

Semantic Web Services

Carlos Pedrinaci (The Open University)

Introduction to the Semantic Web - ISWC 2010, Shanghai, China.

7th November 2010

Acknowledgements

- John Domingue
- Jacek Kopecký
- Reto Krummenacher
- Maria Maleshkova
- David Martin
- Sheila McIlraith
- Amit Sheth

✤ DIP

- OWL-S Coalition
- SOA4All
- WSMO Working Group

Outline

- Service Orientation and Web Services Technologies
- Semantic Web Services Overview and Techniques
- Main Conceptual Frameworks
 - * OWL-S, WSMO
 - * WSDL-S/SAWSDL, WSMO-Lite
 - SAREST, MicroWSMO
- Applying Semantic Web Services

Service-Oriented Architecture & Web Service Technologies

Service Orientation

- A Service is a reusable software component offered through a language independent interface
- Service-orientation regards the development of systems as the composition of loosely coupled services
- Promotes reuse and improves the maintenance and evolution of systems

SOA Approach

Related Technologies

Web APIs and RESTful Services

API	Description	Category	Mashups
Google Maps	Mapping services	Mapping	1711
Flickr	Photo sharing service	Photos	446
YouTube	Video sharing and search	Video	378
Amazon eCommerce	Online retailer	Shopping	298
Twitter	Microblogging service	Social	196
Microsoft Virtual Earth	Mapping services	Mapping	171
eBay	Online auction marketplace	Shopping	170
del.icio.us	Social bookmarking	Bookmarks	129
Yahoo Maps	Mapping services	Mapping	129
Google Search	Search services	Search	127
411Sync	SMS, WAP, and email messaging	Messaging	120
Yahoo Search	Search services	Search	120
Last.fm	Online radio service	Music	104
Facebook	Social networking service	Social	91
Google Homepage	Portal gadgets	Widgets	87
Yahoo Geocoding	Geocoding services	Mapping	87
Google Ajax Search	Web search components	Search	78
Technorati	Blog search services	Blog Search	65

Semantic Web Services

Limitations of WS Technology

- * Current technologies allow usage of Web Services but:
 - Only provide syntactical information descriptions
 - Web Service discovery, composition, and invocation need to be done manually
 - Manual labour reduces scalability
 - * The situation is considerably worse for Web APIs

Semantic Web Services

- Automate Web Service technologies by using
 - Formal annotation of Web Services
 - Inference-based techniques for (semi) automated discovery, composition, mediation, execution of Web Services
- * Integration with the Semantic Web
 - Ontologies as data model

Service Discovery/Matchmaking

Service Discovery/Matchmaking

- * Find candidate Web Services that can provide the desired functionality using
 - Structural analysis
 - IR techniques
 - * Match natural language keywords in resource descriptions, similarity analysis
 - Semantic Matchmaking
 - Reasoning applied over descriptions, i.e., Inputs/Outputs, Preconditions, Effects, Classifications
- Hybrid IR/semantic solutions perform better

Service Ranking & Selection

Service Ranking & Selection

- * Rank and eventually select the best service given certain criteria
- Often applied after service matchmaking using
 - Different degrees of match for ranking (exact > plugin, etc)
 - * Non-functional properties (QoS, response time, user location, etc)
- Techniques
 - Weighted combination, skyline, fuzzy reasoning

Service Invocation

Service Invocation

- Invocation of selected service
- Typically involves lifting and lowering
- Often requires mediation

Mediation

- * Heterogeneity as inherent characteristic of the Web:
 - Heterogeneous terminology, formalisms, functionalities, communication protocols and business processes
- Often approached by means of a generic mismatch resolution machinery
 - Mediation definition language & mediation patterns
 - Execution environment for mediation definition

Data Mediation Techniques

Process Mediation

Service Composition

Source: Matthew Zager - <u>http://soa.sys-con.com/node/155631</u>

Service Composition

- Combine several Web services for solving a request
- Applied if no directly usable Web service exists to solve the goal of a client
- Often approached as
 - Planning, i.e., devise a set of actions that will take us from the current state to the state requested
 - Parametric Design, i.e., given a skeleton, find the right configuration of parameters that can achieve our goal

Main Conceptual Frameworks

Main Approaches

- Web Services
 - Top-down: OWL-S, WSMO
 - * Bottom-up: WSDL-S/SAWSDL, WSMO-Lite
- Web APIs
 - * SAREST
 - hRESTS/MicroWSMO

Types of Service Semantics

- Information model semantics: semantics of the data used and exposed by the service
- *Functional semantics*: what the service does, e.g., categorisation, capability
- * *Non-Functional semantics*: semantics related to the non-functional aspects of the service, e.g., Quality of Service (QoS), security, etc.
- *Behavioural semantics*: semantics related to the behaviours, e.g., choreography, faults, etc

Web Service-centric Models

OWL-S

OWL-S

WSMO

Objectives that a client may have when consulting a Web Service

Goals

Semantic description of

- Capability (functional)

- Interfaces (usage)

Web Services:

Provide the formally specified terminology of the information used by all other components

Mediators

Connectors between components with mediation facilities for handling heterogeneities

WSMO

SAWSDL in a Picture

SAWSDL is Purposely Underspecified

WSMO-Lite in SAWSDL

Web API-centric Models

Web APIs Descriptions

Most often described via plain HTML pages

Unstructured

Highly heterogeneous descriptions

Often incomplete descriptions

SAREST

- SAREST is a microformat (poshformat) for RESTful services
- * Currently uses RDFa to annotate Web pages
- Basic SAREST properties
 - domain-rel: domain information of a resource
 - sem-rel: captures the semantics of a link
 - * sem-class: annotation of a single entity within a resource
- Includes a non-normative minimal service model

hRESTS/MicroWSMO

- hRESTS is a microformat (poshformat) for Web APIs
 - Service, its operations
 - Resource address, HTTP method
 - Input/output data format
- MicroWSMO extends hRESTS with SAWSDL-like hooks for pointing to semantic descriptions
- Proposes as normative the minimal service model

Processing Web API Annotations

- Web API annotations are usually extracted from the Web page (e.g., GRDDL)
- * The resulting annotations are used as the basis for manipulation
- Processing of Web API annotations builds upon existing work on Semantic Web Services by applying the same or slightly adapted algorithms
- Invocation is however a significantly different task

Applying Semantic Web Services

E-Science

Software Interoperability

Otherwise
→ No Interoperability

Autonomous Vehicles

Emergency Planning

General Broker-based Approach

General Broker-based Approach

Conclusions

- Services provide means for effective reuse of functionality and the creation of added value solutions (businesses) through composition
- The core Web Service technologies require the use of semantics for a greater level of automation
- There are a number of conceptual models that have been proposed for annotating and reasoning over Web Services and Web APIs
- Alongside many engines, frameworks and algorithms have been devised that support discovery, composition, invocation, etc
- * Further details and pointers at the end of your handouts

Thank you for your attention

References

- * T. Erl, SOA Principles of Service Design. Prentice Hall (2007)
- * R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. (2000)
- M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. Service-Oriented Computing: State of the Art and Research Challenges. Computer. 40, 38--45 (2007)
- * S. McIlraith, T. Son, H. Zeng. Semantic Web Services. IEEE Intelligent Systems. 16, 46--53 (2001)
- C. Preist. A Conceptual Architecture for Semantic Web Services. International Semantic Web Conference (2004)
- K. Sivashanmugam, K. Verma, A. Sheth, J. Miller. Adding Semantics to Web Services Standards. Proceedings of the 2003 International Conference on Web Services (ICWS'03) (2003)
- A. Sheth, K. Gomadam, A. Ranabahu. Semantics Enhanced Services: METEOR-S, SAWSDL and SA-REST. IEEE Data Engineering bull. 31, 8--12 (2008)

References

- K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan. Automated Discovery, Interaction and Composition of Semantic Web Services. Web Semantics: Science, Services and Agents on the World Wide Web. 1, 27 -46 (2003)
- Implementing Semantic Web Services: the SESA Framework. Springer D. Fensel, , M. Kerrigan, M. Zaremba (eds.) (2008)
- D. Fensel, H. Lausen, A. Polleres, J. De Bruijn, M. Stollberg, D. Roman, J. Domingue. Enabling Semantic Web Services: the Web Service Modeling Ontology. Springer (2007)
- L. Li, I. Horrocks. A Software Framework for Matchmaking based on Semantic Web Technology. International Journal of Electronic Commerce. 8, 39 (2004)
- E. Sirin, B. Parsia, J. Hendler. Filtering and Selecting Semantic Web Services with Interactive Composition Techniques. IEEE Intelligent Systems. 19, 42--49 (2004)

References

- P. Traverso, M. Pistore. Automated Composition of Semantic Web Services into Executable Processes. 3rd International Semantic Web Conference (ISWC 2004) (2004)
- J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, C. Pedrinaci, IRS-III: A Brokerbased Approach to Semantic Web Services. Web Semantics: Science, Services and Agents on the World Wide Web. 6, 109--132 (2008)
- * Semantic Web Services, Processes and Applications. J. Cardoso, A. Sheth (eds.). Springer (2006)
- C. Pedrinaci, J. Domingue, and A. Sheth. Handbook on Semantic Web Technologies, volume Semantic Web Applications, chapter Semantic Web Services. Springer, 2010.

- * SOAP: http://w3.org/TR/soap12
- * WSDL: http://w3.org/TR/wsdl20
- * WS-Addressing: http://w3.org/TR/ws-addr-core
- * WS-Policy: http://w3.org/TR/ws-policy
- * UDDI: http://uddi.xml.org/
- * W3C: http://w3.org/
- * OASIS: http://oasis-open.org/

- * OWL-S: http://www.daml.org/services/owl-s/
- * WSMO: http://www.wsmo.org and http://cms-wg.sti2.org
- * WSDL-S: http://www.w3.org/Submission/WSDL-S/
- SAWSDL: http://www.w3.org/2002/ws/sawsdl/
- SWSF & FLOWS: http://www.w3.org/Submission/SWSF/

- * WSMO-Lite: http://cms-wg.sti2.org/TR/d11/v0.2/
- hRESTS/MicroWSMO: http://cms-wg.sti2.org/TR/d12
- SAREST: <u>http://www.w3.org/Submission/SA-REST/</u>
- * REST & RESTful Web services: http://en.wikipedia.org/wiki/REST
- Microformats: http://microformats.org/

- * WSMX: http://www.wsmx.org/
- IRS-III: http://technologies.kmi.open.ac.uk/irs/
- METEOR-S: http://lsdis.cs.uga.edu/projects/meteor-s/
- Glue: http://glue.cefriel.it/
- * OWL-S VM: http://projects.semwebcentral.org/projects/owl-s-vm/