
GridVine: Building Internet-Scale
Semantic Overlay Networks�

Karl Aberer1, Philippe Cudré-Mauroux1, Manfred Hauswirth1, and
Tim Van Pelt2

1 School of Computer and Communication Sciences
Swiss Federal Institute of Technology (EPFL), Switzerland

{karl.aberer, manfred.hauswirth, philippe.cudre-mauroux}@epfl.ch
2 Department of Computer and Information Science

Linköpings Universitet, Sweden
tim@vanpelt.com

Abstract. This paper addresses the problem of building scalable seman-
tic overlay networks. Our approach follows the principle of data indepen-
dence by separating a logical layer, the semantic overlay for managing
and mapping data and metadata schemas, from a physical layer con-
sisting of a structured peer-to-peer overlay network for efficient routing
of messages. The physical layer is used to implement various functions
at the logical layer, including attribute-based search, schema manage-
ment and schema mapping management. The separation of a physical
from a logical layer allows us to process logical operations in the seman-
tic overlay using different physical execution strategies. In particular we
identify iterative and recursive strategies for the traversal of semantic
overlay networks as two important alternatives. At the logical layer we
support semantic interoperability through schema inheritance and Se-
mantic Gossiping. Thus our system provides a complete solution to the
implementation of semantic overlay networks supporting both scalability
and interoperability.

1 Introduction

Research on semantic overlay networks has recently received a lot of attention
in the emerging area of peer-to-peer data management [10,6,15,17]. All of these
approaches are based on a generalization of the concept of federated databases,
where peers store data or (content) metadata according to their local schemas
and freely define mappings (translations, views) from their schemas to those of

� The work presented in this paper was (partly) carried out in the framework of the
EPFL Center for Global Computing and was supported by the National Competence
Center in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science Foundation under grant
number 5005-67322 and in part and by the Swiss National Funding Agency OFES
as part of the European project KnowlegeWeb No 507482.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 107–121, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

108 K. Aberer et al.

other peers. Thus a network is constructed where peers are logically intercon-
nected through schema mappings and where queries can be propagated to other
peers using different schemas, even over multiple hops. The main concern of
these works is on the problem of consistent query answering and reconciliation
of different mappings occurring in the semantic overlay network [8,22].

In parallel, structured overlay networks, e.g., Chord [21] or P-Grid [2], have
been developed as new infrastructures for routing requests for resources that are
distributed over large populations of peers using application-specific keys in an
efficient manner. Naturally, such networks can be employed in order to efficiently
respond to simple keyword-based queries. Structured overlay networks clearly
also have the potential to support the efficient operation of a semantic overlay
network. However, research on how to take advantage of this potential is in its
infancy.

In this paper, we introduce an architecture and implementation leveraging
on the potential for scalability offered by structured overlay networks in the
realization of interoperable, large-scale semantic overlay networks. A key aspect
of the approach we take is to apply the principle of data independence [13] by
separating a logical from a physical layer. This principle is well-known from the
database area and has largely contributed to the success of modern database
systems. At the logical layer, we support various operations to maintain the
semantic overlay network and to support semantic interoperability, including
attribute-based search, schema management, schema inheritance and schema
mapping. We also provide support for a specific schema reconciliation technique,
i.e., Semantic Gossiping, that we have introduced earlier [3]. We provide these
mechanisms within the standard syntactic framework of RDF/OWL. At the
physical layer, we provide efficient realizations of the operations exploiting a
structured overlay network, namely P-Grid. This requires mappings of operations
and data to the physical layer. Important aspects of this mapping are:

– The mapping of data and metadata to routable keys.
– The introduction of a specific namespace for resources present in the peer

space, such that the infrastructure can resolve resource requests.
– The implementation of traversals of the semantic network taking advantage

of intermediate schema mappings. An interesting aspect is the possibility to
use different strategies to implement such traversals at the structured overlay
network layer, in ways that are substantially different from naive solutions.
We analyze two types of processing strategies, iterative and recursive. As in
standard database query processing, the data independence principle thus
opens up the possibility of optimization using different query processing
strategies.

We have developed a first implementation following the architectural prin-
ciples outlined above building on the existing implementation of the P-Grid
structured overlay network. We report on initial experiments showing the effect
of using different query processing strategies for semantic network traversal.

The rest of this paper is structured as follows: We start with an overview
of our approach in Section 2. Our architecture and implementation use P-Grid

GridVine: Building Internet-Scale Semantic Overlay Networks 109

as a physical layer, which is briefly described in Section 3. Section 4 presents
the mechanisms used to index metadata and schemas and to resolve queries.
Section 5 describes semantic interoperability while Section 6 is dedicated to
GridVine, the implementation of our approach. Finally, we discuss related work
in Section 7 and conclude.

2 Overview of Our Approach

2.1 Data Independence

Following the principle of data independence enounced above, our approach re-
volves around a two-layer model: a physical layer based on the P-Grid access
structure underpinning GridVine, a logical semantic overlay layer (see Fig. 1).
P-Grid (Section 3) is an efficient, self-organizing and fully decentralized access
structure based on a distributed hash table (DHT). GridVine uses two of P-
Grid’s basic functionalities: the Insert(key, value) primitive for storing data
items based on a key identifier and the Retrieve(key) primitive for retrieving
data items given their key.

Fig. 1. The two-layer model

Taking advantage of these two rather limited primitives, we build a full-
fledged semantic overlay network on top of P-Grid. The system exposes a new
set of primitives (depicted on top of Fig. 1) allowing end-users to insert metadata,
schemas and schema translations as well as retrieve semantic information using
expressive query languages. Capitalizing on recent developments, we chose the
RDF / RDFS pair as languages to encode metadata and vocabulary definitions in
GridVine. These two languages represent the fundamental building blocks of the
emerging Semantic Web [23] and are predestined to become de facto standards
for encoding metadata as well as their corresponding schematic information.

The exact mechanisms we choose for inserting metadata into the P-Grid
are naturally of utmost importance, since they directly influence the query ca-
pabilities of the overall system, and are extensively discussed in the following
(Section 4). In order to support the processing of schema-specific information,
we introduce a meta-schema specifying common characteristics for all custom
schemas derived by the users. Also, we introduce new addressing spaces, i.e.,
URI schemes, to identify resources both in the physical (P-Grid data items) and
logical (semantic information) layers.

110 K. Aberer et al.

2.2 Decentralized Semantics

Classification of resources and definition of vocabularies are essential for leverag-
ing metadata creation and fostering semantic interoperability through reuse of
conceptualizations. Legacy information sharing systems typically support static
sets of centrally imposed, predefined schemas. We consider such a monolithic
approach as far too rigid for adequately capturing information sources in a net-
work of autonomous and heterogeneous parties. Not only is this not desirable
from an ideological perspective, it also misses out on the power of P2P. Seeing
users as experts of the information they share, they themselves are most fit to
come up with a proper schema to describe their data. However desirable it may
be to let users come up with their own schemas in a bottom-up manner, it also
severely endangers global semantic interoperability and search capabilities: How
could one ensure optimal precision and recall when searching for data items that
might be referred to by a large variety of terms? Our answer to this question if
twofold, including both schema inheritance and Semantic Gossiping mechanisms.

Schema inheritance provides GridVine with basic schema reusability and
interoperability capabilities. As for other social networks [7], we expect the pop-
ularity of schemas in GridVine to follow scale-free preferential attachment laws,
such that a small subset of schemas gain unparalleled popularity while the oth-
ers remain mainly confidential. By allowing users to derive new schemas from
well-known base schemas, we implicitly foster interoperability by reusing sets of
conceptualizations belonging to the base schemas.

Semantic Gossiping [3,4] is a semantic reconciliation method that can be ap-
plied to foster semantic interoperability in decentralized settings. The method
aims at establishing global forms of agreement starting from a graph of purely
local mappings among schemas. Following this approach, we allow peers in Grid-
Vine to create, and possibly index, translation links mapping one schema onto
another. These links can then be used to propagate queries in such a way that
relevant data items annotated according to different schemas can also be re-
trieved. Query forwarding can be implemented using several approaches. In the
following, we identify two radically different strategies for forwarding queries:
iterative forwarding, where peers process series of translation links repeatedly,
and recursive forwarding, where peers delegate the forwarding to other peers.
Schema inheritance and Semantic Gossiping are further described in Section 5.

3 The P-Grid P2P System

GridVine uses our P-Grid [2] P2P system as its physical layer. P-Grid is based
on the principles of distributed hash tables (DHT) [18]. As any DHT approach,
P-Grid associates peers with data keys from a key space, i.e., partitions of the
underlying distributed data structure. Each peer is responsible for some part of
the overall key space and maintains additional (routing) information to forward
queries and requests. Without constraining general applicability, we use binary
keys in the following. P-Grid peers refer to a common underlying tree structure
in order to organize their routing tables. In the following, we assume that the

GridVine: Building Internet-Scale Semantic Overlay Networks 111

tree is binary. This is not a fundamental limitation as a generalization of P-Grid
to k-ary structures has been introduced in [5], but will simplify the presentation.

Each peer p ∈ P is associated with a leaf of the binary tree. Each leaf
corresponds to a binary string π ∈ Π. Thus each peer p is associated with a
path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of length l
a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of
the tree the peer has references to some other peers that do not pertain to the
peer’s subtree at that level, which enables the implementation of prefix routing
for efficient search. The cost for storing the references (in routing tables) and the
associated maintenance cost are scalable as they are proportional to the depth
of the underlying binary tree.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key key(d)
is calculated using an order-preserving hash function. key(d) has π(p) as prefix
but we do not exclude that temporarily also other data items are stored at a
peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can be a
proper subset of δ(p). In addition, peers also maintain references σ(p) to peers
having the same path, i.e., their replicas.

P-Grid supports two basic operations: Retrieve(key) for searching a certain
key and retrieving the associated data item and Insert(key, value) for storing
new data items. Since P-Grid uses a binary tree, Retrieve(key) intuitively is ef-
ficient, i.e., O(log(|Π|)), measured in terms of messages required for resolving a
search request, in a balanced tree. For skewed data distributions we show in [1]
that due to the probabilistic nature of the P-Grid approach, the expected search
cost measured by the number of messages required to perform the search remains
logarithmic, independently how the P-Grid is structured. This is important as
it allows us to apply simple order-preserving hashing functions to metadata an-
notations, which may lead to non-uniformly distributed key distributions. As
P-Grid uses an order-preserving hash function to compute keys and define their
association with peers, it processes prefix and range queries of arbitrary granu-
larity efficiently, i.e., O(log(|Π|) + |{p|κ is prefix of π(p)}|. Prefix queries will
be an important constituent in the generic implementation of metadata queries.
Insert(key, value) is based on P-Grid’s more general update functionality [11]
which provides probabilistic guarantees for consistency and is efficient even in
highly unreliable, replicated environments, i.e., O(log(|Π|)+replication factor).

4 Semantic Support

In the following, we elaborate on how GridVine handles the creation and indexing
of RDF triples (Section 4.1) and schemas (Section 4.2). Section 4.3 discusses then
query resolution mechanisms.

4.1 Metadata Storage

In GridVine, statements are stored as RDF triples and refer to data items shared
in the P-Grid infrastructure. A structured overlay network allows to implement

112 K. Aberer et al.

an application specific addressing space. In our case, we introduce a specific URI
schemes pgrid : // for resources, and pgrids : //, for schema-elements. This does
not exclude the use of other URI schemes in conjunction with P-Grid’s specific
ones, as long as the infrastructure ensures that all the identifiers can be resolved.

In the case were all resources are identified by P-Grid URIs, a typical sit-
uation would be a statement where the subject is identified by a P-Grid key,
i.e., a binary string such as 11110101, whereas the predicate and object refer
to P-Grid’s specific RDF schemas (or literals). This allows us to constrain the
applicability of the schema constructs. An example of such a statement would
be the P-Grid resource 11110101 (subject) is entitled (predicate) Rain, Steam
and Speed (object), which, translated into the XML syntax of RDF, would result
in a file like the one transcribed in Fig. 2.

�

�

�

�

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="pgrid://11110101">
<Title xmlns="pgrids://01001101:bmp#">Rain, Steam and Speed</Title>

</rdf:Description>
</rdf:RDF>

Fig. 2. An RDF statement encoded in XML

Since most RDF query languages [19] are based on constraint searches on the
triples’ subject, predicate or object, we reference each individual triple three times,
generating separate keys based on their subject, predicate and object values.
Thus, the insertion operation of a triple t ∈ T is performed as follows:

Insert(t) ≡ Insert(tsubject, t), Insert(Hash(tpredicate), t), Insert(Hash(tobject), t).

Prefix searches, e.g., on the beginning of a string representing an object value,
are inherently supported by P-Grid’s routing mechanisms. Supporting substring
searches imposes to index all the suffixes of a generated key as well. Thus, if we
introduce l as the average length of the strings representing subjects, objects or
predicates, 3l Insert() operations incur on average when indexing an RDF triple
in GridVine.

4.2 Schema Definition and Storage

We encode category descriptions using RDF Schema (RDFS). RDFS is an exten-
sion of RDF providing mechanisms for describing groups of resources and their
relationships. Among other capabilities, it allows to define classes of resources
(classes) and predicates (properties) and to specify constraints on the subject
(domain) or the object (range) of a given class of predicates.

GridVine schemas allow to declare new categories to describe application
specific resources. The categories are all derived by subclassing from a generic
RDF class called P − GridDataItem representing any P-Grid addressable re-
source. Properties referring to this class as domain allow to declare application-
specific vocabularies (i.e., metadata attributes) with arbitrary values as ranges.

GridVine: Building Internet-Scale Semantic Overlay Networks 113

Schema Schema concept

rdfs:subPropertyOfrdfs:subClassOf

rdfs:domain

P-Grid Data Item
P-Grid Data Item

Property
rdfs:domain

P-Grid Meta Schema

Fig. 3. Relations of a P-Grid custom schema to the P-Grid meta schema

All properties derive from a generic P − GridDataItemProperty property. P-
Grid meta-schema and its relation to user-defined RDF schemas are summarized
in Fig. 3.

We create distinct RDFS files for every category, grouping the definition of
a subclass as well as all its affiliated properties. We create a unique identifer for
the category by concatenating the path π(p) of the peer creating a category to
the category itself. We then insert it into P-Grid as any other file:

Insert(rdf schema) ≡ Insert(Hash(π(p) : class name), rdf schema).

Note that due to the possibility of performing substring searches, schemas can
also be searched by their category name only.

4.3 Resolving Queries in GridVine

The simplest query one may pose against the system consists in a triple pattern
with only one bound variable, i.e., a query retrieving (parts of) a set of triples
given the value of their subject, predicate or object. For example, the following
RDQL [20] query: SELECT ?y WHERE (<pgrid://01101000>, ?y,?z) returns
all the predicates used to annotate data item 01101000. In GridVine, we call
such a query a native query. Native queries are resolved routing one message
through the P-Grid infrastructure. In our case, a message containing the above
query and the address of the peer p from which the query originates is routed as
explained in Section 3 to the peer(s) q responsible for storing data item d with
key(d) = 01101000. Upon reception of the query, q checks its local database
and sends back to p the set of data items δ(q) matching the query, which in
turn parses the answer and displays the result. The whole process still generates
O(log(|Π|)) messages: O(log(|Π|)) messages to resolve the P-Grid entry plus one
message for the answer. Native queries on literals (e.g., searches on the value of a
property) are resolved exactly in the same way, but start beforehand by hashing
the literal in order to get its corresponding key.

Variables can be introduced as subject, predicate or object of a triple pat-
tern. GridVine resolves triple patterns differently depending on the number of
unbound variables they contain:

Three unbound variables triple patterns would retrieve all the triples stored in the system, im-
plying O(|Π|log(|Π|)) messages. They are not allowed in GridVine.

Two unbound variables triple patterns are standard native queries, and may as such be resolved
using the method described above.

114 K. Aberer et al.

One unbound variable triple patterns can be resolved by issuing a native query; The predicate
of the query may either be the first or the second bound expression of the triple patterns. The
query issued must include both predicates in order for the query destination to filter out the
triples correctly.

Zero unbound variable triple patterns are constant and require no further resolution.

The cost of resolving triple patterns grows logarithmically with the number of
peers, making GridVine scale gracefully in the large. Triple patterns are power-
ful primitives that can be used to support more expressive query languages as
well. GridVine supports RDQL query resolution through simple triple pattern
combinations, following strategies similar to the ones presented in [10].

5 Semantic Interoperability

As previously mentioned, we believe that semantic heterogeneity is a critical
threat for large-scale semantic networks. We detail below the mechanisms we
take advantage of in order to foster semantic interoperability in GridVine.

5.1 Schema Inheritance

We let users derive new categories from the existing ones. However, we impose
that the new class representing the subcategory subclasses the base category
class. RDFS enforces monotonic inheritance of properties through class hierar-
chies; In our case, the subcategory automatically inherits the properties defined
in the base category through the domain definitions. Additionally, subcategories
may introduce sets of new properties specific to the subclass. Fig. 4 below pro-
vides an example where a category for annotating JPEG files is derived from a
more generic category of image files.

The process can of course be applied recursively in the sense that a subcat-
egory may in turn serve as a super-category for a new derivation, creating com-
plex hierarchies of categories and classes from the most popular base schemas.
Since subcategories subsume their base categories, subcategories of a given cat-
egory may be used indifferently as instances of the base category. In particular,
searches on a property belonging to a base category automatically affect sub-
category instances as well (least-derived property indexation). Thus, we create

Fig. 4. A simple example of category inheritance

GridVine: Building Internet-Scale Semantic Overlay Networks 115

sets of semantically interoperable schemas through properties inherited by all
descendants of a (potentially very popular) base schema.

5.2 Semantic Gossiping

In [3,4], we introduced Semantic Gossiping as a new semantic reconciliation
method. Semantic gossiping aims at establishing global forms of agreement start-
ing from a graph of purely local mappings among schemas. Peers that have an-
notated their data according to the same schema are said to belong to the same
semantic neighbourhood. Each peer has the possibility to create (either manu-
ally or automatically) a mapping between two schemas, in effect creating a link
between two semantic neighbourhoods. The network as such can be seen as a
directed graph of translations.

This translation graph exhibits two interesting properties: First, using local
translations and with the possibility to learn about other existing translations
in the system, transitivity allows for the forwarding of queries to semantic do-
mains for which there is no direct translation link (transitive closure). A second
observation is that the graph has cycles. One of the fundamental assumptions
that underlies the approach is that the translations between different semantic
domains may be partially or totally incorrect. Analysis of composite cycles and
returned results makes it possible to check the quality of translations and to
determine the degree of semantic agreement in a community, as described in [3].

Following this approach, we allow peers in GridVine to create translation
links mapping one schema onto another. Translations are used to propagate
queries from one semantic domain to another (see Section 6.1). Since RDFS
does not support schema mapping, we encode translations using OWL [23].
Translation links consist of series of owl:equivalentProperty statements which
characterize the correspondences between the two categories at the property
level. Fig. 5 below is an example of translation. Individual property equivalence
statements are reified in order to account for partially-overlapping properties:
Peers can thus refer to the various equivalence statements and qualify the indi-
vidual mappings with a semantic similarity value as introduced in our Semantic
Gossiping papers [3,4].

�

�

�

�

<?xml version="1.0"?> <?xml version="1.0" encoding="ISO-8859-1" ?>
<rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Image_Description xmlns="pgrids://10000101:exif#">

<owl:equivalentProperty rdf:ID="m1" rdf:resource="pgrids://01001101:bmp#Title"/>
</Image_Description>
<Exif_Image_Width xmlns="pgrids://10000101:exif#">

<owl:equivalentProperty rdf:ID="m2" rdf:resource="pgrids://01001101:bmp#Width"/>
</Exif_Image_Width>

</rdf:RDF>

Fig. 5. An example of translation

To forward queries properly, we need to retrieve all the translation links relating
a given schema to other schemas. Thus, we index the translations based on their
source schemas (e.g., pgrids://10000101:exif in Fig. 5):

116 K. Aberer et al.

Insert(owl file)≡Insert(Hash(π(psource) : source class name), owl file).

Forwarding a query is then logically handled using gossiping as described in [3,
4]: Starting from a given semantic domain, the query gets transformed and it-
eratively traverses other semantic domains following translations links until it
is considered as being too different (either from a syntactic or a semantic point
of view) from the original query. A new query is issued after each translation
step. In the following section, we show that different physical implementations
of Semantic Gossiping can be realized using the P-Grid overlay network.

6 Implementation

6.1 Architectural Overview

GridVine was implemented by extending our existing Java-based P-Grid library
which is available upon request. Fig. 6 shows the architecture of the implemen-
tation as a UML class diagram. The left side shows the P-Grid library with the
Gridella GUI and the right side shows GridVine’s semantic extensions. The ar-
rows in the figure denote “uses” relationships. The Gridella component provides
a GUI and uses the P-Grid component to issue queries; the Semantics compo-
nent uses the P-Grid component to issue and receive queries and uses the RDF,
RDFS, and OWL components to handle incoming requests. The RDF compo-
nent is responsible for creating and managing RDF based metadata and provides
the gossiping functionality. The Extractors subcomponent facilitates automatic
metadata extraction to leverage the burden of manual annotation (e.g., auto-
matic extraction of EXIF information from images). Functionalities related to
schemas are provided by the RDFS component, while the OWL component han-
dles all issues regarding translations. The P-Grid, Semantics, RDF, RDFS, and
OWL components are implemented as Singletons, i.e., only a single instance of
each of these classes exists at runtime and handles all requests.

P-Grid

Network

Gridella

Core

Semantics

RDF OWL RDFS
Gossip

Extractors

uses

uses

uses

uses

uses

uses

Fig. 6. The GridVine component model

GridVine: Building Internet-Scale Semantic Overlay Networks 117

Gridella

search(type, query)

The user enters a
new query

P-Grid

search(query)

Core

binaryKey(query)

Network

Maps the ASCII
query string to a
binary value

startSearch(query)

checkResponsibility(key)

Checks if this peer is
responsible for this
query

[not responsible]
remoteQuery(peer, query)

System
border
(Internet)

sendMessage(peer, query)

(a) Initiating a query

Network

newMessage(query)

A new query is
received.

Core
DataItem
Manager

DataTypeH
andler

getTypeHandler(queryType)

Looks for a data
type handler for
this query type

[handler found]
localSearch(query)

checkResponsibility(key)

Checks if this peer is
responsible for this
query

[responsible]
localSearch(query)

localSearch(query)

Find local
matches for
the query

PGrid

newQuery(host, query)

newLocalResult(result)

(b) Handling an incoming query

Fig. 7. GridVine queries

Querying. Fig. 7(a) shows the initiator’s side of a query in P-Grid which Grid-
Vine uses to provide its semantic search capabilities.

The user initiates a query via the Gridella GUI which hands it over to the
P-Grid component to perform the actual search. The parameter type defines the
type of data to search for (GUID, File, RDF, RDFS, OWL) and is implicitly
assigned by the system (and encoded in the query). The query is then routed to
other peers which are “closer” to the required result as described in Section 3.

If a peer receives a query, it checks whether it can answer the query, i.e.,
wether it is responsible for the partition of the key space the query belongs to,
otherwise the query will be forwarded as shown in Fig. 7(a). If the peer can
answer the query, as shown in Fig. 7(b), it checks the type of the query (GUID,
File, RDF, RDFS, OWL) and hands it over to the corresponding datatype han-
dler which processes the query according to its type. Datatype handlers are
defined and registered with the P-Grid library by the users of the library, i.e.,
the Gridella and Semantics components.

Semantic Gossiping. The introduction of RDF type queries enables Semantic
Gossiping which is explicitly activated by the issuer of a query through a special
flag in the query. Fig. 8 sketches how gossiping is implemented. In the figure,

118 K. Aberer et al.

Gossip

Query(RDFType, query)

new Query(OWLType, predicate)

System
border
(Internet)

QueryReply(results)

[iterative gossiping]
new Query(OWLType, predicate’)

query’ = transformQuery()

Transforms the
original query to
another semantic
domain

new Query(RDFType, query’)

QueryReply(results)

return(results)

Fig. 8. Gossiping mechanism

we just show the relevant part and omit the preceding flow of control (incoming
message – P-Grid – Datatype handler (Semantics)) for simplicity.

In resolving translation links we support two approaches: iterative and re-
cursive. In iterative resolution, the peer issuing the RDF query tries to find and
process all the translations links by itself; It first issues a query to retrieve the
translation links capable of transforming the category used in the original query;
Upon finding a translation, it translates the original query into a transformed
query (Query’) and issues a search for the transformed query. Furthermore, the
gossiping peer issues a query for a translation of the translation (Predicate’).
This continues until no more translation is available or the transformed query is
considered as being too different from the original query following syntactic and
semantic similarity measures [4].

In recursive resolution, the issuing peer tries to resolve the translation by
delegating it rather than doing it itself: First, it looks for translations of the
predicates used in the query and translates the query upon finding a translation.
The transformed query is issued and results for the query are returned to the
issuer of the query. The receiver of the transformed query follows the same
procedure recursively.

6.2 Experimental Evaluation

We briefly discuss below an initial performance evaluation of the two Semantic
Gossiping techniques GridVine implements. The tests were performed using the
current implementation on a Fast Ethernet network of 60 SUN Ultra10 stations
(Solaris 8). We first created 15 different semantic domains (i.e., 15 different cat-
egories C0 to C15) related to each other through 15 translation links as depicted
in Fig. 9(a). We chose to organize the translations in a very regular way (i.e., a
tree) in order to get a better grasp on the results obtained; Note however that

GridVine: Building Internet-Scale Semantic Overlay Networks 119

our approach and implementation work equally well on more complex translation
graphs (see also [3,4]).

We launched 15 peers, each on a separate computer and each locally storing a
triple related to a different category. By issuing a query from the peer using C0,
we could retrieve all the 15 triples from the 15 semantic domains by forwarding
the query through the translation link hierarchy. A second setting was created by
replicating this first setting four times, running 60 peers using the same category
setting (i.e., we had 4 peers per category each storing one triple locally).

(a) Evaluation setup (b) Semantic Gossiping, 15/60 peers

Fig. 9. Semantic gossiping evaluation, 15/60 peers, 15 translation links

The results, time elapsed versus quantity of results (up to 15/60 results)
received by the peer issuing the query, for both settings and for iterative and
recursive forwarding are displayed on Fig. 9(b). As expected, iterative forwarding
works in a fairly linear manner. Also, note the initial delay incurred by letting
one peer process and send all the queries for iterative forwarding with 60 peers.
Our recursive approach proceeds more in stages, as it delegates the whole process
of query forwarding to intermediary peers. This second approach proves to be
particularly scalable with the number of peers: Results are rather independent
of the number of peers or results returned, since the number of peers processing
and forwarding the query increases with the network size.

7 Related Work

Hyperion [9] is an on-going project which proposes an architecture and outlines a
set of challenges for decentralized data management in P2P systems. SWAP [12]
is an approach combining P2P and Semantic Web techniques. It relies on an
RDF(S) model and on structure extraction for handling queries in a P2P setting.
Edutella [15] employs a super-peer topology and facilitates the clustering of
data based on ontology, rule, or query. In PeerDB [17], each peer holds a set
of locally available metadata (Local Dictionary) and a set of metadata that can
be accessed by other nodes in the network (Export Dictionary). Metadata can

120 K. Aberer et al.

be added through an SQL query facility. The system if based on BestPeer [16]
which employs mobile agents to satisfy queries. No global schema is imposed but
the process is not fully automated, as the user has to decide which mappings
are actually meaningful. The Piazza peer data management project [22] takes an
approach to semantic heterogeneity that is similar to Semantic Gossiping. Unlike
our approach, Piazza does not provide any measures to judge the (in)correctness
of mappings. The indexing is centralized and thus the scalability of the system
is limited.

All the above approaches address semantic interoperability but offer limited
scalability. Other approaches address scalability but do not deal with seman-
tic interoperability. For example, Peer-to-Peer Information Exchange Retrieval
(PIER) [14] is a database-style query engine built on top of a DHT. Its main
focus is to provide database query processing facilities to widely distributed envi-
ronments. One of PIER’s restrictions is that it imposes global, standard schemas
following the rational that some schemas will become de facto standards. RDF-
Peers [10] builds on the Multi-Attribute Addressable Network (MAAN), which
extends Chord, to efficiently answer multi-attribute and range queries on RDF
triples. RDFPeers is a scalable RDF store, but does not provide any schematic
support (e.g., to handle user-defined schemas or to address semantic interoper-
ability issues).

8 Conclusions

To the best of our knowledge, GridVine is the first semantic overlay network
based on an scalable, efficient and totally decentralized access structure sup-
porting the creation of local schemas while fostering global semantic interop-
erability. Following the principle of data independence, our approach separates
the logical and physical aspects such that it can be generalized to any physical
infrastructure that provides functionalities similar to our P-Grid P2P system.

References

1. K. Aberer. Efficient Search in Unbalanced, Randomized Peer-To-Peer Search Trees.
Technical Report IC/2002/79, Swiss Federal Institute of Technology, Lausanne
(EPFL), 2002. http://www.p-grid.org/Papers/TR-IC-2002-79.pdf.

2. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: A self-organizing structured p2p system.
ACM SIGMOD Record, 32(3), 2003.

3. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The Chatty
Web approach for global semantic agreements. Journal of Web Semantics, 1(1),
2003.

4. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. In International World Wide Web Conference
(WWW), 2003.

5. K. Aberer and M. Punceva. Efficient Search in Structured Peer-to-Peer Systems:
Binary v.s. k-ary Unbalanced Tree Structures. In International Workshop On
Databases, Information Systems and Peer-to-Peer Computing, 2003.

http://www.p-grid.org/Papers/TR-IC-2002-79.pdf

GridVine: Building Internet-Scale Semantic Overlay Networks 121

6. K. Aberer (ed.). Special issue on peer to peer data management. ACM SIGMOD
Record, 32(3), 2003.

7. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews
of Modern Physics, 74(47), 2002.

8. A. Anaby-Tavor, A. Ga, and A. Trombetta. Evaluating matching Algorithms: the
Monotonicity Principle. In IJCAI Workshop on Information Integration on the
Web, 2003.

9. M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-
lopoulos. The Hyperion Project: From Data Integration to Data Coordination.
SIGMOD Record, 32(3), 2003.

10. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based on
A Structured Peer-to-Peer Network. In International World Wide Web Conference
(WWW), 2004.

11. A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated
Peer-to-Peer Systems. In International Conference on Distributed Computing Sys-
tems (ICDCS), 2003.

12. M. Ehrig, P. Haase, R. Siebes, S. Staab, H. Stuckenschmidt, R. Studer, and C. Tem-
pich. The SWAP Data and Metadata Model for Semantics-Based Peer-to-Peer
Systems. In Multiagent System Technologies (MATES), 2003.

13. J. M. Hellerstein. Toward network data indepence. ACM SIGMOD Record, 32(3),
2003.

14. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Sto-
ica. Querying the Internet with PIER. In Conference On Very Large Data Bases
(VLDB), 2003.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In
International World Wide Web Conference (WWW), 2002.

16. W. S. Ng, B. C. Ooi, and K. L. Tan. BestPeer: A self-configurable peer-to-peer
system. In International Conference on Data Engineering (ICDE), 2003.

17. B. C. Ooi, Y. Shu, and K.-L. Tan. Relational Data Sharing in Peer-based Data
Management Systems . ACM SIGMOD Record, 32(3), 2003.

18. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distributed Environment. In Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 1997.

19. E. Prud’hommeaux and B. Grosof. Rdf query and rules: A framework and survey.
http://www.w3.org/2001/11/13-RDF-Query-Rules/.

20. A. Seaborne. Rdql - a query language for rdf.
http://www.w3.org/Submission/RDQL/.

21. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applications. In ACM SIGCOMM
Conference, 2001.

22. I. Tatarinov, Z. Ives, J. Madhavan amd A. Halevy, D. Suciu, N. Dalvi, X. Dong,
Y. Kadiyaska, G. Miklau, and P. Mork. The Piazza Peer Data Management
Project. ACM SIGMOD Record, 32(3), 2003.

23. World Wide Web Consortium. Semantic web activity at the w3c.
http://www.w3.org/2001/sw/.

http://www.w3.org/2001/11/13-RDF-Query-Rules/
http://www.w3.org/Submission/RDQL/
http://www.w3.org/2001/sw/

	Introduction
	Overview of Our Approach
	Data Independence
	Decentralized Semantics

	The P-Grid P2P System
	Semantic Support
	Metadata Storage
	Schema Definition and Storage
	Resolving Queries in GridVine

	Semantic Interoperability
	Schema Inheritance
	Semantic Gossiping

	Implementation
	Architectural Overview
	Experimental Evaluation

	Related Work
	Conclusions

