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Abstract. We consider the problem of analytically evaluating seman-
tic interoperability in large-scale networks of schemas interconnected
through pairwise schema mappings. Our heuristics are based on a graph-
theoretic framework capturing important statistical properties of the
graphs. We validate our heuristics on a real collection of interconnected
bioinformatic databases registered with the Sequence Retrieval System
(SRS). Furthermore, we derive and provide experimental evaluations of
query propagation on weighted semantic networks, where weights model
the quality of the various schema mappings in the network.

1 Introduction

Even if Semantic Web technologies have recently gained momentum, their de-
ployment on the wide-scale Internet is still in its infancy. Only a very small
portion of websites have so far been enriched with machine-processable data en-
coded in RDF or OWL. Thus, the difficulty to analyze semantic networks due to
the very lack of realistic data one can gather about them. In [5], we introduced
a graph-theoretic model to analyze interoperability of semantic networks and
tested our heuristics on large-scale, random topologies. In this paper, we extend
these heuristics and test them on a real semantic network, namely on a collection
of schemas registered with the Sequence Retrieval System (SRS).

We start below by giving a short introduction to SRS. We then present our
approach, which boils down to an analysis of the component sizes in a graph
of schemas interconnected through schema mappings. We report on the statis-
tical properties of the SRS network we consider and on the performance of our
heuristics applied on this network. Finally, we report on the performance of our
approach on larger and weighted networks mimicking the statistical properties
of the SRS network.
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2 The Sequence Retrieval System (SRS)

SRS, short for “Sequence Retrieval System”, is a commercial information index-
ing and retrieval system designed for bioinformatic libraries such as the EMBL
nucleotide sequence databank, the SwissProt protein sequence databank or the
Prosite library of protein subsequence consensus patterns. It is a distributed,
interoperable data management system which was initially developed at the
European Molecular Biology Laboratory in Heidelberg, and which allows the
querying of one or several databases simultaneously, regardless of their format
or schemas.

Administrators wishing to register new databases with SRS first have to
define the schema they have adopted to store data, using a custom language
called Icarus. Once their schemas have been defined, administrators can import
schema instances (i.e., text files) whose data will be correctly parsed, indexed and
processed thanks to the corresponding schema definitions. Additionally, admin-
istrators can manually define relationships between their database schema and
similar schemas. In SRS, these relationships are represented as links relating one
entry of a database schema to one entry of another schema. Thanks to this struc-
ture of links between databases, users can propagate queries they pose locally
against one specific schema to other schemas available in the system (for tech-
nical details, we refer the interested reader to http://www.lionbioscience.com/ )

2.1 Graph analysis of an SRS repository

Conceptually, the model described above is very close to what one could expect
from a subgraph of the semantic web itself, i.e., a collection of related schemas
(or ontologies) linked one to another through pairwise mappings. The graph
which can be extracted from a SRS repository has two main advantages over
those which can be built from current RDFS / OWL repositories: i) it is based
on a real-world collection of schemas which are being used on a daily basis by
numerous independent parties and ii) it is of a reasonable size (several hundreds
of semantically related complex schemas). Thus, after having been rather unsuc-
cessful at finding reasonable semantic networks from the Semantic Web itself,
we decided to build a specialized crawler to analyze the semantic graph of an
SRS repository and to test our heuristics on the resulting network.

We chose to analyze the semantic network from the European Bioinformatics
Institute SRS repository, publicly available at http://srs.ebi.ac.uk/. We built a
custom crawler which traverses the entire network of databases and extracts
schema mapping links stored in the schema definition files. The discussion below
is based on the state of the SRS repository as of May 2005.

The graph resulting from our crawling process is an undirected graph of
388 nodes (database schemas) and 518 edges (pairwise schema mappings). We
chose to represent links as undirected edges since they are used in both direc-
tions by SRS (they basically represent cross-references between two entries of
two database schemas). We identified all connected components in the graph
(two nodes are in the same connected component if there is a path from one to



the other following edges). The analysis revealed one giant connected compo-
nent (i.e., a relatively large set of interconnected schemas) of 187 nodes, which
represent roughly half of the nodes and 498 edges. Besides the giant connected
component, the graph also has two smaller components, each consisting of two
vertices. The rest of the nodes are isolated, representing mostly result databases
or databases for which no link to other databases was defined.

The average degree of the nodes is 2.2 for the whole graph and 4.6 for the
giant component. Real networks differ from random graphs in that often their
degree distribution follows a power law, or has a power law tail, while random
graphs have a Poisson distribution of degrees [2]. Unsurprisingly, our semantic
network is no exception as can be seen in Figure 1 below, which depicts an
accurate approximation of the degree distribution of our network by a power-
law distribution y(x) = αx−γ with α = 0.21 and γ = 1.51.
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Figure 1: An approximation of the degree distribution of our
semantic network by a power-law distribution y(x) = αx−γ with

α = 0.21 and γ = 1.51

Another interesting property which we explored was the tendency of the
schemas to form clusters, quantified by the average clustering coefficient. Intu-
itively, the clustering coefficient of a vertex measures the degree to which its
neighbors are neighbors of each other. More precisely, the clustering coefficient
indicates the ratio of existing edges connecting a node’s neighbors to each other
to the maximum possible number of such edges. The network we considered has
a high average clustering coefficient of 0.32 for the whole graph and of 0.54 for
the giant component. The diameter (maximum shortest paths between any two
vertices) of the giant connected component is 9. These data indicate that our
network can be characterized as scale-free (power-law distribution of degrees) or
small-world (small diameter, high clustering coefficient).



3 Analyzing semantic interoperability in the large

In [5], we introduced a graph-theoretic framework for analyzing semantic in-
teroperability in large-scale networks. As described above, we model database
schemas (or ontologies) as nodes, interconnected by edges (schema mappings).
Schema mappings are used to iteratively propagate queries posed against a local
schema to other related schemas (see [1] for how this can be implemented in prac-
tice). Note that links can be directed or undirected, weighted or non-weighted
depending on the schema mappings being used.

In such a network, the density of mappings is important in order to propagate
a local query from one database (schema) to the other databases. A query can
only be propagated to all databases if the semantic network is connected, that is if
there exists a path from one schema to any other schema following schema map-
ping links. If some schemas are isolated, queries cannot be propagated to/from
the rest of the graph, thus making it impossible to have a semantically interop-
erable network of databases. This observation motivated us to take advantage of
percolation theory to determine when a semantic network could be connected or
not. Our framework for analyzing semantic interoperability takes advantage of
generatingfunctionologic [7] functions for the degree distribution of the semantic
graph:

G0(x) =
∞
∑

k=0

pkxk (1)

where pk represents the probability that a randomly chosen vertex has degree k.
We showed (by extending results from [6]) that a network cannot be semantically
interoperable in the large unless the connectivity indicator ci =

∑

k k(k−2−cc)pk

is greater than zero, with cc representing the clustering coefficient. Also, we
provided heuristics for estimating the relative size S of the biggest semantically
interoperable cluster of schemas by solving

S = 1 − G0(u), (2)

where u is the smallest non-negative real solution of

u = G1(u) (3)

and G1(u), the distribution of outgoing edges from first to second-order neigh-
bors, is

G1(x) =
1

xcc

G′

0(x)

G′

0
(1)

=
1

z1

1

xcc
G′

0(x). (4)

3.1 Applying our heuristics to the SRS graph

We applied our heuristics to the SRS graph we obtained from the crawling
process. The results are as follows: we get a connectivity indicator ci of 25.4,



indicating that the semantic network is clearly in a super-critical state and that
a giant component interlinking most of the databases has appeared. The size
of this giant component as estimated by our heuristics (see above) is of 0.47,
meaning that 47% of the schemas are part of the giant connected component.
This is surprisingly close to the real value of 0.48 as observed in the graph.

3.2 Generating a Graph with a given Power-Law Degree
Distribution

Going slightly further, we want to analyze the dynamics of semantic graphs
with varying numbers of edges. Our aim is to generate graphs with the same
statistical properties as the SRS graphs, that is, graphs following a power-law
degree distribution:

P (k) = αk−γ (5)

but with a varying number of edges. We take from [3] a graph-building algorithm
yielding a power-law degree distribution with a given exponent γ. It goes as
following: (1) create a (large) number N of vertices. (2) to each vertex i, assign
an “importance” xi, which is a real number taken from a distribution ρ(x). (3)
for each pair of vertices, draw a link with probability f(xi, xj), which is function
of the importance of both vertices.

Now if f(xi, xj) = (xixj/x2
M ) (where xM is the largest value of x in the

graph), we know from [3] that the degree distribution of a graph will be

P (k) =
x2

M

N〈x〉
ρ

(

x2
M

N〈x〉
k

)

(6)

where 〈x〉 is the expected value of the importance x, such that P (k) follows a
power-law if ρ(x) does so.

We then choose a power-law distribution

ρ(x) =
γ − 1

(m1−γ − Q1−γ)
x−γ (7)

defined over the interval [m, Q]. However, we still have to find values for m and Q
such that the scale of the resulting degree distribution equals α. Using equation
7, we find the expected importance value as

〈x〉 =
(γ − 1)(m2Qγ − mγQ2)

(γ − 2)(mQγ − mγQ)
. (8)

Replacing ρ(x) in equation 6, the degree distribution of the resulting graph
becomes

P (k) =
x2

M

N〈x〉

γ − 1

(m1−γ − Q1−γ)

(

x2
M

N〈x〉
k

)−γ

(9)

such that, equating with equation 5, we get



α =
x2

M

N〈x〉

γ − 1

(m1−γ − Q1−γ)

(

x2
M

N〈x〉

)−γ

. (10)

We can then arbitrarily choose m > 0 and find Q by numerical approxima-
tion, since the right-hand side of equation 10 is defined and continue for values
of Q > m.

Figures 2 and 3 show the results of our heuristics on networks of respectively
388 (i.e., mimicking the original SRS graph) and 3880 edges (i.e., 10 times bigger
than the original SRS graph but with the same statistical properties) constructed
in the way presented above with a varying number of edges. The curves are
averaged over 50 consecutive runs. As for the original SRS network, we see that
we can accurately predict the size of the giant semantic component, even for
very dense graphs.
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Figure 2: Estimating the giant component size of a scale-free

semantic network of 388 nodes with a varying number of edges
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Figure 3: Estimating the giant component size of a scale-free

semantic network of 3880 nodes with a varying number of edges



4 Connectivity Indicator and Giant Component Size in
Weighted Graphs

So far, we only analyzed the presence and size of a giant connected component
in order to determine which portion of a semantic network could potentially be
semantically interoperable. In large-scale decentralized networks, however, one
should not only look into the giant semantic component itself, but also analyze
the quality of the mappings used to propagate queries from one schema to the
other (see [1] for a discussion on that topic). Indeed, in any large, decentralized
network, it is very unlikely that all schema mappings could correctly map queries
from one schema to the other, because of the lack of expressivity of the mapping
languages, and of the fact that some (most?) of the mappings might be generated
automatically.

Thus, as considered by more and more semantic query routing algorithms,
we introduce weights for the schema mappings to capture the quality of a given
mapping. Weights range from zero (indicating a really poor mapping unable to
semantically keep any information while translating the query) to one (for per-
fect mappings, keeping the semantics of the query intact from one schema to the
other). We then iteratively forward a query posed against a specific schema to
other schemas through schema mappings if and only if a given mapping has a
weight (i.e., quality) greater than a predefined threshold τ . τ = 0 corresponds
to sending the query through any schema mapping, irrespective of its quality.
On the contrary, when we set τ to one, the query gets only propagated to se-
mantically perfect mappings, while even slightly faulty mappings are ignored.
Previous works in statistical physics and graph theory have looked into percola-
tion for weighted graphs. We present hereafter an extension of our heuristics for
weighted semantic networks inspired by [4].

4.1 Connectivity Indicator

As before, we consider a generating function for the degree distribution

G0(x) =
∞
∑

k=0

pkxk (11)

where pk is the probability that a randomly chosen vertex has degree k in the
network. We then define tjk as the probability that an edge has a weight above
τ given that it binds vertices of degree j and k. Thus, wk =

∑

∞

j=0
tjk is the

probability that an edge transmits, given that it is attached to a vertex of degree
k. The generating function for the probability that a vertex we arrive at by
following a randomly chosen edge is of degree k and transmits is

G1(x) =

∑

∞

k=0
wkkxk−1

xcc
∑

∞

k=0
kpk

(12)

where cc is the clustering coefficient. Now, from [4], we know that the generating
function for the probability that one end of a randomly chosen edge on the graph



leads to a percolation cluster of a given number of vertices is

H1(x) = 1 − G1(1) + xG1 [H1(x)] . (13)

Similarly, the generating function for the probability that a randomly chosen
vertex belongs to a percolation cluster of a given number of vertices is

H0(x) = 1 − G0 + xG0 [H1(x)] (14)

such that the mean component size corresponding to a randomly chosen vertex
is

〈s〉 = H ′

0(1) = G0(1) +
G′

0(1)G1(1)

1 − G′

1
(1)

(15)

which diverges for G′

1(1) ≥ 1. However,

G′

1(1) =

∑

∞

k=0
wkpkk(k − 1 − cc)
∑

∞

k=0
kpk

(16)

such that a giant connected component appears if

ci =
∞
∑

k=0

kpk [wk(k − 1 − cc) − 1] ≥ 0 (17)

4.2 Giant Component Size

As seen above, H0(x) represents the distribution for the cluster size which a
randomly chosen vertex belongs to, excluding the giant component. Thus, ac-
cording to [4], H0(1) is equal to the fraction of the nodes which are not in the
giant component. The fraction of the nodes which are in the giant component is
hence S = 1 − H0(1). Using equation 14 we can write

S = 1 − H0(1) = G0(1) − G0 [H1(1)] . (18)

with H1(1) = 1 − G1(1) + xG1 [H1(1)]. Thus H1(1) = u where u is the smallest
non-negative solution of

u = 1 − G1(1) + G1(u). (19)

The relative size of the giant component reached by the query in a weighted
semantic graph follows as

S = G0(1) − G0(u). (20)

Figures 4 and 5 show the results of our heuristics on weighted networks
of respectively 388 and 3880 nodes, for a varying number of edges and various
values of τ . The curves are averaged over 50 consecutive runs, and the weights of



individual schema mappings are randomly generated using a uniform distribution
ranging from zero to one. We see that our heuristics can quite adequately predict
the relative size of the graph to which a given query will be forwarded. Also,
as for the unweighted analysis, we observe similar behaviors for the two graphs;
This is rather unsurprising as we are dealing with scale-free networks whose
properties are basically independent of their size.
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Figure 4: Fraction of the graph a local query will be forwarded to,

for a weighted network of 388 nodes with a varying number of edges

and various forwarding thresholds τ
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5 Conclusions

In this paper, we tested graph-theoretic heuristics to evaluate semantic inter-
operability on a real semantic network. The results confirm the validity of our
heuristics beyond our initial hopes as we could predict quite accurately the size
of the giant semantic component in the network. Also, we extended our analysis
to apply our heuristics on larger networks enjoying similar statistical properties
and on weighted semantic networks. It was for us quite important to test our
heuristics using real-world data, as semantic network analyses mostly consider
artificial networks today, due to the current lack of semantically enriched web-
sites or deployed semantic infrastructures. In the future, we plan to extend our
analyses to take into account the dynamicity (churn) of the network of schema
mappings, and to consider more accurate query forwarding schemes based on
transitive closures of mapping operations.
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