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Abstract

We propose a semi-automated method for redeploying bioinformatic databases indexed in a Web portal as a decentralized, semantically
integrated and service-oriented Data Grid. We generate peer-to-peer schema mappings leveraging on cross-referenced instances and instance-
based schema matching algorithms. Analyzing real-world data extracted from an existing portal, we show how a rather trivial combination of
lexicographical measures with set distance measures yields surprisingly good results in practice. Finally, we propose data models for redeploying
all instances, schemas and schema mappings in the Data Grid, relying on standard Semantic Web technologies.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the past, biologists used to collect and analyze data
in isolation, creating proprietary schemas to annotate and
store their information in various ways. Today, with the
development of the Internet, complex experiments can be
conducted by aggregating and interrelating data from multiple
sources; this obviously requires the various data sources to be
integrated beforehand, to allow the reformulation of a query
posed against a local database to be propagated to related
databases which store data using different schemas. Standard
data integration techniques such as LAV (local-as-view) or
GAV (global-as-view) have traditionally been used to achieve
this goal. These techniques rely on a global schema to enable
transparent access over heterogeneous databases and allow
deterministic reformulations of queries using schema mappings
(i.e., views). These centralized approaches, however, require
the definition of an integrated (so-called federated) schema
supposedly subsuming all local schemas. This requirement is
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particularly stringent in highly heterogeneous and decentralized
environments such as Data Grid networks. In Data Grid
settings, autonomous and heterogeneous data sources coexist
with only loose coordination as resources comprising the grid
typically come from different administrative domains. Such
settings make it impractical to keep a global schema up to date,
or even to define a schema general enough to encompass all
information sources’ needs.

Recently, new decentralized data integration techniques not
requiring any central schema have been proposed. Peer Data
Management Systems [1] (see also below Section 1.1) take
advantage of local schema mappings between pairs of databases
to propagate queries posed against a local schema to the rest
of the network in an iterative and cooperative manner. No
global semantic coordination is needed as peers (e.g., data
sources) only need to define local mappings to a small set of
related databases in order to become part of the global network
of databases. Once a query is posed locally against a given
schema, it can then be propagated and reformulated iteratively
though the peer-to-peer mappings in order to be processed by
all (or a specific portion) of the peers in the network. The local
mappings needed to implement this approach are inferred either
in a manual or a semi-automatic manner through the process
of schema matching, by relating attributes from one database
schema to semantically similar attributes from another schema.
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(a) Centralized indexation. (b) Service-oriented integration.

Fig. 1. Two models of integration: the centralized indexing providing keyword-search functionalities through a central index and the service-oriented integration
supporting decentralized query reformulations through peer-to-peer schema mappings.
In this paper, we show how to automate the transition
from a simple collection of centrally indexed but interrelated
bioinformatic databases, as often found in bioinformatic
Web portals, to a bioinformatic Data Grid supporting
query reformulation mechanisms over distributed information
sources. We take advantage of foreign key relationships defined
between pairs of related instances from two different databases
to bootstrap an automatic instance-based schema mapping
process. The resulting mappings are in turn used by the various
participants in the Data Grid to enable global reformulation
of queries posed against a specific schema. We provide an
extensive performance evaluation of our method on a set of
real-world bioinformatic schemas and a concrete architecture
based on Semantic Web standards for the redeployment of the
databases in a Data Grid environment.

The rest of this paper is structured as follows: we start
below with a general introduction to data integration in
Web portals and bioinformatic grids. We then give a short
overview of related works before giving a few details on
the Sequence Retrieval System (SRS), whose databases will
be used throughout the rest of the paper. Sections 4 and
5 respectively provide details on our instance-based schema
matching algorithm and on its performance when applied to
the SRS schemas. We describe the Data Grid system resulting
from the creation of schema mappings and the export of SRS
data and schema using Semantic Web technologies in Section 6
before concluding in Section 7.

1.1. Data integration in bioinformatic grids

Today, data integration in bioinformatics often revolves
around centralized indexing as typically implemented by Web
portals (see Fig. 1(a)). In such settings, all related databases are
first exported to a central server and indexed. The central server
can then provide a simple keyword-lookup service (e.g., “Find
all entries containing the word Theileriidae”) to the end-users.
Complex, structured queries are not directly supported as these
systems are mostly based on flat files and central indexes.
Instead, complex queries have to be handled manually by the
users, who need expert knowledge on all the databases they
want to query and who have to navigate iteratively between
different databases by mouse-clicking (this search process is
usually referred to as “query by navigation” [15]) to resolve
their query. The Sequence Retrieval System described below is
an example of a system built on centralized indexing.

While providing fast and robust mechanisms for searching
collections of heterogeneous data, we argue that such
integration techniques are inadequate in Grid environments for
obvious reasons. Grid computing typically involves sharing
heterogeneous resources from different physical locations and
belonging to different administrative domains. Nodes in a Grid
should act autonomously and provide higher-level services
through standard interfaces. Unfortunately, central indexing
applied to a Grid setting implies the loss of autonomy for
all nodes maintaining a local database, as changes performed
locally are not reflected in the central repository until the
local database is re-imported and re-indexed by the central
server. Moreover, central indexing only provides keyword-
search functionalities through centralized, custom interfaces
where distributed services and standard interfaces should be
supported in a Grid. Centralized indexing does not support
transparent access over several databases; on the contrary, it
requires in-depth knowledge of all indexed data as one has to
navigate manually through the databases in order to retrieve
relevant information.

In the rest of this paper, we propose a semi-automated
method to migrate centrally indexed Web portals to Data
Grid environments supporting service-oriented, decentralized
integration. Fig. 1(b)) depicts a service-oriented integrated
system. Note that in this setting, the central repository
has disappeared. Individual nodes do not rely on a central
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Fig. 2. An example of peer-to-peer mappings used to propagate a structured query from one database to the other.
index anymore, but connect to each other through peer-to-
peer mappings. Each node supports higher-level data services
through local query processors. Any node can thus pose
complex, structured queries locally and propagate them to the
rest of the network by reformulating the queries thanks to
the peer-to-peer schema mappings. Most of the time, query
reformulation in this context is based on query rewriting using
views: mappings are expressed as queries relating sets of
attributes from one database to sets of attributes from another
database. Fig. 2 gives a simple example of query reformulation
in a semi-structured (i.e., XML and XQuery) context. The query
propagation can stop after a couple of steps, or can go on until
the query reaches all possible nodes in the network (see [2] for
a discussion on decentralized query routing strategies).

We see this new kind of integration techniques as
particularly suited to Data Grid environments as data sources
keep total control over their data and can provide higher-
level services thanks to (semi) structured data processing
support. Furthermore, these techniques are scalable (new data
sources simply have to connect locally to a couple of existing
databases to be part of the network) and robust (contrary to the
centralized indexing, there is no single point of failure), which
are two highly desirable properties for dealing with large and
heterogeneous data in distributed Grids.

2. Related work

Automatic invocation or composition of services have
received a lot of attention in Grid environments. There is,
however, little focus on data integration. In [11], Frishman
et al. motivate the need for standard languages and integrated
database information systems for molecular biology in the
Web era. The SIMDAT Pharma Grid [18] is an industry-
oriented Grid environment aiming at assisting biologists in
the discovery, selection or composition of services. SIMDAT
provides a semantic broker whose role is to reduce the user’s
interaction with Web Services but the broker is focused on
service discovery and composition and not on data integration.
MyGrid [20] is an e-Science Grid project aiming at helping
biologists and bioinformaticians to perform workflow-based
experiments. Workflows in MyGrid comprise interconnected
sets of input, output and processors, which can either be
local routines or distant Web Services. MyGrid also supports
the use of autonomous agents for personalizing workflow
plans or negotiating on behalf of the end-users [15]. MyGrid
supports distributed semi-structured data repositories but does
not directly address the issue of transparent access over the
repositories. Bio-GRID [17], part of the EUROGRID project,
is an access portal for biomolecular modeling resources. Bio-
GRID provides the users with standard interfaces to various
databases but does not focus on data integration over these
sources. More recently, Milena and Bartosz [14] proposed
a model for integrating Grid middle-ware with stateful
access of resources using Web Services and publish/subscribe
notifications.

Other approaches, such as the one proposed by Arshad
et al. [8] rely on central data warehousing techniques to
provide homogeneous access to life science data stored in
distributed, heterogeneous databases. Views on the warehouse
data are then typically defined and materialized as a set
of databases, which are made locally available to different
applications. GeneGrid [12] supports seamless integration of
heterogeneous applications and datasets that span over multiple
administrative domains and locations across the globe. Data
integration is based on a centralized data manager responsible
for the integration and access of a number of disparate
and heterogeneous biological datasets. Mougin et al. [16]
proposed an automatic method for generating schemas of
biomedical sources. Their integration approach, however, is
centralized using a mediator and a centralized ontology. Closer
to our concerns, Comito et al. [6] provide a framework for
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Fig. 3. A cross-reference link relating two instances with a foreign-key relationship in SRS; the left-hand side entry is taken from the SwissProt database while the
right-hand side is from EMBL.
integrating heterogeneous data sources distributed over a Grid,
centered around an XML-based query reformulation algorithm.
OGSA-DAI [9] provides distributed query processing and
data federation in Grid environments. OGSA-DQP [3] is a
distributed query processor for OGSA-compliant Grids. It
supports the evaluation of queries that combine data from
multiple Grid services. Compared to the systems presented
above, our approach deals with the problem of database
heterogeneity from a totally decentralized point of view, as
it does not rely on any predefined, global semantic model.
Moreover, we allow the automated transition from a system
based on central indexing to a completely decentralized
system, by making use of schema matching algorithms
based on functional dependencies between attributes. Semantic
interoperability emerges gradually as peers use local semantic
agreements to reformulate and propagate queries through the
network.

3. The Sequence Retrieval System

We give below a succinct overview of the Sequence
Retrieval System (SRS) [13], which will be used subsequently
to test our semi-automated integration techniques. SRS is
a commercial indexing and retrieval system designed for
bioinformatic libraries such as the EMBL nucleotide sequence
databank, the SwissProt protein sequence databank or the
Prosite library of protein subsequence consensus patterns. It
started as a data management system initially developed at
the European Molecular Biology Laboratory in Heidelberg.
As such, it allows the querying of one or several databases
simultaneously, regardless of their format. SRS repositories
typically contain indices for one hundred or more databases,
whose data is saved mainly as flat files.

Administrators wishing to register new databases with an
SRS repository first have to define structure files which detail
on a syntactic level the schema according to which data has
been organized in the flat files. Once their schemas have been
defined, administrators can export schema instances (i.e., flat
text files) whose data will be centrally parsed, indexed and
processed thanks to the corresponding schema definitions.
Entries in bioinformatic databases often contain explicit or
implicit references to each other; for example, information
about elements related to a nucleic acid segment can be
available in a protein databank. Taking advantage of this
fact, SRS lets administrators manually define relationships
between their database schema and similar schemas. In SRS,
these relationships are represented as links (i.e., foreign key
relationships) relating instances from two different schemas
(see Fig. 3).

SRS allows users to issue queries over the centralized index
using a custom query language. Thanks to the structure of
links between the databases, users can pose queries over related
databases by explicitly referencing foreign key relationships.
However, the system does not permit automatic reformulation
of queries over related databases as a standard federated
database system would: to solve complex queries, users have
to manually specify intricate queries spanning over multiple
databases, or have to navigate by mouse-clicking through
series of databases using a Web interface. Thus, users need
in-depth knowledge of all databases present in the central
registry to fully exploit the system. Our goal in the rest of this
paper will be to take advantage of the links defined in SRS
between some of the databases to automatically create pairwise
schema mappings. Once created, these mappings will be used
to foster the transition of the whole system towards a Data Grid
environment providing transparent access over distributed and
autonomous databases.

4. Instance-based schema matching

We describe below the heuristics used to generate
schema mappings from the cross-reference links of the
databases using instance-based schema matching algorithms.
The general goal of a schema matching operation is to find
semantic correspondences between elements of two different
schemas [7]. In our case, elements are represented by attributes
(such as Protein Description or Sequence) defined in the
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schema of a biologic database. The result of a schema matching
operation is a mapping consisting of a set of mapping elements,
each of which indicates that certain elements of a given schema
are semantically related to certain elements of another schema
(see also [19] for a survey on schema matching techniques).

Our approach aims at implementing an instance-level
schema matcher using the databases registered with SRS
to infer mappings between their schemas. Our matcher
fundamentally differs from previous matchers in the sense
that it is based on cross-reference links defined between the
databases. Links built in the SRS system indicate which
instances of two databanks reference each other. Taking this
into account, we came to the idea of analyzing the content of the
two linked instances (i.e., the two schema instances) in order
to infer additional mappings for the other attributes contained
in those instances. By further generalizing this result, we can
infer mappings between the schemas of the two databanks, in
a bottom-up manner, by aggregating the local results obtained
for the pairs of cross-referenced instances. Our fundamental
assumption is that the cross-reference links, which have been
extracted from the structure files in SRS, relate semantically
similar instances; comparing the content of these instances at
the data level, we can then infer attribute correspondences at
the schema level.

Schema definitions are typically quite limited in SRS:
attributes are often written as two letter acronyms without any
additional information on their semantics, their relationships
to other attributes or on the constraints they might be subject
to. Thus, using other matching methods based for instance
on constraint analysis or taxonomical techniques would prove
to be difficult. Therefore, we decided to implement a pure
instance-based matcher, which analyzes the content of related
instances without using any other auxiliary information to
generate the mappings. We show in Section 5 that a rather trivial
combination of lexicographical measures with set distance
measures yields surprisingly good results in our case.

4.1. Finding correspondences at the data layer

Our schema matching algorithm starts with a content-based
analysis of a pair of instances I1 and I2, each belonging to
a different database but related through a cross-reference link
in SRS. In order to detect such pairs of instances, we take
advantage of a particular operator in SRS which allows us
to query for pairs or related instances given two databases.
Each instance is constituted of series of attribute–value pairs
Ai –Vi (e.g., R P–NUCLEOTIDE SEQUENCE). Let us call
A1

0, . . . , A1
m the set of attributes appearing in the first instance

I1 and A2
0, . . . , A2

n the set of attributes appearing in the second
instance I2. All attributes appearing in the instances are defined
in their corresponding schema. The values corresponding
to those attributes will be referred to as V 1

0 , . . . , V 1
m and

V 2
0 , . . . , V 2

n respectively.
Two attributes A1

0 and A2
0 are already related through a

cross-reference (foreign key relationship) in the system. In this
first step, our goal is to discover other pairs of semantically
related attributes A1

i and A2
j from the two selected instances,

by analyzing the degree of similarity between their values
V 1
i and V 2

j . The instance-level similarity metric we use is
terminological and as such, based on string similarity. The
complete algorithm which computes the similarity between two
attribute values V 1 and V 2 is reproduced below (Algorithm 1).

Algorithm 1 Attribute value similarity metric

tokenize attribute values: V 1
= {v1

1, v1
2, . . . , v1

n1} and V 2
=

{v2
1, v2

2, . . . , v2
n2};

for each pair of tokens (v1
x , v

2
y) do

compute the distance γ (v1
x , v

2
y) =

δ(v1
x ,v2

y)

length(v1
x )+length(v2

y)
;

// δ = Levenshtein distance;
end for
select n pairs (v1

x , v
2
y) with the lowest distance values (top-n

matches) ;
// n = min(n1, n2);
return the overall similarity value for the corresponding pair
(A1, A2) of attributes as:

1(A1, A2) = 1 −

∑n
1(γ (v1

x ,v2
y))

n

We start by tokenizing the attribute values (V 1
=

{v1
1, v1

2, . . . , v1
n1} and V 2

= {v2
1, v2

2, . . . , v2
n2}) using white

spaces and special characters, such as semi-colons or dashes,
as separators. We then compute distances (γ (v1

x , v
2
y)) between

pairs of tokens belonging to the two attribute values by making
use of the well-known Levenshtein distance (Edit distance).
Generally speaking, the Levenshtein distance between two
objects is the minimal cost of operations to apply to one of
the objects in order to obtain the other. For strings, it is the
minimum number of insertions, deletions, and substitutions of
characters required to transform one string into the other. The
greater the Levenshtein distance, the greater the dissimilarity
between the strings. The result, δ(v1

x , v
2
y), is normalized by

the sum of the lengths of the two tokens. After computing
the similarity between all pairs of tokens, we aggregate those
values in order to asses the overall similarity between the two
attribute values (i.e. the two sets of tokens). In data analysis, the
so-called linkage aggregation [19] methods allow us to assess
the distance between two similar sets. In our case, we chose
the average linkage to measure the mean Levenshtein distance
between the tokens:

∑n
1(γ (v1

x , v
2
y))/n.

When developing our metric, we also took into consideration
the recurring case when tokens of one attribute exactly
represent a subset of the tokens of the other attribute. As
a concrete example, let us consider two cross-referenced
instances belonging to SwissProt and EMBL respectively and
the values contained in their DE (Description) attributes:

After having analyzed several such occurrences in SRS,
we decided to maximize the similarity value between the two
attributes in this case as follows: our metric considers only the
best n matching tokens, where n is the cardinality (the number
of tokens) of the smallest set (n = min(n1, n2)). In other
words, for all the tokens in the smallest set, we identify the
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best matches (lowest distance values) in the second set. We then
quantify the set distance as the sum of those n distance values,
normalized by the cardinality of the smallest set. As a result, the
distance successfully measures the similarity between the two
sets, by selecting the best matching candidates (tokens) out of
both sets. The normalization serves two purposes: first, it allows
us to return a value in the interval [0, 1] and second, it lowers the
computed distance value (the sum of the best n distance values)
proportionally to the number of tokens in the smaller set. In
other words if, for example, the smallest set contains a single
token, then the distance returned will be exactly the distance
computed for the best match of that token to any other one from
the second set. In this way, we keep relatively low distances for
attribute values with many tokens, thus encouraging imperfect
matches. In the example presented above, the distance between
the DE attributes will be equal to zero, since all the tokens from
the SwissProt attribute are contained in the EMBL attribute.

4.2. Aggregating attribute similarities at the schema layer

In the preceding section, we described the algorithm that
computes instance level similarity values for pairs of attributes
belonging to cross-referenced instances of two different
databases. In order to generate high-quality schema mappings,
we need now to properly aggregate those locally computed
similarity values. We do it as follows: after having selected
two databases linked with at least one foreign key relationship
in SRS, we query for P pairs of linked instances. We
compute attribute similarities at the instance level, 1p(A1

i , A2
j )

(see above Algorithm 1), but discard low-quality mappings
(typically, those whose similarity values are below a threshold
η) to filter out accidental matchings. An aggregated attribute
similarity value is computed by averaging the results returned
from different pairs of instances. This average is only retained
for mappings which occur frequently enough at the instance
level, for instance for pairs of attributes with similarity values
above η discovered in at least κ of the considered cases. The
exact algorithm is reproduced (Algorithm 2).

Algorithm 2 Schema matching algorithm
for each pair of linked databases do

query for P pairs of linked instances;
for each pair p of linked instances do

compute similarity between each pair of attributes
1p(A1

i , A2
j );

return similarity if and only if 1p(A1
i , A2

j ) ≥ η;
//η = threshold on the similarity value

end for
for all pairs attributes (A1

i , A2
j ) where at least κ similarity

values were returned do
compute aggregated attribute similarity values as:

1(A1
i , A2

j ) = (
∑

p 1p(A1
i , A2

j ))p−1;
//κ = threshold on the number of similarity values
returned

end for
end for
5. Schema matching results

5.1. Reference alignments and metrics

In order to evaluate our approach, we decided to run our
schema matching algorithm on several databases registered
with SRS whose instances cross-reference each other. When
matching the database schemas, we disregarded the protein
sequence fields, which contain data of a very peculiar nature
and for which specific tools already exist (e.g., BLAST [4],
FASTA [10]).

To provide a basis for evaluating the quality of our results,
the matching task had to be handled manually first. As this
process is rather subjective, we invited an external domain
expert and asked her to provide us with reference alignments
between different schemas. We concentrated on three well-
known databases: SwissProt, PDB and EMBL. In this process,
all possible attribute mappings were given a grade of 1, 2 or 3.
A grade of 1 indicates an incorrect mapping, in other words a
mapping between semantically different attributes. A value of
2 indicates attributes whose contents are semantically related,
while a grade of 3 designates semantically identical attributes.
As a concrete example, a mapping between SwissProt’s RT
(Reference Title) and PDB’s JRNL would be graded as 3, since
both attributes contain titles of papers related to the instance.
A mapping graded as 2 could relate SwissProt’s DE attribute,
which holds a keyword description of the instance, to EMBL’s
RT attribute, which represents the title of a paper constituted
of a similar series of keywords and de facto representing
another description for the instance. As such, grade 2 represents
imperfect semantic matches (the two concepts are different, one
being a description and the other one a title), which however
return pertinent results from an end-user’s point of view.

For every pair of schemas, we chose to define the set of
correct mappings as the set of mappings graded as 2 or 3 by
the external expert. We compared then the standard alignments
to the alignments produced automatically by our instance-based
schema matcher taking advantage of two common information
retrieval metrics: precision and recall. Intuitively, precision
indicates the fraction of correct results. In our case, it is defined
as the fraction of automatically generated and correct mappings
over the total number of generated mappings for a pair of
schemas. Recall indicates what fraction of the total number
of correct results is returned. For us, this corresponds to the
fraction of automatically generated mappings which are correct
over the total number of correct mappings for the pair of
schemas considered.

5.2. Sensitivity to the number of instances analyzed

Figs. 4 and 5 present the results of our experiments for
two pairs of databases and for different numbers of instances
analyzed at the data layer. Except when specified otherwise, we
chose 80% for the threshold on the similarity value η and 10%
for the threshold on the number of similarity values returned
κ (see previous section). The results are quite encouraging for
a totally automated method, with recall values close to 100%
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Fig. 4. Precision and Recall values for the SwissProt–EMBL mappings derived from sets ranging from 10 to 150 instances, η = 80%, κ = 10%.

Fig. 5. Precision and Recall values for the SwissProt–PDB mappings derived from sets ranging from 10 to 150 instances, η = 80%, κ = 10%.
(i.e., practically all correct mappings have been discovered) and
precision values averaging 65%. Note that precision values are
higher for syntactically closer databases (e.g., SwissProt and
EMBL, which share many similarities at the instance level).
All figures show roughly convex functions for the precision and
recall results with respect to the number of instances analyzed.
Obviously, analyzing too few instances results in a biased view
over the possible mappings, as some data dependencies might
not appear clearly from a small arbitrary subset of the instances.
Analyzing too many instances might result in slightly sub-
optimal mappings as well, as the threshold κ causes infrequent
but correct data-level dependencies to get lost when analyzing a
bigger set of instances (e.g., when the correct mappings appear
in less than 10% of the considered cases and as such are not
included in the final result).

5.3. Sensitivity to the threshold on similarity values

The tradeoff between precision and recall results is
well-known: by relaxing constraints on information retrieval
techniques for example, one might retrieve a larger set of
correct results (better recall) while retrieving at the same
time many false positives (worse precision). In our case,
this tradeoff is observable by taking various values for the
threshold on the similarity (η). Fig. 6 shows some results for
the SwissProt–EMBL case with a varying threshold.

5.4. On bootstrap attribute alignments

Our algorithm heavily relies on cross-referenced instances
(materialized as predefined inter-schema relationships between
pairs of attributes), which allow us to considerably narrow the
search space by restricting ourselves to semantically related
pairs of instances only. We call the pair of initially related
attributes the bootstrap attributes as they are used to foster
the rest of the mappings between the two schemas. As a
next experiment, we looked into what other kinds of bootstrap
alignments we could base our algorithm on, provided that we
do not take advantage of cross-reference links. In other words,
we wanted to verify whether minimal alignments, other than
the existing foreign-key relationships, could be used to generate
full-fledged schema mappings.

Thus, we ran several batteries of tests to determine whether
a single mapping between two semantically related attributes
(e.g. A1

i and A2
j ) at the schema level – RT from SwissProt

and JRNL from PDB, for example – would be sufficient
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Fi
κ

Fig. 6. Tradeoff between Precision and Recall of the SwissProt–EMBL mappings for similarity threshold values (η) ranging from 0.6 to 1.
g. 7. Precision and Recall values for the SwissProt–EMBL mappings derived from different bootstrap attribute alignments on sets of 50 instances, η = 80%,
= 10%.
for producing meaningful results using our instance-based
methods. The matching process in this case is based on
the assumption that if the values V 1

i and V 2
j contained in

the two bootstrap attributes (at the data level) have a big
degree of similarity, then the two instances are most probably
semantically related. We start by choosing two databases
(which contain cross-referencing instances) and by selecting
a pair of bootstrap attributes whose values are semantically
related. The algorithm works in two steps: first, it projects
both the identifier and the value of the bootstrap attribute
from the set of instances considered. This results in two sets
containing relations of the form (Instance identifier, Attribute
value) – {(I D1

0, V 1
0 ), . . . , (I D1

n, V 1
n )} – each corresponding to

a database. So far, we have no knowledge of the pairs of
instances which are semantically related. Next, we use the
attribute value similarity metrics described above in order to
infer pairs of potentially related instances. As a result, we return
a set consisting of pairs of identifiers (I D1

i , I D2
j ) indicating

possibly related instances from the two databases. From this
point on, we run the matching algorithm as described in
Section 4 using as input the aforementioned pairs of instances.

The results obtained are shown in Figs. 7 and 8, based
on an set of 50 pairs of instances analyzed. The first column
indicates the precision and recall values corresponding to the
analysis based on the cross-referenced attributes. The rest of
the graph represents the precision and recall values when
considering other pairs of attributes as bootstrap alignment,
as described above. A first observation is that in both cases
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F
κ

ig. 8. Precision and Recall values for the SwissProt–PDB mappings derived from different bootstrap attribute alignments on sets of 50 instances, η = 80%,
= 10%.
(cross-references and bootstrap-attribute matching), the results
are quite satisfactory, with a precision of 82% and 64% in
the case of the cross-reference mappings and an average
precision of 82% and 60% in case of the bootstrap-attribute
matching. The corresponding recalls are 96% and 100% for
the cross-reference cases and averages of 75% and 76% for
the bootstrap-attributes. Thus, the method based on bootstrap-
attributes yields mappings almost as good as those generated
from foreign-key relationships. The main reason behind this
somewhat surprising result lies in the peculiar nature of the
attributes in bioinformatic databases. Contrary to many other
databases, attribute values in SRS are often distinct for every
instance, thus implying numerous functional dependencies at
the schema layer and representing de facto pseudo-identifiers
for the instances.

In all cases considered, the recall value is highest for the
matching based on cross-references. This is easy to explain,
as we start our algorithm with pairs of instances that are
always semantically related (the pairs of instances are selected
using the SRS linking option), as opposed to the second
case, where some of the pairs of the bootstrap mappings
might have been wrongly selected. Similarly, recall is high
when bootstrap attributes can act as pseudo-identifiers for the
instances. As soon as too many collusions occur at the data level
for the considered bootstrap attributes (i.e., when too many
instances of one database share similar values for the bootstrap
attributes), it starts to be difficult to identify related instances
and recall values decrease. One typical example of this is
the low quality of the results yielded by the bootstrap pairs
containing the attribute CC , which supposedly contains free
text but in practice often contains standard copyright statements
and from which it is then very difficult to produce meaningful
pairs of related instances: as the copyright statement is the same
for most instances, it becomes quite hard to discover pairs of
related instances based on this information only.
5.5. Bootstrapping alignments on several attributes

In this last scenario, we tried to increase the number
of bootstrap-attributes to determine whether having a higher
number of initial alignments would result in better mappings
in the end. We considered two distinct cases: Fig. 9 shows
the results when considering two pairs of bootstrap-attributes
and taking the intersection of the two sets of related instances
generated. Fig. 10 depicts results for a similar situation but
taking this time the union of the two sets of related instances
generated by the two bootstrap-attribute pairs. In case of the
intersection, the results deteriorate because of the small number
of instances examined (only the instances appearing in both
result sets generated by the bootstrap attributes are considered).
Precision and recall values of zero are even observed in one
case (involving, again, the CC attribute, and highlighting once
more the importance of selecting proper bootstrap attributes).
On the other hand, the union of the two sets yields the same
average precision as the identity mapping, but a slightly higher
recall, due to the higher number of related instances considered
in this case.

6. Establishing a bioinformatic data grid

Once schema mappings between the databases are generated
– and possibly corrected by domain experts – we are
theoretically ready to redeploy the whole network of databases
as a decentralized, service-oriented Data Grid. To do so, we
first have to export all schemas, instances and mappings in a
standard way in order to enable the various Grid participants to
meaningfully share and process data.

We chose to export all information using semi-structured,
Semantic Web data models proposed by the W3C. Hence,
instances and schemas are exported as RDF instances and
schemas while mappings are encoded using the KnowledgeWeb
ontology alignment standard [5]. Taking advantage of
information included in the SRS structure files, we could
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Fig. 9. Precision and Recall values for the SwissProt–EMBL mappings derived from two bootstrap-attribute pairs, by computing the Intersection of the result sets,
on sets of 50 instances, η = 80%, κ = 10%.
Fig. 10. Precision and Recall values for the SwissProt–EMBL mappings derived from two bootstrap-attribute pairs, by computing the Union of the result sets, on
sets of 50 instances, η = 80%, κ = 10%.
implement a custom parser for the three aforementioned
bioinformatic databases and automate the export of semi-
structured data from the flat-files. Figs. 11 and 12 below show
snippets of an exported schema and mapping respectively.

Each information source can export its data autonomously
using these formats. In our prototype, we successfully used
Jena (jena.sourceforge.net) as query processor running locally
on every node. Once mappings to a couple of other participants
in the Data Grid have been generated, a node can start posing
queries globally by reformulating local queries thanks to the
mappings as discussed in Section 1.1. The whole process results
in a decentralized, scalable and service-oriented Data Grid
where new participants can query information globally while
providing new data in an autonomous way. Note that such a
system can then be integrated in current Grid environments (see
Section 2): local databases can for example take advantage of
Grid directories to propagate queries or can serve as back-end
infrastructure for operations triggered by standard Web-Service
calls in the Grid.

7. Conclusions

Deploying a bioinformatic grid infrastructure implies
tackling an old and difficult problem, namely the integration
of heterogeneous databases. As Data Grids typically deal with
large volumes of data, automated methods fostering semantic
interoperability in distributed settings have to be proposed. In
this paper, we introduced a completely decentralized approach
to this problem, which enables an automatic transition from
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Fig. 11. A snippet of an SRS schema exported as RDFS.

Fig. 12. A snippet of a schema alignment exported as RDF.
a collection of centrally indexed but interrelated bioinformatic
databases to a bioinformatic Data Grid. The interoperability is
gradually established through the process of generating pair-
wise mappings between related schemas.

Our method takes advantage of foreign-key relationships of-
ten present in bioinformatic databases to run an instance-based
schema matching algorithm which relies on lexicographic tech-
niques for finding semantic correspondences between different
schemas. In order to evaluate our method, we ran it on a set
of databases found in an SRS repository and achieved surpris-
ingly good results. Such methods are highly suitable to Grid en-
vironments, as they allow the establishment of integrated com-
munications while maintaining local autonomy for the various
information sources.
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