
Probabilistic Message Passing in Peer Data Management Systems∗

Philippe Cudŕe-Mauroux

School of Computer and
Communication Sciences

EPFL – Switzerland

Karl Aberer

School of Computer and
Communication Sciences

EPFL – Switzerland

Andras Feher

Fachbereich Informatik
T.U. Darmstadt

Germany

Abstract

Until recently, most data integration techniques involved
central components, e.g., global schemas, to enable trans-
parent access to heterogeneous databases. Today, how-
ever, with the democratization of tools facilitating knowl-
edge elicitation in machine-processable formats, one can-
not rely on global, centralized schemas anymore as knowl-
edge creation and consumption are getting more and more
dynamic and decentralized. Peer Data Management Sys-
tems (PDMS) provide an answer to this problem by elimi-
nating the central semantic component and considering in-
stead compositions of local, pair-wise mappings to propa-
gate queries from one database to the others.

PDMS approaches proposed so far make the implicit as-
sumption that all mappings used in this way are correct.
This obviously cannot be taken as granted in typical PDMS
settings where mappings can be created (semi) automati-
cally by independent parties. In this work, we propose a
totally decentralized, efficient message passing scheme to
automatically detect erroneous mappings in PDMS. Our
scheme is based on a probabilistic model where we take ad-
vantage of transitive closures of mapping operations to con-
front local belief on the correctness of a mapping against
evidences gathered around the network. We show that our
scheme can be efficiently embedded in any PDMS and pro-
vide a preliminary evaluation of our techniques on sets of
both automatically-generated and real-world schemas.

1 Introduction

Data integration techniques have traditionally revolved
around global schemas to query heterogeneous databases

∗The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Com-
puting and supported by the Swiss National Funding Agency OFES as part
of the European project Evergrow No 001935.

in a transparent way: popular techniques such as LAV
(Local-As-View) or GAV (Global-As-View) drew consid-
erable attention as they permit deterministic reformulations
of queries over various data sources. These centralized ap-
proaches, however, require the definition of an integrated
schema supposedly subsuming all local schemas. This re-
quirement is particularly stringent in highly heterogeneous,
dynamic and decentralized environments such as the Web
or Peer-to-Peer overlay networks. In these settings, largely
autonomous and heterogeneous data sources coexist with-
out any central coordination. Keeping a global schema up-
to-date or defining a schema general enough to encompass
all information sources is thus unmanageable in practice in
this context. This evolution motivated the research com-
munity to imagine new paradigms for handling heteroge-
neous data in decentralized environments. In this paper, we
focus on the Peer Data Management Systems (PDMS) ap-
proach, which recently drew considerable attention in this
context [4].

PDMS take advantage of local, pairwise schema map-
pings between pairs of databases to propagate queries posed
against a local schema to the rest of the network in an iter-
ative and cooperative manner. No global semantic coordi-
nation is needed as peers only need to define local map-
pings to a small set of related databases to be part of the
global network of databases. Once a database sends a query
to its immediate neighbors through local mapping links, its
neighbors (after processing the query) in turn propagate the
query to their own neighbors, and so on and so forth until
the query reaches all (or a predefined number of) databases.
The way the query spreads around the network mimics the
way messages are routed in a Peer-to-Peer (P2P) system,
thus the appellationPeer Data Management Systems.

The vast majority of PDMS approaches, however, prop-
agate queries without concern on the validity or quality of
the mappings. This obviously represents a severe limita-
tion, as one cannot expect any level of consistency or qual-
ity on PDMS mappings for several reasons: First, remem-
ber that PDMS target large-scale, decentralized and hetero-
geneous environments where autonomous parties have full

control on schema designs. As a result, we can expect ir-
reconcilable differences on conceptualizations (e.g., epis-
temic or metaphysical differences on a given modelization
problem, see also [18]) among the databases. Also, the lim-
ited expressivity of the mappings, usually defined as queries
or using an ontology definition language like OWL, pre-
cludes the creation of correct mappings in many situation
(e.g., mapping an attribute onto a relation). Finally, given
the vibrant activity on (semi-) automatic alignment tech-
niques (see [11] for a recent overview), we can expect some
(most?) of the mappings to be generated automatically in
large-scale settings, with all the evident quality problems
associated.

1.1 Our Contribution

In the following, we propose a probabilistic technique
to determine the quality of schema mappings in PDMS set-
tings in a totally automated way and without any form of
central coordination. As peers do not always share com-
mon data, mapping errors are typically difficult to discover
from a local perspective in PDMS. Our methods are based
on the analysis of cycles and parallels paths in the graph
of schema mappings: After detecting mapping inconsis-
tencies by comparing transitive closures of mapping opera-
tions, we build a global probabilistic inference model span-
ning the entire PDMS system. We show how to construct
this model in a totally decentralized way by involving lo-
cal information only. We describe a decentralized and effi-
cient method to derive mapping quality measures from our
model. Our approach is based on a decentralized version
of iterative sum-product message passing techniques (loopy
belief propagation). We show how to embed our approach
in PDMS systems with a very modest communication over-
head by piggybacking on normal query processing opera-
tions. Finally, we present a preliminary evaluation of our
technique applied on both generated and real-world data.

1.2 An Introductory Example

Before delving into technicalities, we start with a high-
level, introductory example of our approach. Let us con-
sider the simple PDMS network depicted in Figure 1. This
network is composed of four databasesp1, . . . , p4. All
databases store a collection of XML documents related
to pieces of art, but structured according to four differ-
ent schemas (one per database). Each database supports
XQuery as query language. Various pairwise XQuery
schema mappings have been created (both manually and
automatically) to link the databases; Figure 2 below shows
an example of mapping between two schemas and how one
can take advantage of this mapping to resolve a query posed
against two different schemas.

p4

/Creator -> /Author/DisplayName

/Author/DisplayName -> /Painting/Painter

p1 p3

/Painting/Painter -> /art/creator

p2

/Creator -> /Painting/CreatedOn

/Painting/CreatedOn -> /art/creatDate

art/creator -> /Creator

Figure 1. A simple directed PDMS network of
four peers and five schema mappings, here
depicted for the attribute Creator

Q1=
<GUID>$p/GUID</GUID>
FOR $p IN /Photoshop_Image
WHERE $p/Creator LIKE "%Robi%"

<Photoshop_Image>
<GUID>178A8CD8865</GUID>
<Creator>Robinson</Creator>
<Subject>
<Bag>
<Item>
Tunbridge Wells
</Item>
<Item>Royal Council</Item>

</Bag>
</Subject>
…

</Photoshop_Image>

Photoshop
(own schema)

<WinFSImage>
<GUID>178A8CD8866</GUID>
<Author>
<DisplayName>
Henry Peach Robinson

<DisplayName>
<Role>Photographer</Role>
<Author>
<Keyword>
Tunbridge
</Keyword>
<Keyword>Council</Keyword>
…

</WinFSImage>

WinFS
(known schema)

T12 =
<Photoshop_Image>
<GUID>$fs/GUID</GUID>
<Creator>
$fs/Author/DisplayName
</Creator>
</Photoshop_Image>
FOR $fs IN /WinFSImage

Q2=
<GUID>$p/GUID</GUID>
FOR $p IN T12
WHERE $p/Creator LIKE "%Robi%"

Figure 2. An example of schema mapping
(here between peers p2 and p3) expressed as
an XQuery

Let us suppose that a user inp2 wishes to retrieve the
names of all artists having created a piece of work related
to some river. The user could locally pose an XQuery like
the following:

�
�

�
�

q_1 =
FOR $c IN distinct-values (ArtDatabank//Creator)
WHERE $c/..//Item LIKE "%river%"
RETURN <myArtist> $c </myArtist>

This query basically boils down to a projection on the at-
tributeCreator: op1 = πCreator and a selection on the title:
op2 = σItem=%river%. The user issues the query and pa-
tiently awaits for answers, both from his local database and
the rest of the network.

In a standard PDMS, the query would be forwarded
through both outgoing mappings ofp2, generating a fair
proportion of false positives as one of these two mappings

(the one betweenp2 and p4) is incorrect for the attribute
Creator (the mapping erroneously mapsCreatorin p2 onto
CreatedOnin p4, see Figure 1). Luckily for our user, the
PDMS system he is using implements our message passing
techniques. Without any prior information on the mappings,
the system detects inconsistencies for the mappings onCre-
ator by analyzing the cyclesp1 → p2 → p4 → p1 and
p1 → p2 → p3 → p4 → p1, as well as the parallel paths
p2 → p4 andp2 → p3 → p4 in the mapping network. In a
decentralized process, the PDMS constructs a probabilistic
network and determines that the semantics of the attribute
Creator will most likely be preserved by all mappings, ex-
cept by the mapping betweenp2 andp4 which is more likely
to be faulty. Thus, this specific query will be routed through
mappingp2 → p3, and then iteratively top4 andp1. In
the end, the user will retrieve all artist names as specified,
without any false-positive since the mappingp2 → p4 was
ignored in the query resolution process.

2 Problem Definition

We model PDMS as collections of peers; Each individ-
ual peerp represents a database storing data according to a
distinct structured schema. Note that a peer could in prac-
tice represent a (potentially large) cluster of databases all
adhering to the same schema. As we wish to present an
approach as generic as possible, we do not make any as-
sumption on the exact data model used by the databases in
the following but illustrate some of our claims with exam-
ples in XML and RDF. We only require the databases to
store information with respect to some concepts we callat-
tributesa (e.g., attributes in a relational schema, elements
or attributes in XML and classes or properties in RDF). Ad-
ditionally, we suppose that each peer can be identified and
contacted by a unique identifier (e.g., an IP address or a peer
ID in a P2P network).

Peers are connected one another through (un)directed
edges representing (un)directed pairwise schema mappings.
A schema mappingm allows a query posed against a local
schema to be evaluated against another schema. This opera-
tion is uni or bi-directional depending on the language used
to express the mappings. Again, we do not make assump-
tions on that language, except that it should allow to con-
nect pairs of semantically similar attributes. Note that this
language may for example allow for syntactic transforma-
tions (e.g., transforming a date from one format to another)
or complex mappings (e.g., mapping an attribute to part of
another attribute). Finally, remember that our fundamental
assumption is that some mappings might be incorrect, i.e.,
they might map an attribute from one database to a seman-
tically irrelevant attribute in another database.

We consider queries posed locally against the schema of
a given peer. Queries are composed of generic selection /

projection operationsop on attributes. For each attributeai

appearing in the query, the system (or the expert user) de-
fines a semantic thresholdθai

under which the query should
not be propagated any further: as the query gets propagated
throughout the network of peer databases, each intermedi-
ate peer checks the probabilityP (ai = correct) of each at-
tribute in the query being semantically preserved by a map-
ping operation. The query is forwarded through a mapping
link to another peer database only if all attributes are pre-
served, that is if for allai, P (ai = correct) > θai

for
the given mapping. Note that other per-hop forwarding be-
haviors could easily be implemented with our techniques
(see [3]) but we stick to the given scheme for simplicity.

Given this setting, our goal is to provide probabilistic
guarantees on the correctness of a mapping operation, i.e.,
to determineP (ai = correct). As any processing in a
PDMS, we wish our methods to operate without any global
coordination in a purely decentralized manner. Also, we
would like our methods to be totally automated, as precise
as possible and fast enough to be applied on large schemas
or ontologies.

3 Modeling PDMS as Factor-Graphs

In the following, we take advantage of query messages
being forwarded from one peer to another to detect inconsis-
tencies in the network of mappings. We represent individual
mappings and network information as related random vari-
ables in a probabilistic graphical model. We will then effi-
ciently evaluate marginal probabilities, i.e., mapping qual-
ity, using these models.

3.1 A Quick Reminder on Factor-Graphs and
Message Passing Schemes

We give below a brief overview of message passing tech-
niques. For a more in-depth coverage, we refer the in-
terested reader to one of the many overviews on this do-
main, such as [12]. Probabilistic graphical models are a
marriage between probability theory and graph theory. In
many situations, one can deal with a complicated global
problem by viewing it as a factorization of several local
functions, each depending on a subset of the variables ap-
pearing in the global problem. As an example, suppose
that a global functiong(x1, x2, x3, x4) factors into a prod-
uct of two local functionsfA andfB : g(x1, x2, x3, x4) =
fA(x1, x2)fB(x2, x3, x4). This factorization can be repre-
sented in a graphical form by thefactor-graphdepicted in
Figure 3, where variables (circles) are linked to their re-
spective factors (black squares). Often, one is interested in
computing amarginalof this global function, e.g.,

g2(x2) =
∑
x1

∑
x3

∑
x4

g(x1, x2, x3, x4)

x1 x2 x3 x4

fA fB

µfA-x2(x2) µfB-x2(x2)

Figure 3. A simple factor-graph of four vari-
ables and two factors

=
∑
∼{x2}

g(x1, x2, x3, x4)

where we introduce the summary operator
∑

∼{xi} to sum
over all variables butxi. Such marginals can be derived in
an efficient way by a series ofsum-productoperations on
the local function, such as:

g2(x2) =

(∑
x1

fA(x1, x2)

)(∑
x3

∑
x4

fB(x2, x3, x4)

)
.

Interestingly, the above computation can be seen as the
product of two messagesµfA→x2(x2) andµfB→x2(x2) sent
respectively byfA andfB to x2 (see Figure 3). Thesum-
productalgorithm exploits this observation to compute all
marginal functions of a factor-graph in a concurrent and ef-
ficient manner. Message passing algorithms traditionally
compute marginals by sending two messages — one in each
direction — for every edge in the factor-graph:

variable x to local factor f :

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x)

local factor f to variable x

µf→x(x) =
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y)

wheren(·) stands for the neighbors of a variable / function
node in the graph.

These computations are known to be exact for cycle-free
factor-graphs; in contrast, applications of the sum-product
algorithm in a factor-graph with cycles only result in ap-
proximate computations for the marginals [15]. However,
some of the most exciting applications of the sum-product
algorithms (e.g., decoding of turbo or LDPC codes) arise
precisely in such situations. We show below that this is
also the case for factor-graphs modelling Peer Data Man-
agement Systems. Finally, note that Belief Propagation as
introduced by Judea Pearl [20] is actually a specialized case
of a standard message passing sum-product algorithm.

3.2 On Factor-Graphs in Undirected PDMS

In the following, we explain how one can model a net-
work of mapping as a factor-graph. These factor-graphs will
in turn be used in Section 4 to derive quality measures for
the various mappings in the network.

3.2.1 Cyclic Mappings

Semantic overlay network topologies are not generated at
random. On the contrary, they are constructed by (com-
puterized or human) agents aiming at interconnecting par-
tially overlapping information sources. We can expect very
high clustering coefficients in these networks, since sim-
ilar sources will tend to bond together and create clus-
ter of sources. As an example, a study of an online net-
work of related biologic schemas (in the the SRS system,
http://www.lionbioscience.com) shows an exponential de-
gree distribution and an unusually high clustering coeffi-
cient of0.54 (as of May 2005). Consequently, we can ex-
pect semantic schema graphs to exhibitscale-freeproperties
and an unusually high number of loops [7].

Let us assume we have detected a cycle of
mappings m0,m1, . . . ,mn−1 connecting n peers
p0, p1, . . . , p(n−1), p0 in a circle. Cycles of mappings
can be easily discovered by the peers in the PDMS
network, either by proactively flooding their neighbor-
hood with probe messages with a certain Time-To-Live
(TTL) or by examining the trace of routed queries in
the network. We take advantage of transitive closures
of mapping operations in the cycle to compare a query
q posed against the schema ofp0 to the corresponding
query q′ forwarded through alln mappings along the
cycle: q′ = mn−1(mn−2(. . . (m0)(q)))). q andq′ can be
compared on an equal basis since they are both expressed
in terms of the schema ofp0. In an ideal world,q′ ≡ q
since the transformed queryq′ is the result ofn identity
mappings applied on the original queryq. In a distributed
setting, however, this might not always be the case, both
because of the lack of expressiveness of the mappings
and of the fact that mappings can be created in (semi-)
automatic ways.

When comparing an attributeai in an operationopq(ai)
appearing in the original queryq to the attributeaj from the
corresponding operationop′(aj) in the transformed query
q′, three subcases may occur in practice:

aj = ai: this occurs when the attribute, after having been
transformedn times through the mappings, still maps
to the original attribute when returning to the semantic
domain of p0. Since this indicates a high level of
semantic agreement along the cycle for this particular
attribute, we say that this represents positive feedback
f+ on the mappings constituting the cycles.

aj 6= ai: this occurs when the attribute, after having been
transformedn times through the mappings, maps to
a different attribute when returning to the semantic
domain ofp0. As this indicates some disagreement on
the semantics ofai along the cycle of mappings, we
say that this represents negative feedbackf− on the
mappings constituting the cycles.

aj = ⊥: this occurs when some intermediary schema
does not have a representation for the attribute in
question, i.e., cannot map the attribute onto one of its
own attributes. This does not give us any additional
(feedback) information on the level of semantic
agreement along the cycle, but can still represent some
valuable information in other contexts, for example
when analyzing query forwarding on a syntactic level
(see also [3]). In the current case, we consider that the
probability on the correctness of a mapping link drops
to zero for a specific attribute if the mapping does not
provide any mapping for the attribute.

We focus here on single-attribute operations for simplicity,
but our results can be extended to multi-attribute operations
as well.

Also to be taken into account, the fact that series of erro-
neous mappings onai can accidentallycompensate their
respective errors and actually create a correct composite
mappingmn−1 ◦ mn−2 . . . ◦ m0 in the end. Assuming a
probability ∆ of two or more mapping errors being com-
pensated along a cycle in this way, we can determine the
conditional probability of a cycle producing positive feed-
backf+

� given the correctness of its constituting mappings
m0, . . . ,mn−1:

P (f+
� |m0, . . . ,mn−1) =

1 if all mappings correct
0 if one mapping incorrect
∆ if two or more

mappings incorrect

This conditional probability function allows us to create a
factor-graph from a network of interconnected mappings.
We create a global factor-graph as follows:�

�

�

�

for all mapping m in PDMS
add m.factor to global factor-graph;
add m.variable to m.factor;

for all mapping cycle c in PDMS
add c.feedback.factor to global factor-graph;
add c.feedback.variable to c.feedback.factor;
for all mapping m in mapping cycle c

link c.feedback.factor to m.variable;

Figure 4 illustrates the derivation of a factor-graph from
a simple semantic network of four peersp1, . . . , p4 (left-
hand side of Figure 4). The peers are interconnected

p1

p2

p3

p4

m12 m23

m34
m41

m24

m12 m23 m34 m41 m24

f1 f2 f3

Figure 4. Modeling an undirected network of
mappings as a factor-graph

through five mappingsm12,m23,m34,m41 andm24. One
may attempt to obtain feedback from three different map-
ping cycles in this network:

f1
� : m12 −m23 −m34 −m41

f2
� : m12 −m24 −m41

f3
� : m23 −m34 −m24.

The right-hand side of Figure 4 depicts the resulting factor-
graph, containing from top to bottom: five one-variable fac-
tors for the prior probability functions on the mappings, five
mappings variablesmij , three factors linking feedback vari-
ables to mapping variables through conditional probability
functions (defined as explained above), and finally three
feedback variablesfk. Note that feedback variables are usu-
ally not independent: two feedback variables are correlated
as soon as the two mapping cycles they represent have at
least one mapping in common (e.g., in Figure 4, where all
three feedbacks are correlated).

3.3 On Factor-Graphs in Directed PDMS

One may derive similar factor-graphs in directed PDMS
networks, focusing this time on directed mapping cycles
and parallel mapping paths. Factors from directed mapping
cyclesm0 → m1 →, . . . → mn−1 are defined in exactly
the same ways as explained above for the undirected case.

Parallel mapping paths occur when two different series
of mappingsm′ and m′′ share the same source and des-
tination, e.g.,m′

0 → m′
1 → . . . → m′

n′−1 and m′′
0 →

m′′
1 → . . . → m′′

n′′−1, with m′
0 andm′′

0 departing from the
same peer andm′

n′−1 andm′′
n′′−1 arriving at the same peer.

Those two parallel paths would be considered as forming
an undirected cycle in an undirected network, but cannot
be considered as such here due to the restriction on the di-
rection of the mapping operations in a network of directed
mappings.

If a query q is forwarded through both parallel paths,
the destination peerpn−1 can compare bothq′ =

p1

p2

p3

p4

m12 m23

m34
m41

m24

m12 m23 m34 m41 m24

f1 f2 f3

m21
m21

f4 f5

Figure 5. Modeling a directed network of map-
pings as a factor-graph

m′
n′−1(. . . (m

′
0(q))) and q′′ = m′′

n′′−1(. . . (m
′′
0(q))). As

for the undirected cycle presented above, three cases can
occur when comparing an operationsop(a′i) of q′ to its
corresponding operationop(a′′j) in q′′: positive feedback
(a′i ≡ a′′j), negative feedback (a′i 6= a′′j) of neutral feedback
(a′i = ⊥ and/ora′′j = ⊥).

The conditional probability function for receiving posi-
tive feedbackf+

⇒ through parallel paths knowing the cor-
rectness of the sets of mappings{m′} = {m′

0, . . . ,m
′
n′−1}

and{m′′} = {m′′
0 , . . . ,m′′

n′′−1} is:

P (f+
⇒|{m′}, {m′′}) =

1 if all mappings correct
0 if one mapping incorrect
∆ if two or more

mappings incorrect

Figure 5 below shows an example of directed mapping
network with four peers and six mappings. Feedback from
two directed cycles and three pairs of parallel paths might
be gathered from the network:

f1
� : m12 → m23 → m34 → m41

f2
� : m12 → m24 → m41

f3
⇒ : m21‖m24 → m41

f4
⇒ : m24‖m23 → m34

f5
⇒ : m21‖m23 → m34 → m41.

As for the undirected case, the right-hand side of Figure 5
represents the factor-graph derived from the directed map-
ping network of the left-hand side.

Since undirected mapping networks and directed map-
ping networks result in structurally similar factor-graphs in
the end, we treat them on the same basis in the follow-
ing. We only include two versions of our derivations when
some noticeable difference between the undirected and the
directed case surfaces.

4 Embedded Message Passing

So far, we have developed a graphical probabilistic
model capturing the relations between mappings and net-
work feedback in a PDMS. To take advantage of these mod-
els, one would have to gatherall information pertaining to
all mappings, cycles and parallel paths in a system. How-
ever, adopting this centralized approach makes no sense in
our context, as PDMS were precisely invented to avoid such
centralization. Instead, we devise below a method to em-
bed message passing into normal operations of a Peer Data
Management System. Thus, we are able to get globally con-
sistent mapping quality measures in a scalable, decentral-
ized and efficient manner while respecting the autonomy of
the peers.

Looking back at the factor-graphs introduced in Sec-
tion 3.2 and 3.3, we make two observations: i) some (but
not all) nodes appearing in the factor-graphs can be mapped
back onto the original PDMS graph, and ii) the factor-
graphs contain cycles.

4.1 On Feedback Variables in PDMS Factor-
Graphs

Going through one of the figures representing a PDMS
factor-graph from top to bottom, one may identify four dif-
ferent kinds of nodes: factors for the prior probability func-
tions on the mappings, variable nodes for the correctness of
the mappings, factors for the probability functions linking
mapping and feedback variables, and finally variable nodes
for the feedback information. Going one step further, one
can make a distinction between nodes representing local in-
formation, i.e., mapping factors and mapping variables, and
nodes pertaining to global information, i.e., feedback fac-
tors and feedback variables.

Mapping back local information nodes onto the PDMS is
easy, as only the nodes from which a mapping is departing
need to store information about that mapping (see per hop
routing behavior in Section 2). Luckily, we can also map the
other nodes rather easily, as they either contain global but
static information (density function in feedback factors), or
information gathered around the localneighborhoodof a
node (∆, observed values forf i

� and f j
⇒, see preceding

section). Hence, each peerp only needs to store a fraction
of the global factor-graph, fraction selected as follows:�

�

�

�

for all outgoing mapping m
add m.factor to local factor-graph;
add m.variable to m.factor;
for all feedbackMessage f containing m

add f.factor to m.variable;
if f.isPositive

add f.variable(+) to f.factor;
else if feedback.isNegative

add f.variable(-) to f.factor;
for all mapping m’ in feedback except m

add virtual peer m’.peer to f.factor;

m12 m23 m34 m41 m24

f1 f2 f3

m21

f4 f5

p1

p2 p3 p4p4 p2m12

f2f1

fa2fa1

fam12

Figure 6. Creating a local factor-graph in the
PDMS (here for peer p1)

where feedbackMessage stands for all cycle of paral-
lel path feedback messages received from neighboring
peers (resulting from probes flooded within a certain TTL
throughout the neighborhood or from analyzing standard
forwarded queries). Figure 6 shows howp1 from Figure 5
would store its local factor-graph.

Note that, depending on the PDMS, one can choose be-
tween two levels of granularity for storing factor-graphs and
computing related probabilistic value: coarse granularity –
where peers only store one factor-graph per mapping and
where they derive only one global value on the correctness
of the mapping – and fine granularity – where peers store
one instance of the local factor-graph per attribute in the
mapping, and where they derive one probabilistic quality
value per attribute. We suppose we are in the latter situation
but show derivations for only one attribute in the follow-
ing. Values for other attributes can be derived in a similar
fashion.

4.2 On Cycles in PDMS Factor-Graphs

Cycles appear in PDMS factor-graphs as soon as two
mappings belong to two identical cycles or parallel paths in
the PDMS. See for example the PDMS in Figure 4, where
m12 and m41 both appear in cyclesp1 − p2 − p4 − p1

and p1 − p2 − p3 − p4 − p1, hence creating a cycle
m12−factor(f1)−m41−factor(f2)−m12 in the factor-
graph. As mentioned above, the results of the sum-product
algorithm operating in a factor-graph with cycles cannot (in
general) be interpreted as exact function summaries.

One well-known approach to circumvent this problem is
to transform the factor-graph by regrouping nodes (cluster-
ing or stretchingtransformations) to produce a factor tree.
In our case, this would result in regrouping all mappings
having more than one cycle or parallel path in common;
this is obviously inapplicable in practice, as this would im-
ply introducing central components in the PDMS to regroup
(potentially large) sets of independent peers (see also Sec-

tion 7 for a discussion on this topic). Instead, we rely on
iterative, decentralized message passing schedules (see be-
low) to estimate marginal functions in a concurrent and ef-
ficient way. We show in Section 5 that those evaluations
are sufficiently accurate to make sensible decisions on the
mappings in practice.

4.3 Embedded Message Passing Schedules

Given its local factor-graph and messages received from
its neighborhood, a peer can locally update its belief on
the mappings by reformulating the sum-product algorithm
(Section 3.1) as follows:

local message from factorfaj to mapping variable mi:
µfaj→mi

(mi) =∑
∼{mi}

(
faj(X)

∏
pk∈n(faj)

µpk→faj
(pk)∏

ml∈n(faj)\{mi} µml→faj
(ml)

)
local message from mappingmi to factor faj ∈ n(mi):

µmi→faj (mi) =
∏

fa∈n(mi)\{faj} µfa→mi(mi)

remote message for factorfak from peer p0 to peer
pj ∈ n(fak):

µp0→fak
(mi) =

∏
fa∈n(mi)\{fak} µfa→mi

(mi)

Posterior correctness of local mappingmi:

P (mi|{F}) = α
(∏

fa∈n(mi)
µfa→mi

(mi))
)

wherealpha is a normalizing factor ensuring that the prob-
abilities of all events sum to one (i.e., making sure that
P (mi = correct) + P (mi = incorrect) = 1) .

In cycle-free PDMS factor-graphs (i.e., trees), exact mes-
sages can be propagated from mapping variables to the rest
of the network in at most two iterations (due to the specific
topology of our factor-graph). Thus, all inference results
will be exact in two iterations.

For the more general case of PDMS factor-graph with
cycles, we are stuck at the beginning of computation since
every peer has to wait for messages from other peers. We
resolve this problem in a standard manner by considering
that all peers virtually received a unit message (i.e., a mes-
sage representing the unit function) from all other peers ap-
pearing in their local factor-graphs prior to starting the algo-
rithm. From there on, peers derive probabilities on the cor-
rectness of their local mappings and send messages to other
peers as described above. We show in Section 5 that for
PDMS factor-graphs with cycles, the algorithm converges
to very good approximations of the exact values obtained
by a standard global inference process. Peers can decide
to send messages according to different schedules depend-
ing on the PDMS; we detail below two possible schedules
with quite different performance in terms of communication
overhead and convergence speed.

4.3.1 Periodic Message Passing Schedule

In highly dynamic environments where databases, schemas
and schema mappings are constantly evolving, appearing or
disappearing, peers might wish to act proactively in order to
get results on the correctness of their mappings in a timely
fashion. In a Periodic Message Passing Schedule, peers
send remote messages to all peerspi appearing in their local
factor-graph every time periodτ . This corresponds to a new
round of the iterative sum-product algorithm. This periodic
schedule induces some communication overhead (a maxi-
mum of

∑
ci

(lci − 1) messages per peer everyτ , where
ci represent all mapping cycles passing through the peer
and lci

the length of the cycles) but guarantees our meth-
ods to converge within a given time-frame dependent on the
topology of the network (see also Section 5). Note thatτ
should be chosen according to the network churn in order
to guarantee convergence in highly dynamic networks. Its
exact value may range from a couple of seconds to weeks
or months depending on the exact situation.

4.3.2 Lazy Message Passing Schedule

A very nice property of the iterative message passing al-
gorithm is that it is tolerant to delayed or lost messages.
Hence, we do not actually require any kind of synchroniza-
tion for the message passing schedule; Peers can decide to
send remote message whenever they want without endan-
gering the global convergence of the algorithm (the algo-
rithm will still converge to the same point, simply slower,
see next section). We may thus take advantage of this prop-
erty to totally eliminate any communication overhead (i.e.,
number of additional messages sent) induced by our method
by piggybacking on query messages. The idea is as follows:
every time a query message is sent from one peer to another
through a mapping linkmi, we append to this query mes-
sage all messagesµ(mi) pertaining to the mapping being
used. In this case, the convergence speed or our algorithm
is proportional to the query load of the system. This may
be the ideal schedule for query-intensive or relatively static
systems.

4.4 Prior Belief Updates

Our computations always take into account the mapping
factors (top layer of a PDMS factor-graph). These factors
represent any local, prior knowledge the peers might pos-
sess on their mappings. For example, if the mappings were
carefully checked and validated by a domain expert, the
peer might want to set all prior probabilities on the correct-
ness of the mappings to one to ensure that these mappings
will always be treated as correct.

In most cases, however, the peers only have a vague idea
(e.g., presupposed quality of the alignment technique used

to create the mappings) on the priors related to their sur-
rounding mappings initially. As the network of mappings
evolves and time passes, however, the peers start to accu-
mulate various posterior probabilities on the correctness of
their mappings thanks to the iterative message passing tech-
niques described above. Actually, the peers get new poste-
rior probabilities on the correctness of the mappings as long
as the network of mappings continues to evolve (e.g., as
mappings get created, modified or deleted). Thus, peers can
decide to modify their prior belief by taking into account
the evidences accumulated in order to get more accurate re-
sults in the future. This corresponds to learning parameters
in a probabilistic graphical model when some of the obser-
vations are missing. Several techniques might be applied
to this type of problem (e.g., Monte Carlo methods, Gaus-
sian approximations). We propose in the following a simple
Expectation-Maximization [8] process which looks as fol-
lows:

- Initialize the prior probability on the correctness of
the mapping taking into account any prior information
on the mapping. If no information is available for a
given mapping, start withP (m = correct) = P (m =
incorrect) = 0.5 (maximum entropy principle).

- Gather posterior evidencesPk(m = correct|{Fk}) on
the correctness of the mapping thanks to cycle analy-
ses and message passing techniques. Treat these evi-
dences as new observations for every change of the lo-
cal factor-graphs (i.e., new feedback information, new,
modified or lost cycle or parallel path)

- After each change of the local factor-graph, update the
prior belief on the correctness of the mappingm given
previous evidencesPk(m = correct|{Fk}) in the fol-
lowing way:

P (m = correct) =
k∑

i=1

Pi(m = correct|{Fi})k−1

Hence, we can make the prior values slowly converge to
a local maximum likelihood to reflect the fact that more and
more evidences are being gathered about the mappings as
the mapping network evolves.

4.5 Introductory Example Revisited

Let us now come back to our introductory example and
describe in more detail what happened. Imagine that the
network of databases was just created and that the peers
have no prior information on their mappings. By sending
probe queries withTTL ≥ 4 through its two mapping links,
p2 detects two cycles and one parallel path, and gets all re-
lated feedback information. For the attributeCreator:

f1+
� : m12 → m23 → m34 → m41

f2−
� : m12 → m24 → m41

f3−
⇒ : m24‖m23 → m34

p2 constructs a local factor-graph based on this infor-
mation and starts sending remote messages and calculat-
ing posterior probabilities on its mappings according to the
schedule in place in the PDMS.∆, the probability that two
or more mapping errors get compensated along a cycle, is
here approximated to 1/10; if we consider that the schema of
p2 contains eleven attributes, and that mapping errors map
to a randomly chosen attribute (but obviously not the correct
one), the probability of the last mapping error compensating
any previous error is 1/10, thus explaining our choice. Af-
ter a handful of iterations, the posterior probabilities on the
correctness ofp2’s mappings towardsp3 andp4 converge
to 0.59 and0.3 respectively. The second mapping has here
been successfully detected as faulty for the given attribute,
and will thus not be used to forward queryq1 (θi = 0.5).
The query will however reach all other databases by being
correctly forwarded throughp2 → p3, p3 → p4 and finally
p4 → p1. As the PDMS network evolves,p2 will update
its prior probabilities on the mapping towardp3 andp4 to
0.55 and0.4 respectively to reflect the knowledge gathered
on the mappings so far.

5 Performance Evaluation

We present below series of results pertaining to the per-
formance of our approach. We proceed in two phases: We
first report on sets of simulations to highlight some of the
specificities of our approach before presenting results ob-
tained on a set of real-world schemas.

5.1 Performance Analyses

5.1.1 Convergence

As previously mentioned, our approach is exact for cycle-
free PDMS factor-graphs. For PDMS factor-graphs with
cycles, our embedded message passing scheme converges
to approximate results in ten iterations usually. Figure 7 be-
low illustrates a typical convergence process for the exam-
ple PDMS factor-graph of Figure 4 for schemas of about ten
attributes (i.e.,∆ set to 0.1), prior beliefs at0.7 and cycle
feedback as follows:f+

1 , f−2 , f−3 .

Note that the accuracy does not suffer from longer cy-
cles: Figure 9 shows the relative error between our itera-
tive and decentralized scheme and a global inference pro-
cess. The relative error is computed for our example graph
(∆ = 0.1, priors at0.8, f+

1 , f−2 , f−3 , 10 iterations), and

Figure 7. Convergence of iterative message
passing algorithm (example graph, priors at
0.7)

by successively adding a new peer as depicted in Figure 8.
The relative error is bigger for very short cycles but never
reaches 6% (these results are quite typical of iterative mes-
sage passing schemes).

p1

p2

p3

p4

mi2
m23

m34
m41

m24

mi2 m23 m34 m41 m24

f1 f2 f3

pi
m1i

m1i

Figure 8. Adding nodes iteratively to increase
the cycle length

5.1.2 Cycle Length Impact

As cycles in the PDMS get bigger, so do the number of
variables appearing in the feedback factors. Thus, shorter
cycles provide more precise evidences on the correctness
(or incorrectness) of a mapping than longer cycles due to
the inherent uncertainty pertaining to each mapping vari-
able. Figure 10 demonstrates this claim for simple cyclic
PDMS networks of two to twenty nodes (priors at0.5, pos-
itive feedback, 2 iterations [cycle-free factor-graph]). The
results are quite naturally influenced by the value of∆, but
in the end, cycles greater than ten mappings always end up
by providing very little evidence on the correctness of the

Figure 9. Relative error of iterative message
passing algorithm for various cycle lengths
(10 iterations, example graph, priors at 0.8)

mappings, even for bigger schemas for which compensat-
ing errors are infrequent (e.g., Figure 10 for∆=0.01).

Scale-free networks are known to have a number of large
loops growing exponentially with the size of the loops con-
sidered [7]. Generally speaking, this would imply exponen-
tially growing PDMS factor-graphs as well for large-scale
networks. However, as we have just seen, the impact of cy-
cles on the posterior probabilities diminishes rapidly with
the size of the cycles.

Peers can locally make a sensible decision on the tradeoff
between the maximal length of the cycles they consider and
the precision of the results they can get as follows: They
start by considering the direct vicinity of their mappings
only and send probes with low TTL values. As they gradu-
ally increase the TTL of their probes to detect longer cycles,
they monitor the impact of the new cycles they discover on
the posteriors of their mappings. Peers can stop this expan-
sion process as soon as changes induced by the new cycles
get insignificant. At this stage, peers are guaranteed to have
discovered the most pertinent cycles (or parallel paths) for
their mappings anyway. In practice, the threshold on the
cycle length might vary, but it always remains low (i.e., five
to ten) for dense graphs, even in very large-scale environ-
ments.

5.1.3 Fault-Tolerance

As mentioned earlier for the lazy message passing sched-
ule, our scheme does not requires peers to be synchronized
to send their messages. To simulate this property, we ran-
domly discard messages during the iterative message pass-
ing schedule and observe the resulting effects. Figure 11
shows the results if we consider, for every message to be

Figure 10. Impact of the cycle length on the
posterior probability, here for a simple posi-
tive cycle graph of a varying number of links
for three values of ∆

sent, a probabilityP (send) to send it only (example net-
work, ∆ = 0.1, priors at0.8, f+

1 , f−2 , f−3). We observe that
our method always converges, even for cases where 90% of
the messages get discarded, and that the number of itera-
tions required in order for our algorithm to converge grows
linearly with the rate of discarded messages.

5.2 Applying Message Passing on Real-World
Schemas

We have developed a tool to test our methods on real-
world schemas and mappings. This tool can import OWL
schemas (serialized in RDF/XML) and simple RDF map-
pings (following the format introduced in [18]). It can also
create new mappings using the simple alignment techniques
described in [10]. Once schemas and alignments have been
defined, the tool creates peers, automatically detects cycles,
transforms the setting into a PDMS factor-graph and starts
sending messages in order to get posterior quality values on
the mappings as described above.

We report on preliminary experiments based on a set of
standard schemas from the EON Ontology Alignment Con-
test (http://co4.inrialpes.fr/align/Contest/). The setting is as
follows: we first import various ontologies related to biblio-
graphic data: the so-called reference ontology (101), a sim-
ilar ontology but translated in French (221), the Bibtex on-
tology from M.I.T., the Bibtex ontology from UMBC, and
two other bibliographic ontologies from INRIA and Karl-
sruhe. Each of these ontologies is composed of about thirty
concepts (attributes). We then start our automatic alignment
techniques to create mappings between this set of schemas.
We launch the iterative message passing algorithm on the

Figure 11. Robustness against faulty links
(lost messages)

resulting PDMS factor-graph and try to detect erroneous
mappings automatically. Finally, we ask a human expert
to manually judge on the quality of the results.

Figure 12 shows the precision of our approach for 396
generated mappings w.r.t. the thresholdθ used to determine
whether a mapping is correct or not (priors at 0.5,∆=0.1).
Here, the precision is defined as the number of mappings
correctly detected as being erroneous over the total number
of mappings detected as erroneous. The results are partic-
ularly appealing for lowθ values, where our methods pre-
dicts erroneous mappings with 80% or more accuracy. As
θ grows, however, more and more mixed or uncertain re-
sults are being considered, thus quite naturally lowering the
precision. We observe a phase-transition atθ = 0.6. At
this point, 50% of the 86 erroneous mappings have been
automatically discovered by the algorithm and increasingθ
beyond this will not lead to significantly better results. Still,
even for high threshold values, our method is significantly
better than random guesses.

These preliminary results are quite encouraging, consid-
ering the facts that no prior information was provided on
the mappings, and that only one complete round of the al-
gorithm could be completed on this static network (i.e., no
update on prior beliefs).

6 Related Work

P2P data management techniques recently drew consid-
erable attention (see [1] or [4] for an introduction). In [6],
Bernstein et al. formulated requirements for P2P databases
in terms of local mappings and semi-automatic solutions for
data integration. Edutella [16], based on a super-peer topol-
ogy, was one of the early systems deployed. Piazza [21, 22]
is a PDMS system which provides efficient query reformu-

Figure 12. Precision results of the Message
Passing approach with a varying threshold θ

lations algorithms for relational and semi-structured data
models. The Hyperion [5] project relies on rules to propa-
gate data in a PDMS network according to mapping tables.
PeerDB [17] examines the problem of sharing relational
data in P2P networks from an information retrieval perspec-
tive. None of these works directly addresses the problem of
finding or handling faulty mapping links.

We can draw a parallel between our method and global
schema alignment methods (see [11] for an overview). Sim-
ilarity Flooding [14] is a graph matching technique based
on a fixpoint-computation. The Glue system [9] learns
classifiers for classes from instances in order to evaluate
the joint probability distributions of the instances. Corpus-
based Schema Matching [13] relies on statistics about el-
ements and their relationships to infer constraints on the
schema mappings. None of these approaches takes advan-
tages of inconsistencies detected in the mapping network
nor do they use inference probabilistic networks.

Our approach is quite naturally based on some of our
previous ideas [2, 3] on analyzing the network of mappings.
Our previous work, however, was not concerned with paral-
lel paths, prior beliefs, efficient message passing schemes,
belief propagation or probabilistic networks; it was com-
putationally much more expensive and, above all, ignored
all interdependencies among the mappings and cycles, thus
resulting in comparatively poorer results. As an example,
applying our former heuristics to the introductory example
graph would result in disqualifying all three mappings on
the left (while only one is erroneous) while, by consider-
ing all correlations between the mappings and cycles, our
current approach yields to much better results (correct in-
ference for all five mappings).

7 Conclusions and Future Work

As distributed database systems move from static, con-
trolled environments to highly dynamic, decentralized set-
tings, we are convinced that correctly handling uncertainty
and erroneous information will become a key challenge for
improving the overall quality of query answering schemes.
The vast majority of approaches are today centered around
local and deductive methods which seem quite inappropri-
ate to maximize the performance of systems that operate
without any form of central coordination. Contrary to these
approaches, we consider an abductive, non-monotonic rea-
soning scheme which reacts to observations or inconsisten-
cies by globally propagating belief in a decentralized way.
Our approach is computationally efficient as it is solely
based on sum-products operations. Also, we have proven
its usefulness by evaluating its performance on a set of real-
world schemas.

We are currently testing our heuristics on larger
automatically-generated PDMS settings. We are particu-
larly interested in understanding the relation between ex-
act inference and our approximate results in those envi-
ronments. We are also analyzing the computational over-
head and scalability properties of other inference techniques
(e.g., generalized belief propagation [23], or techniques
constructing a junction tree in a distributed way [19]). Fi-
nally, as global interoperability is always challenged by the
dynamics of the mapping network, we plan to analyze the
tradeoff between the efforts required to maintain the proba-
bilistic network in a coherent state and the potential gain in
terms of relevance of results.

References

[1] K. Aberer and P. Cudré-Mauroux. Semantic Overlay Net-
works. In International Conference on Very Large Data
Bases (VLDB), 2004.

[2] K. Aberer, P. Cudŕe-Mauroux, and M. Hauswirth. Start mak-
ing sense: The Chatty Web approach for global semantic
agreements.Journal of Web Semantics, 1(1), 2003.

[3] K. Aberer, P. Cudŕe-Mauroux, and M. Hauswirth. The
Chatty Web: Emergent Semantics Through Gossiping. In
International World Wide Web Conference (WWW), 2003.

[4] K. Aberer (ed.). Special issue on peer to peer data manage-
ment.ACM SIGMOD Record, 32(3), 2003.

[5] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J.
Miller, and J. Mylopoulos. The Hyperion Project: From
Data Integration to Data Coordination.SIGMOD Record,
32(3), 2003.

[6] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. My-
lopoulos, L. Serafini, and I. Zaihrayeu. Data management
for peer-to-peer computing: A vision. InWorkshop on the
Web and Databases (WebDB), 2002.

[7] G. Bianconi and M. Marsili. Loops of any size and hamilton
cycles in random scale-free networks. Incond-mat/0502552
v2, 2005.

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm.Journal of the
Royal Statistical Society, 39, 1977.

[9] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learn-
ing to map between ontologies on the semantic web. InIn-
ternational World Wide Web Conference (WWW), 2002.

[10] J. Euzenat. An api for ontology alignment. InInternational
Semantic Web Conference (ISWC), 2004.

[11] J. Euzenat et al. State of the art on current align-
ment techniques. InKnowledgeWeb Deliverable 2.2.3,
http://knowledgeweb.semanticweb.org.

[12] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm.IEEE Transactions on In-
formation Theory, 47(2), 2001.

[13] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy.
Corpus-based schema matching. InInternational Confer-
ence on Data Engineering (ICDE), 2005.

[14] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching. InInternational Confer-
ence on Data Engineering (ICDE), 2002.

[15] K. M. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief
propagation for approximate inference: An empirical study.
In Uncertainty in Artificial Intelligence (UAI), 1999.

[16] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palḿer, and T. Risch. EDUTELLA: a P2P
networking infrastructure based on RDF. InInternational
World Wide Web Conference (WWW), 2002.

[17] B. C. Ooi, Y. Shu, and K.-L. Tan. Relational Data Sharing
in Peer-based Data Management Systems.ACM SIGMOD
Record, 32(3), 2003.

[18] P. Bouquet et al. Specification of a common framework
for characterizing alignment. InKnowledgeWeb Deliverable
2.2.1, http://knowledgeweb.semanticweb.org.

[19] M. Paskin and C. Guestrin. A robust architecture for dis-
tributed inference in sensor networks. InIntel Research
Technical Report IRB-TR-03-039, 2004.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems :
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[21] I. Tatarinov and A. Halevy. Efficient Query Reformulation in
Peer-Data Management Systems. InSIGMOD Conference,
2004.

[22] I. Tatarinov, Z. Ives, J. M. amd A. Halevy, D. Suciu,
N. Dalvi, X. Dong, Y. Kadiyaska, G. Miklau, and P. Mork.
The Piazza Peer Data Management Project.ACM SIGMOD
Record, 32(3), 2003.

[23] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief
propagation. Advances in Neural Information Processing
Systems (NIPS), 13, 2000.

