAIN AXIOMS

Allow for inferring the existence of a property from a chain of
properties

PROPERTY CHAINS

SubObjectPropertyOf(
ObjectPropertyChain(hasParent hasBrother)
hasUncle)

hasParent(x, y) ∧ hasBrother(y, z) → hasUncle(x, z)

Birte Glimm OWL & Rules 22/38

RDF, RDFS & OWL 2

PROPERTY AXIOMS

More property axioms available
Reflexive, irreflexive, asymmetric, inverse functional, and
disjoint object properties
Functional and disjoint data properties

Birte Glimm OWL & Rules 23/38

RDF, RDFS & OWL 2

OWL SEMANTICS

OWL RDF-Based Semantics (OWL Full)
All constructors can be used in an unrestricted way
Reasoning works with any RDF document
Depending on the input, reasoning might not terminate

OWL Direct Semantics (OWL DL)
Based on Description Logics
Accepts only certain well-formed RDF documents as input
Makes restrictions one the usage of constructors (e.g.,
regularity restrictions on role chains)
Guarantees termination

Birte Glimm OWL & Rules 24/38

OWL 2 Profiles

OWL 2 PROFILES

OWL 2 DL is decidable, but computationally hard

⇒ not scalable enough for many applications

OWL Full is not even decidable

⇒ not many implementations that support all of OWL Full are
available

Idea: identify subsets of OWL 2 which are
sufficiently expressive, but
of lower complexity (tractable)

Profiles tailored to specific reasoning services
Terminological/schema reasoning:

⇒ OWL EL
Query Answering via database engines:

⇒ OWL QL
Assertional/data reasoning with rule engines:

⇒ OWL RL

Birte Glimm OWL & Rules 25/38

OWL 2 Profiles

OWL 2 PROFILES

Birte Glimm OWL & Rules 26/38

OWL 2 Profiles

OWL 2 EL
A (near maximal) fragment of OWL 2 such that

Satisfiability checking is in PTime (PTime-Complete)
Data complexity of query answering also PTime-Complete

Class hierarchy (all subclass relations between classes) can
be computed in “one pass”
Exploits saturation-based techniques developed for EL
description logics
⇒ Can be extended to the Horn (non-disjunctive) fragment of

OWL DL [Kazakov 2009]
Allowed:

SubClassOf axioms with intersection, someValuesFrom,
owl:Thing, owl:Nothing, closed classes with one member
(nominal)
Property chain axioms, range restrictions (under certain
conditions)

Disallowed:
Negation (complement), disjunction (union), allValuesFrom,
inverse properties

Birte Glimm OWL & Rules 27/38

OWL 2 Profiles

OWL 2 QL

A (near maximal) fragment of OWL 2 such that
Data complexity of conjunctive query answering is in AC0

Can exploit query rewriting based reasoning technique
⇒ Data storage and query evaluation can be delegated to

standard RDBMS

Benefits from research in DL-Lite description logics
⇒ Novel technique to prevent exponential blowup from

rewritings [Kontchakov et al. 2010, Rosati & Almatelli 2010]
⇒ Can be extended to more expressive languages by using a

Datalog engine [Perez-Urbina et al. 2009]

Allowed:
Subproperties, Domain, Range
SubClassOf axioms with left hand side: class name or
SomeValuesFrom(op owl:Thing), right hand side:
intersection of class names, SomeValuesFrom(op c), and
negations of lhs expressions

Birte Glimm OWL & Rules 28/38

OWL 2 Profiles

OWL 2 RL
A (near maximal) fragment of OWL 2 such that

Reasoning is PTime-complete (ontology consistency, class
expression satisfiability, class expression subsumption,
instance checking, and conjunctive query answering)
Reasoning is sound and complete when the input RDF graph
has certain properties, and sound on arbitrary RDF graphs

Can work directly on RDF triples to enrich instance data
(materialize schema inferences for facts)
Reasoning can be implemented in a rule engine (with
equality support)

♥ In OWL RL RIF and OWL meet since any RIF (Core) rule
engine can be used to implement OWL RL

⇒ W3C Working Group Note: “OWL 2 RL in RIF” at
http://www.w3.org/TR/rif-owl-rl/

Birte Glimm OWL & Rules 29/38

OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

OWL 2 RL specification provides complete rule set
Each RDF triple is encoded via a ternary predicate T(_, _, _)

EXAMPLE RULE FOR SUBPROPERTY REASONING

prp-spo1 T(?p1, rdfs:subPropertyOf, ?p2) ∧ T(?x, ?p1, ?y)
→ T(?x, ?p2, ?y)

hasSister rdfs:subPropertyOf hasSibling
Peter hasSister Mary
⇒ Peter hasSibling Mary

Birte Glimm OWL & Rules 30/38

OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

EXAMPLE RULE FOR FUNCTIONALITY REASONING

prp-fp T(?p, rdf:type, owl:FunctionalProperty) ∧
T(?x, ?p, ?y1) ∧ T(?x, ?p, ?y2)

→ T(?y1, owl:sameAs, ?y2)

hasMother rdf:type owl:FunctionalProperty
John hasMother Anna
John hasMother Ann
⇒ Anna owl:SameAs Ann

Birte Glimm OWL & Rules 31/38

OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

Person rdfs:subClassOf _:c
_:c rdf:type owl:Restriction
_:c owl:allValuesFrom Person
_:c owl:onProperty hasChild
Anna hasChild Mary
Anna rdf:type Person

SubClassOf(Person
ObjectAllValuesFrom(hasChild

Person))
ObjectPropertyAssertion(hasChild

Anna Mary)
ClassAssertion(Person Anna)

CLASS EXPRESSION & AXIOM REASONING

cax-sco T(?c1, rdfs:subClassOf, ?c2) ∧
T(?x, rdf:type, ?c1)

→ T(?x, rdf:type, ?c2)
cls-avf T(?x, owl:allValuesFrom, ?y) ∧

T(?x, owl:onProperty, ?p) ∧
T(?u, rdf:type, ?x) ∧
T(?u, ?p, ?v)

→ T(?v, rdf:type, ?y)

Birte Glimm OWL & Rules 32/38

OWL 2 RL & Rules

OWL 2 RL INFERENCES VIA RULES

Person rdfs:subClassOf _:c
_:c rdf:type owl:Restriction
_:c owl:allValuesFrom Person
_:c owl:onProperty hasChild
Anna hasChild Mary
Anna rdf:type Person

⇒ Anna rdf:type _:c
⇒ Mary rdf:type Person

CLASS EXPRESSION & AXIOM REASONING

cax-sco T(Person, rdfs:subClassOf, _:c) ∧
T(Anna, rdf:type, Person)

→ T(Anna, rdf:type, _:c)
cls-avf T(_:c, owl:allValuesFrom, Person) ∧

T(_:c, owl:onProperty, hasChild) ∧
T(Anna, rdf:type, _:c) ∧
T(Anna, hasChild, Mary)

→ T(Mary, rdf:type, Person)

Birte Glimm OWL & Rules 33/38

OWL 2 RL & Rules

OWL 2 RL IN RIF

More optimized implementation than via the fixed OWL 2 RL
rule set possible
The OWL 2 RL rules can be implemented in the RIF Core
dialect
⇒ Either as fixed or ontology-specific rule set

W3C Working Group Note: “OWL 2 RL in RIF” outlines
different algorithms for OWL RL reasoning in RIF
⇒ http://www.w3.org/TR/rif-owl-rl/

Birte Glimm OWL & Rules 34/38

Implementations & Conclusions

RIF IMPLEMENTATIONS

RIF BLD
Eye, IBM DB2 XML, IRIS, OntoBroker (partial), riftr, Silk,
VampirePrime

RIF Core
all above plus fuxi, IBM Websphere ILOG JRules, RIFle

RIF PRD
IBM Websphere ILOG JRules, OBR , RIFle

RIF DTB
Eye, IRIS, OBR (partial), RIFle, riftr

See http://www.w3.org/2005/rules/wiki/Implementations

Birte Glimm OWL & Rules 35/38

Implementations & Conclusions

OWL IMPLEMENTATIONS

OWL 2 DL
FaCT++, HermiT, Pellet, RacerPro (partial)

OWL 2 RL
ELLY, Jena, Oracle, OWLIM, OWLRL
Essentially any rule engine
E.g., via RIF Rules in the RIF Core dialect

OWL 2 QL
Owlgres, Quill, QuOnto, REQUIEM
Essentially any SQL engine (with query rewriting on top)

OWL 2 EL
CB, CEL, ELLY, JCEL, Pellet, SHER, snorocket

See http://www.w3.org/2007/OWL/wiki/Implementations

Birte Glimm OWL & Rules 36/38

Implementations & Conclusions

CONCLUSIONS

OWL 2 defines several modeling constructs for which OWL
reasoners provide automated inference services

OWL Direct Semantics: set-theoretic semantics, based on
description logics
OWL RDF-Based Semantics: extension of RDFS, works
directly on triples
OWL 2 Profiles for efficient and scalable reasoning

Rules allow for customizable inferences
RIF W3C standard for applying rules to semantic web data
RIF dialects (Core, BLD, PRD) for different purposes
Further RIF FLD dialects: RIF Core Answer Set
Programming Dialect, RIF Core Logic Programming Dialect,
RIF Uncertainty Rule Dialect

⇒ OWL RL can be implemented via RIF Core rules

⇒ Also OWL EL can be implemented in a rule engine

⇒ SPARQL Entailment Regimes lift SPARQL to RDF(S), OWL,
and RIF reasoning: http://www.w3.org/TR/sparql11-entailment/

Birte Glimm OWL & Rules 37/38

Implementations & Conclusions

REFERENCES

OWL 2: http://www.w3.org/TR/owl2-overview/
RIF: http://www.w3.org/TR/rif-overview/
SPARQL Entailment Regimes:
http://www.w3.org/TR/sparql11-entailment/
Book “Foundations of Semantic Web Technologies”. P.
Hitzler, M. Krötzsch, S. Rudolph. CRC Press, 2009

[Kazakov 2009] Y. Kazakov. Consequence-Driven Reasoning for
Horn SHIQ Ontologies. IJCAI, 2009
[Kontchakov et al. 2010] R. Kontchakov, C. Lutz, D. Toman, F.
Wolter and M. Zakharyaschev. The Combined Approach to
Query Answering in DL-Lite. KR, 2010
[Rosati & Almatelli 2010] R. Rosati, A. Almatelli. Improving
Query Answering over DL-Lite Ontologies. KR, 2010
[Perez-Urbina et al. 2009] H. Pérez-Urbina, I. Horrocks, B. Motik.
Efficient Query Answering for OWL 2. ISWC, 2009

Birte Glimm OWL & Rules 38/38

	Rule-Based Formalisms
	RDF, RDFS & OWL 2
	OWL 2 Profiles
	OWL 2 RL & Rules
	Implementations & Conclusions

