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Abstract

This paper describes a novel approach for obtaining semanéroperability in
a bottom-up, semi-automatic manner without relying on existing, global seman-
tic models. We assume that large amounts of data exist thvatteen organized and
annotated according to local schemas. Seeing semanticfoas af agreement, our
approach enables the participating data sources to inctettyedevelop global agree-
ments in an evolutionary and completely decentralized ggedhat solely relies on
pair-wise, local interactions.
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1 Introduction

The recent success of peer-to-peer (P2P) systems andtihgvies to create the Semantic
Web have emphasized again a key problem in information mystehe lack of seman-
tic interoperability. Semantic interoperability is a cialeelement for making distributed
information systems usable. It is prerequisite for streedy distributed search and data
exchange and provides the foundations for higher level \wetvices and processing.

For example, the technologies that are currently in plac®&P file sharing systems
either impose a simple semantic structure a-priori (e.gpster, Kazaa) and leave the bur-
den of semantic annotation to the user, or do not addressshe bf semantics at all (e.g.,
the current web, Gnutella, Freenet) but simply support aasgically unstructured data
representation and leave the burden of “making sense” tekilis of the user, e.g., by pro-
viding pseudo-structured file names suctEagerprise-2x03-Mine-Fielthat encapsulate
very simple semantics.

Also, classical attempts to make information resourcesasdically interoperable, in
particular in the domain of database integration, do noesa@ll to global information
systems, such as P2P systems. Despite a large number ohappsand concepts, such as
federated databases, the mediator concept [32], or ontdlaged information integration
approaches [12, 24], practically engineered solutionsstilefrequently hard-coded and
require substantial support from human experts. A typigahgple of such systems are
domain-specific portals such as CiteSeer (www.researekindm, publication data), SRS
(srs.ebi.ac.uk, biology) or streetprices.com (e-commierchey integrate data sources on
the Internet and store them in a central warehouse. The slamniverted to a common
schema which usually is of simple to medium complexity. Tdpgroach adopts a sim-
ple form of wrapper-mediator architecture and typicallguiees substantial development
efforts for the automatic or semi-automatic generation appings from the data sources
into the global schema.

In the context of the Semantic Web, a major effort is devotethé provision of ma-
chine processable semantics expressed in meta-modelsasiRBF, OIL [7], OWL [5],
DAML+OIL [11] and TRIPLE [28] and based on shared ontologi®sll, these approaches
rely on common ontologies, to which existing informationszes can be related by proper
annotation. This is an extremely important developmeritjtsilsuccess will heavily rely
on the wide standardization and adoption of common ontekgr schemas.

The advent of P2P systems, however, introduces a diffeient @n the problem of
semantic interoperability by taking a social perspectivich relies on self-organization
heavily. We argue that we can see the emerging P2P paradigmaportunity to improve
semantic interoperability rather than as a threat, in paldr in revealing new possibilities



on how semantic agreements can be achieved. This motivatemlook at the problem
from a different perspective and has inspired the approsedepted in this paper.

In the following, we abstract from the underlying infrastiure such as federated data-
bases, web sites or P2P systems and regard these systeraplasafrinterconnected data
sources. For simplicity, but without constraining the gahapplicability of the presented
concepts, we denote these data sourcgseass Each peer offers data which are orga-
nized according to some schema expressed in a data modgtetatonal, XML, or RDF.
Among the peers, communication is supported via suitald®pols and architectures, for
example, HTTP, SOAP or JXTA.

The first issue to observe is that semantic interoperabditglways based on some
form of agreement. Ontology-oriented approaches in theaB&mWeb represent this
agreemenexplicitly through a shared ontology. In our approach, no explicitesgnta-
tion of a globally shared agreement will be required, bueagrents argnplicit and result
from the way our (social) mechanism works.

We impose a modest requirement on establishing agreemgrassiming the exis-
tence of local agreements provided as partial translatiebseen different schemas, i.e.,
agreements established in a P2P manner. These agreenmlehtsreito be established in a
manual or semiautomatic way since in the near future we dexject to be able to fully
automate the process of establishing semantic transtaéeen locally. However, a rich
set of tools is getting available to support this [18, 23,. ZH§tablishing local agreements
is a less challenging task than establishing global agratty means of global schemas
or shared ontologies. Once such agreements exist, we isktabldemand relationships
among schemas of different information systems that afecmuft to satisfy information
processing needs such as distributed search.

We briefly highlight two of the application scenarios thabheimced us (besides the ob-
vious applicability for information exchange on the wekgttenabling semantic interoper-
ability in a bottom-up way driven by the participants is daind applicable: introduction of
meta-data support in P2P applications and support for &iderexisting, loosely-coupled
databases.

Imposing a global schema for describing data in P2P systealmiost impossible, due
to the decentralization properties of such systems. It ook work unless all users con-
scientiously follow the global schema. Here our approachldit well: We let users in-
troduce their own schemas which best meet their requiresnBgtexchanging translations
between these schemas, the peers can incrementally comighugrwmplicit “consensus
schema” which gradually improves the global search cajpiaisiof the P2P system. This
approach is orthogonal to the existing P2P systems and deuilstroduced basically into
all of them.

The situation is somewhat similar for federating existingdely-coupled databases.
Such large collections of data exist, for example, for lgatal or genomic databases. Each
database has a predefined schema and possibly some trarstaty already be defined
between the schemas, for example data import/exporttfasili However, global search,
i.e., propagation of queries among the set of databasesuyaly not provided and if this
feature exists, it is usually done in an ad-hoc, non-systiemay, i.e., not reusable and
not automated. The more complex these database schemdbegykdss likely it is that
the schemas patrtially overlap and the harder it gets to &samgly generate translations
automatically.

Adopting a P2P approach is (usually) motivated by solviradedality problems. Which
scalability problem are we looking at? Considering the twareples given, we observe
that in both cases we face a large number of different schewtasre the interoperable



schemas themselves are of modest complexity. In the caseofrtent sharing (e.g., music
files or images) the schemas are used to annotate the medéntand are typically fairly
simple. This is even true for media annotation in more pifewl settings, such as with
MPEG-7 [19]. In the case of scientific data sharing the irdiial schemas may be fairly
complex, however, the shared views typically are much stmas$ the databases are very
specialized on a specific problem and the “semantic intés€among the databases is
fairly small. Thus our work aims at solutions that scale virelarge numbers of schemas
and participants. We believe this is a critical and veryistialproblem in making today’s
Web semantically interoperable. Our work is orthogonaftorts in ontology engineering
which are devoted to the management of one or a few large andle& ontologies, which
scale well in large numbers of concepts and rules and wheialsnteraction occurs as
part of collaborative ontology engineering [30].

In our approach, we build on the principle of gossiping thas tbeen successfully
applied for creating useful global behaviors in P2P systemsany P2P system, search
requests are routed in a network of interconnected infaonatystems. We extend the op-
eration of these systems as follows: When different schem@asvolved, local mappings
are used to further distribute a search request into otimeastc domains.

For simplicity but without constraining general applidai we will limit the follow-
ing discussions to the processing of search requests. Taléygof search results in a
gossiping-based approach depends clearly on the qualitiyeofocal translations in the
translation graphOur fundamental assumption is that these translations neagpdorrect
Thus our agreement construction mechanisms try to determinich translations can be
trusted and which not and take this into account to guidedhech process.

A main contribution of the paper is to identify different rhetls that can be applied to
estimate the quality of local translations from informatabtained from the peer network.
We elaborate the details of each of these methods for a sidgike model, that is yet
expressive enough to cover many practical cases (SectidmB®) model is similar to other
data models currently considered for semantic annotatid??P architectures [15]. The
methods that will be introduced are:

1. A syntactic analysis of search queries after transfaonathave been applied in or-
der to determine the potential information-loss incurfemtigh the transformation.
Here we analyze to which degree query constituents eskéntiabtaining useful
query results are preserved during transformation (Sedfjio

2. A semantic analysis of composite translations alongesyiti the translation graph,
in order to determine the level of agreement that peers eeliieoughout the cycle.
Here we analyze whether cyclic translations preserve stesaif concepts are not
preserved in a cyclic translation we assume semantic cimmfhias occurred (Section
5.1).

3. A semantic analysis of search results obtained througtposite translation. We as-
sume that structured data is used to annotate media contdtitat peers can classify
their documents both using content analysis and metadestadtclassification rules.
From that peers derive to which degree transformed metadatstations match the
actual content and thus how reliable the translations wgeet{on 5.2).

The information obtained by applying these different asayis then used to direct
searches in a network of semantically heterogeneous irfiiemsources (e.g, on top of a
P2P network).

Finally we give first results that take our approach one steihér. Rather than only
guiding searches by the results obtained from analyzingr#imsformations, we also mod-
ify the translations in an automatic manner using this imfation (Section 7). Thus we



make a step towards a self-learning network of peers autcatigitestablishing semantic
interoperability. We give experimental results that destmate how the different kinds of
semantic analyses of mappings interact with the modifinadfdncorrect translations and
how this approach scales in different parameters.

We believe that this radically new approach to semantiadapterability shifts the at-
tention from problems that are inherently difficult to soliean automated manner at the
global level (“How do humans interpret information modeistérms of real world con-
cepts?”), to a problem that leaves vast opportunities ftsraated processing and for in-
creasing the value of existing information sources, narti@yprocessing of existing local
semantic relationships in order to raise the level of thee fiom local to global semantic
interoperability. The remaining problem of establishiegwntic interoperability at a local
level seems to be much easier to tackle once an approachsocinsis in place.

2 Overview

Before delving into the technical details, this sectionvisies an informal overview of our
approach and of the paper.

We assume that there exists a communication facility ambagarticipants that en-
ables sending and receiving of information, i.e., querilga, and schema information.
This assumption does not constrain the approach, but enzphatat it is independent
of the system it is applied to. The underlying system coulé 2P system, a federated
database system, the web, or any other system of informstiorces communicating via
some communication protocol. We denote the participantseass abstracting from the
concrete underlying system.

In the system, groups of peers may have agreed on common sesnaa., a common
schema. We denote these groups@santic neighborhood3 he size of a neighborhood
may range from a single individual peer up to any number. 4 tveers located in two
disjoint neighborhoods meet, they can exchange their saheand provide translations
between them. How peers meet and how they exchange thisnafmn depends on the
underlying system but does not concern our approach. Werasshat skilled experts
supported by appropriate translation tools provide thastetions. Later, we will also
devise possibilities of how our approach might be used toraatically improve the quality
of pre-existing translations by modifying them. The direatof the translation and the peer
providing a translation are not necessarily correlated.ifsiance, peerg, andp, might
both provide a translation from scherfig, to schemas,,, and they may exchange this
translation upon discretion. During the life-time of thest®m, each peer has the possibility
to learn about existing translations and add new ones. Thansithat a directed graph
of translations as shown in Fig. 1 will be built between thergealong with the normal
operation of the system (e.g., query processing and foimgid a P2P system).

This translation graph has two interesting propertiesbéled on the already existing
translations and the ability to learn about existing tratishs, queries can be propagated to
peers for which no direct translation link exists by meansanisitivity, for example, —
ps — p2 = pg — po and (2) the graph has cycles, for example— p; — ps — ps.
We call (1)semantic gossiping2) gives us the possibility to assess the degresofantic
agreementlong a cycle, i.e., to measure the quality of the transtatind the degree of
semantic agreement in a community.

In such a system, we expect peers to perform several taskp(l) receiving a query,
a peer has to decide where to forward the query to, based ohd egteria that will



Figure 1: Translation graph among peers

be introduced; (2) upon receiving results or feedback akoagslation cycles, it has to
analyze the quality of the results at the schema and at tlzelelatl and adjust its criteria
accordingly; and (3) update its view of the overall semaaticeement by modifying its
query forwarding criteria or by adjusting the translatibarmselves.

The criteria to assess the quality of translations—whicluim is a measure of the
degree of semantic agreement—can be categorizedm@ext-independerand context-
dependent Context-independent criteria, discussed in Section & sgntactic in nature
and relate only to the transformed query and to the requiratskation. We introduce
the notion ofsyntactic similarityto analyze the extent to which a query is preserved after
transformation.

Context-dependent criteria, which are discussed in Se&jaelate to the degree of
agreement that can be achieved among different peers upaifispranslations. Such de-
grees of agreement may be computed using feedback mectsaMérwill introduce two
such feedback mechanisms, namely cycles appearing inghsldtion graph and results
returned by different peers. This means that a peer willlpobtain both returned queries
and data through multiple feedback cycles. In case a disaggrt is detected (e.g., awrong
attribute mapping at the schema level or a concept mismattie &ontent level), the peer
has to suspect that at least some of the translations irdvatvehe cycle were incorrect,
including the translation it has used itself to propagagegbery. Even if an agreement is
detected, it is not clear whether this is not accidentakyrésult of compensating mapping
errors along a cycle. Thus, analyses are required thatsasgesh are the most probable
sources of errors along cycles, to what extent the own tatinslcan be trusted and there-
fore of how to use these translations in future routing dens At a global level, we can
view the problem as follows: The translations between damaf semantic homogeneity
(same schemas) form a directed graph. Within that direatsolgwe find cycles. Each cy-
cle allows to return a query to its originator which in turmgaake the analysis described
above.

Each of these criteria is applied to the transformed quereb results in deature
vector The decision whether or not to forward a query using a tediwsl link then is
based on evaluating these feature vectors. The detail® @fitbry forwarding process are
provided in Section 6.

Assuming all the peers implement this approach, we expeatetwork to converge to
a state where a query is only forwarded to the peers mosylikederstanding it, where
the correct translations are increasingly reinforced apéidg the per-hop forwarding be-
haviors of the peers and where incorrect translations atdieel. Implicitly, this is a state
where a global agreement on the semantics of the differéaeinsas has been reached. To
demonstrate this, we present experimental results wherargéc agreement is reached in
a network of partially erroneous translations in Section 7.



3 The Model
3.1 The Data Model

We assume that each peers maintaining its database B,, according to a schemsi,.
The peers are able to identify their schema, either by eflpl&toring it or by keeping a
pseudo unique schema identifier, obtained for example blyitgs The schema consists
of a single relational tabl&, i.e., the data that a peer stores consists of a set of tuples
t1,...,t. of the same type. The attributes have complex data types bid Nalues are
possible.

We do not consider more sophisticated data models to avhitingj the discussion
of the main ideas through technicalities related to masgeztomplex data models. More-
over, many practical applications, in particular in P2Reys and scientific databases, use
exactly the type of simplistic data model we have introdyegtbast at the meta-data level.

We use a query language for querying and transforming ds¢gbdhe query language
consists of basic relational algebra operators since weotlcare about the practical en-
coding, e.g., in SQL or XQuery. The relational operators Warequire are:

e Selectiono,,,..qq)(R), wherea is a list of attribute named, .. ., Ay, andpred is
any predicate on the attributesusing standard atomic predicates on the respective
datatypes, i.epred = pred(Ay, ..., Ax).

e Projectionr,(R), whereq is a list of attribute named;, ..., Ax.

e Mappingu¢(R), wheref is a list of functions of the forndy := F(44,..., Ax)
andAq4, ..., Ay are attribute names occurringit The functionF is specific to the
datatypes of the attribute$,, ..., A;. A special case is renaming of an attribute:
AO = Al.

We assume that queries can be evaluated against any databsyective of its schema.
Predicates containing attributes not present in the eteduschema are ignorédProjec-
tion attributes which are not present in the current schexuam a NULL-value. Mappings
applied to non-existing attributes also return NULL-vaue

3.2 The Network Model

Let us now consider a set of pedrs Each peep € P has a basic communication mecha-
nism that allows it to establish connection with other pe@/ghout loss of generality, we
assume in the following that it is based on the Gnutella mwitpt]. Thus peers can send
ping messages and receigeng messages in order to learn about the network structure.
In extension to the Gnutella protocol, peers also send fthiema identifier as part of the
pong message.

Every peep maintains a neighborhoall(p) selected from the peers that it identified
throughpong messages. The peers in this neighborhood are distinguistethose that
share the same schené,(p), and those that have a different scheiVa(p) as shown in
Fig. 2.

1We do not use the same conventions as XPath/XQuery here ebwillimake use of additional mechanisms
for dropping queries.



Figure 2: The network model

A peerp; includes another peex with a different schema into its neighborhood if it
knows a transformation for queries against its own schentuésies against the foreign
schema. The query transformation operatpy_.,, is given as a queryy that provides
a view of schemab),, according to schem§,,,. In other wordsgy takes data structured
according to schemé8,, and transforms it into data structured according to sch&gna

Usinggr the transformed form of a quegyagainst a database according to schéya
is given byT},, _.,, (¢), which is defined as

TPl*’Pz (q)(DBP2) = q(qT(DBP2))'
We assume that translations only use a mapping operatond by a projection on
the attributes that are preserved. Thuswill always be of the form

QT(Dsz) = 7Tll(:uf (Dsz))
Furthermore, we assume that the transformation query imalared as follows: If an
attribute A is preserved, it also occurs in the mapping operator as anigenapping, i.e.,
A := A € f. This simplifies our subsequent analysis.
Note that multiple transformations may be applied to a sirggleryq. The composi-
tion of multiple transformation%?, . .., T, is given by using the associative composition
operator as follows

(Tyo...oT,)(q)(DB) = qlqr, - - - (g7, (DB))).

Such query transformations may be implemented easily wsirigus mechanisms, for
example XQuery as explained below.

Queries can be issued to any peer through a query messagenfmassage contains
a query identifierd, the (potentially transformed) quegy the query message originator
p, and the translation tracET to keep track of the translations already performed. In the
subsequent sections we will extend the contents of the quesgage in order to implement
a more intelligent control of query forwarding. The basiegumessage format is

query(id, q,p,TT).

The translation trac&7 is a list of pairs{(prom. Sp;,om )s (Ptor Speo )} KeePIng track
of the peers having sent the request through a translatikifi.,,) and of the peers hav-
ing received it after the translation link,(,), along with their respective schema identifiers
(Sp;rom @NAS,, ). We will call py...m, the sender, ang;, the receiver. For any translation
link, we have to record both the sender and the recipienffasatranslation a query might

be forwarded without transformation to peers sharing tiheesschema.



3.3 Case Study

To illustrate how to apply the abstract model detailed abiov@concrete setting, we will
now describe one of the experiments which were conductedrigroup in order to realize
Semantic Gossiping in an XML/XQuery environment. Note tthes example will also
be used in the following text to illustrate the techniqueswik apply to control query
propagation.

Seven people from our group were first asked to design a siXiledocument con-
taining some project meta-data. The outcome of this dedtlerimprecise task definition
was a collection of structured documents lacking commonasgics though overlapping
partially for a subset of the embraced meta-data (eame of the projectr start dats.
Viewing these documents as seven distinct semantic dormeandecentralized setting, we
then produced a graph connecting the different domainshiegevith series of translation
links. The resulting topology is depicted in Fig. 3. In thiguie we provide also one exam-
ple of how an attribute gets transformed by the user-defir@tlations. All the domains
have some representation for the title of the project (igueferred to asnameor title,
see Fig. 3 where the translations for the attritiitte are represented on top of the links),
exceptps which only considers a met® for identifying the projects.



title->name

name->description/name

title->description/name

name->name

Figure 3: A semantic graph of translations

Translations were formulated as XQuery expressions in suefy that they strictly
adhere to the principles stipulated above.

In the next step of the experiment, we asked the authors te wanslations for every
link departing from their domain (for example, was asked to provide us with the transla-
tion to po, p3 andpy). Finally, using the IPSI-XQ XQuery libraries [8] and therges [26]
XML parser, we built a query translator capable of handling forwarding the queries
following the gossiping algorithm. As an example for theaaumhe, Fig. 4 presents two dif-
ferent documents as well as a simple query transformatiimigugieryT12for translation.

Q1= Q2=
FOR $p IN “zoran_project.xml"/* FORS$prl
WHERE“Jie Project’IN pltitle WHERE*Jie Project’IN pltitle
RETURN RETURN
<start>$p/duration/start</start> <start>$p/duration/start</start>
<zoran_project> <jie_project> .
<title> My Project</title> <Name>JieProject</Name>
<acronym>MP</acronym> <Begin>02/05/02</Begin>
<duration> <Level>Diploma</Level>
<start>10/1/01</sta <I\ycation>EPF</Location>
<end>13/10/0 >LSIR</Lab>
</duration> @:&, IN “jie_projectxml’/* ute>lIF</Institute>

ty>1&C</Faculty>
>6months</Length>
>...</Benefits>

<team RETURN
<member>1</| <zoran_project>
<member>2</ <title> $p/Name </title>
<acronym> </acr0nym>
<fteam <duration>

</zoran_project> <start>$p/Begin</start>

Figure 4: An example of translation mechanism

4 Syntactic Similarity

During translation, parts of queries may be lost since thesa which the query is mapped
to may not have a representation for the information coethin certain attributes of the
original schema.Syntactic similarityprovides a measure which is related to this type of
information loss during translation. This measure is cartedependent since its evalua-
tion relies exclusively on the inspection of the syntactiattires of the translated queries.

10



A high syntactic similarity will not ensure that forwardiagjuery is useful, but conversely
a low syntactic similarity implies that it might not be usktw further forward a query.

Let us suppose we have a querriginally applied to databade B, with schemas,
which always has the generic form of a selection-projeeti@pping query

Q(DBl) = 7'rap(o'pred(as) (/Lfa (DBl)))v

whereas is a list of attributes used in the selection predicatesis a list of attributes
used in the projection, anfla is a list of functions applied. Without loss of generality,
we assume that the query is normalized such that all atésbrgquired ires andap are
computed by one of the functions jiu.

Assume a transformatiofi of querygq is given, such thag can be evaluated against
databasé) B, with schemaS,. The transformation is specified by a quety defining a
view onD B,y

qr(DB2) = Tap, (fifar (DB2)).
The transformed quer¥(q) that can be evaluated against the schémis of the form

T(q)(DBz) = Tap (Upred(as) (tfa(Tapy (Bfar (DBa)))))-

This form will also be achieved after multiple transfornoats after normalization.

It might occur that attributes used énare no longer available after applying transfor-
mationT to ¢q. This happens when an attribute frdn required for the derivation of an
attribute fromS; by means of one of the functions jfu and occurring inap or as is
missing, i.e., not occurring iapr, or is not computed by one of the functions frgiar.

We now determine which attributes are needed in order togshppvaluate the query.
For an attributed € apresp.A € as we definesourcer(A) as the set of attributes required
in schemas, of databaseD B, in order to deriveA by means of transformatiof. If
attributeA cannot be derived we will seburcer(A) = L. For a composite transformation
T; o T> we have the following criterion: ikourcer, (A) = {A4,,..., A} and for all
i=1,...,kthere exist&; € far, suchthatd; = F;(Aj,..., 4] ) then

SOUTCET, 0T, (A) = U {Allv Tt ;61}
i=1,....k

.....

If sourcer, (A) = L or for someA; no derivation of the attribute using a function
F; € far, is possible we have

sourcer, o, (A) = L.

In order to ground the definition we assume thatrce.(A) = {A} andeo T = T for
the empty sequence of transformatiens

In order to determine the effects of multiple transformadid@, . .., 7;, we have to
evaluatesourcer, ..o, (A). This allows to determine which of the required attribuies f
evaluating a query containing attributeare available after applying the transformations
T1,...,T,. The definition ofsource is given such that it can be evaluated locally, i.e., for
each transformation step in an iterative manner. Usingitifidémation we can now define
the syntactic similarity between a transformed query asdatresponding original query.

The decision on the importance of attributes is query dependVe have two issues to
consider after applying a composite transformaffoa Ty o ... o T},:

11



1. Not all attributes inas are preserved. Therefore some of the atomic predicates
in p(as) will not be correctly evaluated, i.e., the atomic predisatéll simply be
dropped in this case. Depending on the selectivity of thelipate this might be
harmful to different degrees. We capture this by calcugptirvalueF'V,7 for ev-
ery attributeA; € as U ap as follows: if A; € as andsourcer(A;) # L then
FV? = sely, else FV7 = 0, wheresely, is the selectivity of an attributel;.

The selectivity is ranging over the interv@l 1], with high values indicating highly
selective attributes, i.e., attributes whose predicatéscsa small proportion of the
database. Thus dropping highly selective and thus moiealrittributes will lead

to lower values of"'V,7

2. Not all attributes imup are preserved. Therefore, some of the results may be incom-
plete or even erroneous (due to the loss of key attributeseXample). Following
the method used above for the selection, we capture thislbylating a valueF'V;"
for every attributed; € as U ap as follows: ifA; € ap andsourcer(A;) # L then
FVT =1elseFV = 0.

Given the valueg'V,? for A4; € as U ap we introduce feature vectofsV/? capturing
the syntactic effects for the transformed qué€Fy o ... o T,,)(q).

FVe(Tyo...0Tw)(q) = (FV7,...,FV?).

Using this feature vector we define a syntactic similarityamee with respect to selec-

tion including a user-defined weight vector = (W1, ..., W) pondering the importance
of the attributes as:

W.Fve
SIM,(q,(T10...0T,)(q)) = = .
W] |Fve]
where
—
W -FV? =W1FV7 + ...+ W FV?
and

1X| = ||X]||, = /a2 +... +a2.

This value is normalized on the intervl 1]. Originally, the similarity will be one,
and it will decrease proportionally to the relative weightiselectivity of every attribute
lost in the selection operator, until it reaches 0 when #liattes are lost.

For projection using the valudsV;" the analogous feature vectdrd’* and similarity
measuresS/ M, are derived. Again, this similarity decreases with the nends transla-
tions applied to the query, until it reaches 0 when all thggmtion attributes are lost.

We illustrate the concepts introduced for syntactic sintifdby means of a small ex-
ample. Assume a pegr is connected to peegs andps through translations as illustrated
in Fig. 5.

12



T T

p1->p3 p1->p2

A3:=A1, B3:=B1, C3:=A1 A2:=A1
Tp3—>p1 Tp2->p1
A1:=A3, B1:=B3, C1:=C3 A1:=A2

Figure 5: An example for syntactic similarity

A translation, such &%), ., can be specified as a query, e.g.,

ATy ps (DB3) = HA3:=A,,B3:=B;,C3:=A; (DB3)

p1 sends a query = wa,,B,,c,(DB1) to the two other peers. Peps would evaluate
—_
FV™(Ty,—p,(q)) as follows: sourcer, _, (A2) = {4,} and

sourcer, ., (Ba) = sourcer, ., (C2) = L. ThereforeF—V’T)(Tpl_)pz(q)(DBg)) =
(1,0,0) and SIM(q, Tp,—p,(q)) = % assuming all user-defined weights are 1pdf
sendsy back topy, p; would obtainSIM (g, (Tp,—ps © Tpo—p, ) (@) = % since only
attribute A; remains intact after the two translations.

On the other handy; determinessourcer, . (As) = {A1}, sourcer, ., (B3) =

{B1}, and sourcer, (C5) = {Ai}. Thus, FV*(Tp, .p(q)(DBs)) = (1,1,1) and
SIM-(q,Tp,—ps(q)) = 1. If p3 sends the query back @, p; would as well obtain
SIM(q,(Tp,—ps © Tps—p,)(¢)) = 1. The fact that an obvious mistake occurs, i.e., that
attributeC3 is wrongly mapped ontel1 in the translation, is not detected by the syntactic
similarity measure, and will be dealt with by the semantikirity measures introduced
in the next section.

5 Semantic Similarity

The context-independent measure of syntactic similasitgased on the assumption that
the query transformations are semantically correct, whiafeneral might not be the case.
A better way to view semantics is to consider it as an agreéareang peers. If two peers
agree on the meaning of their schemas, then they will gememnpatible translations.
From that basic observation, we will now derive contextetetent measures of semantic
similarity. These measures will allow us to assess the tyuiattributes that are preserved
in the translation.

To that end, we introduce two mechanisms for deriving thdityuat a translation. One
mechanism will be based on analyzing the fidelity of tramnsies at the schema level, the
other one will be based on analyzing the quality of the cpweslences in the query results
obtained at the data level.

5.1 Cycle Analysis

For the first mechanism, we exploit the protocol property ttetects cycles as soon as a
guery reenters a semantic domain it has already traverse®gsction 6.1 for more details).
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A cycle starts with a peer; transmitting a query; to a peeip, through a translation link
Ty, —p, (see Fig. 6).

Figure 6: The feedback mechanism

In the example, after a few hops, the query is finally sent teexrjp, which, sharing
the same schema as, detects a cycle and informs. The returning query, is of the
form

n = (Tp1—>172 © TP3—>P5 0...0 Tpnfl_’pn)(ql) = T(ql)'

p1 may now analyze what happened to the attributes. . A, originally present iny;.
It could attempt to check whether the composed transfoomé&iidentity, but the approach
we propose here appears more practical. We differentiete tases:

— Case lisourcer(A;) = {A;}, this means thatl; has been maintained throughout
the cycle. It usually indicates that all the peers along tredecagree on the meaning
of the attribute. Such an observation increases the comigdienthe correctness of
the translations used.

— Case 2:sourcer(A;) = L, this means that someone along the cycle had no repre-
sentation ford;. A; is not part of the common semantics. This leaves the confedenc
in the translations unchanged.

— Case 3: Otherwise, if none of the two previous cases occlgs,seurcer(4;) =
{4;},7 # 1, this indicates some semantic confusion along the cyclebc&ses
can occur depending on what happens4ip This lowers the confidence in the
translations.

We now derive heuristics fas; to assess the correctness of the translafign.,, it
has used, based on the different cycle messages it recdie¢dis consider a translation
cycle f composed of| || translation links. On an attribute basjsmay result inpositive
feedback (case 1 abovegutralfeedback (case 2, not used for the rest of this analysis but
taken into account by the syntactic similarity), megativefeedback (case 3). We denote
by ey the probability of a foreign translation (i.€[},,—p; - .. T, _,—p,) @long a cycle
being wrong for the attribute in question. Considering ¢hesor probabilities as being
independent and identically distributed random varialtles probability of not having a
foreign translation error along the cycle is

(1— ECyc)llfol_
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Moreover,compensating errord.e., series of independent translation errors resulting
in a correct translation, may occur along the cycle of fardigks without being noticed
by p1, which only has the final resujt, at its disposal. Thus, assumify, ,,, correctand
denoting byd.,. the probability of errors being compensated somehow, thkairility of
a cycle being positive is

(1 - ECyC)Hf”_l + (1 - (1 - Ecyc)Hf”_l)écyc = pT‘Ob+(HfH,€cyc, 6cyc) (1)

while, under the same assumptions, the probability of aeclgelng negative is

(1= (1 = ecye) 1) (1 = Beye) = 1= prob* (I fIl, ecye: Seye)- )

Similarly, if we assumé,, _,,,, to be incorrect, the probability of a cycle being respec-
tively negative and positive are

(1 _’EcyC)Hf”_l +(1-(1 _'EcyC)”fH_l)(l — eye) = pTOb_kg‘fHaecycvécyC) ©))

and

(1= (1= ecye) 1) 8eye = (1= prob™ (I F1ls €cyes Oeye)). (4)
Assume a peep; obtains a set of positive and negative feedbacks along €ycle-
{f1,..., fm} of lengths| f1|l, ..., ||fm| for a given attributed. Some of these may be

positive, i.e.,sourcer(A) = {A}, other negative. We denote byt C F the set of
positive and by/"~ C F the set of negative feedbacks and have- I+ U F~.

If p; assumes that its own outgoing translation link at the statti@cycle iscorrect
then the probability of obtaining exactly such a combinatid positive and negative feed-
backs for the set of cyclels can be calculated as

HE) = T prob™ (If1 ecyesdeye) JT (1 = prob™ (If] eeyes beye)).

fert feF—

This probability is the product of all individual probabidis for positive and negative
feedback cycles of the given lengths, as the they have besiopsly derived in equations
1 and 2, to occur.

Similarly, if p; assumes that its own outgoing translation link at the sfatteocycle is
incorrect then the probability of obtaining such a combination ofdie&cks for the sef’
can be calculated as

L(F) =TT prob™ (11l ecyes deye) TT (1= prob™(If1], ecyes Seye))-

fEF— feFt

Since we have no knowledge abeyj. andd.,. we assume these probabilities to be
uniformly distributed. We integrate ovey,. andd..,. in order to obtain the expected prob-
ability for the distribution of positive and negative feedfis in the observed sg&tto occur.
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We could take into account density functions here if we hayesgpriori knowledge about
those two random variables. The resulting expectationegadfi ande_ when assuming
that the known translatiofi,, _.,,, is either correct or wrong, are then

1 1
e = / / I (F) deaye dboye
0 0
1 1
:/ / lc_(F) decycdécyC
0 0

which are used to evaluate the relative degree of correstngsof the mappindly,, —,
given the observation sét.
n
Yeye = +ec -
ec + ec

If no relevant feedback is obtained for an attribute retativ a translation link we set
by defaulty.,. = 1.

This analysis may be performed by any pgerfor every outgoing link to a peey;
and every attributel; € as U ap independently, resulting in valuagy?c,j indicating the
likelihood of the translatiofi},, .,,, being correct for the attributé;.

As for the preceding section, we define now a feature vectdraasimilarity measure
to capture the semantic losses along a sequence trandiaksril, ..., T,, whereT}
connects pees; with p;, via a translation link. For simplicity of presentation wease
each peer corresponds to a different semantic domain.

Let us suppose that pegr issues a query = Ta, (0 pred(as) (fa(DB))) to ps through
a translation linklh = T),,_.p,. p1 computes a feature vector forbased on the cycle
messages it has received as follows:

FVO(T1(@)) = (FVO(Ti(g). ... FVO(Ti(g))

where
FVP(Ti(q)) =22,

In the following translations these values are updated énafively multiplying the
values obtained for the degree of correctness for eachlatarslink. We consider here
that if two translationsl’; _, and7}; have degrees of correctnessf. ; and~;, " for
attribute A; and are mdependent the degree of correctness of the’ cdmpesnslatlon
(Tj—10Tj)is %yc ﬂc;jlz Thus, when forwardmg a transformed query using a fihk;,
peerp; updates each valuBV," (T} o ... o T;_1)(q)) it has received along with the
transformed queryTi o...oT;_1)(g) in this way:

FVO((Tyio...oTj)(q) = FVO((Tyo...o Ty1)(q)vends-
The semantic similarity for transformatiofis, . . . , 7;, associated with the vectaﬁ‘—v
is then
W.FVvO
SIMo(q, (Tl 0...0 Tn)(q)) = pperg—
W] [Fve|
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This value starts from 1 (in the semantic domain which theyjodginates from) and
decreases as the query traverses more and more semaritetellggeneous domains.

We illustrate the cycle analysis by means of the examplengiwd-ig. 5. Assumep;
forwards queryy = 74, B, .c,(DB1) through translation linkg,, _.,,, andT,,_.,, and
obtains as a result of this cycfethe positive feedbackourcer,, ., o7,, ., (A1) = {A1}
for attribute A;. It calculated (¢) = prob™ (2, ecye, deye) = (1 — €cye) + €cycOeye- After
integration it obtains a degree of correctness(’jjg1 = %. Since no feedback is obtained

—_—
for the other attributes; setsFV (T}, .,,(q)) = (2,1,1), for the attributes occurring
in ¢ and calculatesST M, (q, T, —p,(¢)) = 0.957. For the translation link,, ., to
peerp; peerp; obtains feedback through translation links,_.,, andT,,_.,,,. For 4,

and B; this feedback is positive, whereas 0r it is negative. Doing the corresponding

—_—
calculations this results in a feature vectoV (T, .., (q)) = (3,3,1). p; calculates

SIM(q, Ty, —p, () = 0.763.

When deciding to forward the query, assume that a peer iegjairsimilarity measures
(syntactic and semantic) to be above a threshold of 0.9 (seto8 6). Then it would not
forward queryy to peerp, for syntactic reasonsS( M is below the threshold), whereas it
would not forward query to p3 for semantic reason$'{ M., is below the threshold).

A more detailed example of cycle analysis is presented iti@e6.2.

5.2 Results Analysis

The second mechanism for analyzing the semantic qualitiiefranslations is based on
the analysis of the results returned. In [1] we have intrediue method using functional
dependencies at the data level in order to assess the qoftitynslations. This method
was based on analyzing to which extent integrity constsaint preserved after translation.

Here we present an alternative, more general, approachs$uen that peers annotate
document® using meta-data expressed according to our data model.eBohsdocument
d € D owned by peep is associated with an annotatiennot(d) according to the schema
Sp of the peer. Having sent a query, peers start to receivetr@saliments with semanti-
cally rich content, e.g., images or full text. Based on thistent they attempt to assess to
which extent the queries expressed at the meta-data levelpweperly translated and thus
led other peers to return the correct result documents.

Queries in our meta-data model are thus an intensional waxpfessing semantic
concepts, whereas extensionally the concepts are retasetis of documents. The problem
that we address is of how to arrive at agreed annotation sehiatthe intensional level that
result in concept definitions that are compatible with theegional notion of concepts that
peers have.

In the following we assume that a peer has a finite set of cdacke classify doc-
uments. The extensional notion of a concept that each peeishzased on methods of
content analysis. Here, we do not make any assumption abeuhéthods (e.g., layout
analysis, lexicographical analysis, contour-detectgta,, or even simple manual classifi-
cation) used to extract meaningful features out of the d@nis) we simply treat them as
high-level abstractions used to unambiguously classify @ssible retrieved documents
d € D into conceptsg € C using a decision rul® .o, ient:

Rcontent :D — C

In a more general settin®..:..¢ could be a probabilistic rule. Using their local clas-
sification based on content analysis, peers can thus deteforievery received document
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the concept it belongs to.
The intensional notion of concept each peer has is basedssifitation rules applied
to metadata annotations of documents.

Rannot : annot(D) — C.

Again, we do not make assumptions on the specific form of thssification rules,
except that they apply some predicates to the metadataatiomst and derive from these
predicates the concept to which the document correspondsdamples of classification
rules are extensively discussed in the data mining liteeatthe document classification
obtained from content analysis and by classification rulegpeesumed to be consistent up
to a mean classification erref., i.e., we assume that with a probability- ;..

Recontent(d) = Rannot(annot(d)).

By analyzing its own document collection a peer can estirttetevalue of,...

Imagine now a peer; classifying documents according to ruleg} ..., andR?; ..
Peerp; issues a query against the metadata annotation for retrieving documespen
reception of a documenitfrom a foreign peeps € N.(p1), p1 performs the classification

operation according to its own rul&’?: ... . andRP: .. Different situations may then
occur:

— RE eni(d) = REL.(d): this is the resulp; was expecting; it is an indication that
the outgoing translation link used to forwagdo p, was semantically correct for
gueryq. We treat this as positive feedbadk ).

— RE eni(d) # REL . .(d): p1 receives a document, such that the content analysis
does not match the classification obtained from the metaatatatation obtained
by translation. Since the document content is not changedgltransmission of
the query result, this implies that some semantic confusgauirred in the metadata
guery translation along the path from to p,. In this case, we consider this as
negative feedbacki(™).

If p; andp, are directly connected, this gives us a clear indicatioruabe semantic
(in)correctness of the translation lirk,, _.,,,. Given the mean classification error proba-
bility €,.s, the probability of the link being correct or incorrect insesof positive feedback
arel — ¢,..s ande,.s respectively. In case of negative feedback, they becegmeand
1- €res-

If two peers are separated by one or more semantic doma@sittfation is somewhat
more complicated since we have to take into account all tbeessive links used to forward
the query fronp, to a peemp,,. Let us suppose that a peer receives some feedbatter
the query has gone throudjlf || different translation links; analogous to the derivatidn o
the probabilities from the cycle analysis, the probabitifyreceiving a positive feedback
assuming the link we are analyzing is correct is

(1 - eres)pT0b+(|‘f|‘ -1, €cyes 5cyC) + €T655T65(1 - prob+(||f|| -1, €cyes 5cyC))a

whereprob™ is defined as in equation (1). The first term covers the caseenhe transla-
tions are all correct and the peer performs a proper clasdit, and thus obtains positive
feedback. The situation where the intermediate translatare wrong and the peer still
believes to have obtained a positive feedback is more attriand is covered by the second
term. Receiving a wrongly annotated result a peer can stifbpm a misclassification itself
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with probabilitye,..s. However, only in exceptional cases with probability, this mis-
classification will correct the problem, namely when thedng concept” matches exactly
the expected concept. A peer can estimate the probahilifyoy (||C|| — 1)~1, where||C||
is the number of different concepts a peer knows at a givaanhsf time. The probability
of receiving negative feedback is then calculated analsigou

Performing an analysis analogous to the one given in Seétibrand introducing;”
and!/;” as the probability of receiving a certain combination op@sses for a given error
model under the assumption that the outgoing translatidaii correct resp. incorrect,
we obtain again two expectation valugsande; used to estimate the degree of semantic

correctness:

1 1

et = / / L (F) deaye dboye
0 JO
1 1

- — / / 1= (F) devye dSeye.
0 JO

Defining~yP2, = efif as the likelihood of the translatidfi, ., being correct for a

peerps; € N.(p1) we obtain a scalar feature for each translation ipk_.,,

FV= (Tlh —p2 (Q)) = ’771325

measuring the degree of correctness of the translation limo value can be computed it

is again set to 1 by default. Analogous to the cycle analyxgisd values are forwarded and
updated iteratively by multiplying the values obtaineddach translation link, such that a
measure for the semantic similarity

SIM=(q,(T1o...0Tp)(q) = Vres - Voes

for a chain of translations is defined.
Some illustrating examples for this approach are given ttiGe 7.

6 Gossiping Algorithm

6.1 Query Forwarding

At this point, we have four measureSi{M,, SIM,, SIM:, andSIM) for evaluating
the losses due to the translations. We will now make use skthalues to decide whether
or not it is worth forwarding a specific query to a foreign satiadomain.

First, we require the creator of a query to attach a few usénéd or generated values
to the query it issues:

- The weightsIT/ pondering the importance of the attributes in the query.
- The respective selectivity of the selection attributels
- The minimal valuesSTM i, = (SIMIV", SIM™™, SIMP™, STM™™) for the

similarity measures under which a transformed query is serieated that it can no
longer be considered as equivalent to the original query.
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We extend the format of a query message to include thesesvaluerell as the iteratively
updated feature vectors:

_ — > —— —— ——
query(id, q,p, TT7 Wa Sela SIMmlna FVO'7 FVTra FVO7 FVZ)
Now, upon reception of a query message, we require a peerfarpea series of tasks:

1. detect any semantic cycles

2. check whether or not this query has already been received

3. in case the local neighborhood has not received the gfmmyard it to the local
neighborhood

4. return potential results

and, for each of its outgoing translation links:

5. apply the translation to the query
6. update the similarity measures for the transformed query
7. perform a test for each of the similarity measures whetheicurrent similarity of
the transformed query with the original query exceeds theired minimal threshold
given by ST M.
8. forward the query using the link if all similarity measuests succeed.
This algorithm ensures that queries are forwarded to a guftig large set of peers capable
of rendering meaningful feedback without flooding the entietwork.

6.2 Case Study Revisited - Use of Syntactic and Semantic Slarities

Let us come back to the case study introduced in Section 38.a8ume that a single
attribute query is issued hy to obtain all the titles of the different projects. This quer
may be written in the following way:

Query = FOR $project IN "project_A xm"/+ RETURN
<title>$project/title</title>

Let us now determine how the query will be propagated fggmNote that the weight
and selectivity values attached to the query do not matter, las a single attribute is con-
cerned. Moreover we will not considéil M, here 61M, always evaluates to 1 because
there is no selection attribute). The other thresholdsetreo$.5.

Following the gossiping algorithnp; first attempts to transmit the query to its direct
neighbors, i.e.ps, p3 andp4. po andp, in turn forward the query to the other nodes, but
p3 will in fact never receive the query: As; has no representation for thide, the only
projection attribute would be lost in the translation pres&omp; to ps, loweringS1M,
to 0.

Let us now examine the semantic similarfty M ,. For the topology considered, thirty-
one semantic cycles could be detectegbyn the best case. As the query never traverses
ps3, only eight cycles remain (Table 1 lists those cycles). Nosvuse the formulas from
Section 5: For its first outgoing link (i.e., the link goingm p; to ps), p1 receives five
positive cycles, raising the semantic similarity measoretiis link and the attribute con-
sidered to 0.79. p; does not receive any semantically significant feedbacki$osécond
outgoing linkT}, _.,,, which is anyway handled by the syntactic analysis. Yegéeives

2Remember that we did not make any assumption regarding strébdiion of erroneous links. In this case,
the positive feedback received may as well come from a sefiesmpensating errors.
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three negative cycles for its last outgoing lifikk, .,,,. This link is clearly semantically
erroneous, mappirtifle ontoacronym This results irp; excluding the link for forwarding
the query, since the semantic similarity drops to 0.26 is tiaise.
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Cycle Tp,—p, €rroneous 7T,,,_,,, €rroneous

P1,DP2, P4, P5, P1 + -
P1,P2,P4,P5,P6,P1
P1,P2,P5,P1
P1,P2,P5,P6,P1
P1,P2,P6,P1
P1,P4,P5,P1 -
P1,P4,P5,D2,P6,P1 -
P1,P4,P5,P6,P1 -

+ + + +

+ + 4+ + 4+ +

Table 1: Cycles resulting in positive (+) or negative (-)dback
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The situation may be summarized in this way;: restrains from sending the query
throughps because of the syntactic analysis (too much informatioossih the translation
process) and excludes because of the high semantic dissimilarity.

The situation somewhat changes if we correct the erronétkig’pb; — p4 and add a
mistake for the linkI'ps — p4. For the attribute considered, the semantic similaritypdro
to 0.69 for the outgoing link'p; — p, (two long cycles are negative, see third column
in Table 1). Even though it is not directly connected to ammeous link,p; senses the
semantic incompatibilities affecting some of the messagesrsingy.. It will continue to
send queries through this link, as long as it receives pedidedback at least.

7 Experimental evaluation

In the preceding section, we have evaluated the Chatty Wetnaph by examining query
forwarding in a small network of static translations geteddy a group of users. In con-
trast to this, we now use semantic gossiping and the sensmiiarity measures not only
to decide on query forwarding but also to correct existingppiags. Thus semantic gos-
siping is used to automatically reach semantic agreemdatge networks of computer-
generated and dynamic translation links. This approachaicepcould for example be used
to derive basic, common ontologies from a dynamic systerh héterogeneous schemas,
or to gradually refine existing networks of translationseTtitial simulation results inter-
preted below provide promising evidence that it is worthspimg further research along
these lines and highlight some of the issues to be addredaegghrticular, they clearly
indicate in which settings each of the two semantic sintilarieasures derived from cycle
and result analysis are more suitable.

7.1 Experimental setup

The setup we used in the experiments is as follows: We assuratnark of peers repre-
senting individual semantic domains. Peers share a finitefsémilar concepts, i.e., op-
erate in a certain semantic domain (for example, biologlethbases) inside the network.
They share annotated documents (or data) related to thosepuis, but refer to concepts
using different names (they denominate the concepts diiter). From this basic setup, we
attempt to create global interoperability by applying setitagossiping techniques using
purely pair-wise, local translations.

The exact description of the process is as follows: Firstcreate a topology of peers
p1 - ..pn, €ach of them connected through translation linkg tdher peers. The peers
share||C|| conceptsc; . .. ¢j¢), but use distinct names to refer to them. Thus we study
the problem of peers sharing the same concepts but lackinglkdge of how to refer to
them by names. This is somewhat similar to the approach taki@9], without aiming at
universally agreed upon names. Without loss of generalgymvay assume that the same
set of names:; ... n¢| is used by all peers (this simplifies the subsequent presemyta
We write (n; —, ci) if peerp uses name; to refer to concept;. Thus, we can use a
single attributeA to store the name the peer associates with a concept. Alsts pan
verify whether a document belongs to a concept or not andahnetate documents they
store with a name using attribute.

We then generate mappingéD B) for every translation link. The mapping functign
relates names from the first peer to names from the secongvg#eevery name used by
the first peer mapped onto the name used by the second peeryTha permutation of
the domain of names used for attributevhich we denote ag(n;) = n; to indicate thaj
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maps name; to namen ;. For every mapping,, —.p, in every translation link’,, —.,,,, we
say that the mapping is correct if and only if the two namesidday the mapping actually
refer to the same concept, that is if

Hipy—ps (i) = 105 A =1 Ck A g C.

Thus, random mappings would only have a probabilitﬁ of being correct in this
setting. In the experiments, we generate a fractiBnte of erroneous mapping initially.

Unless specified otherwise, we use small-world graphs [8ijterconnect peers with
translation links since small-world topologies have bedrmsively applied to model com-
puter networks or social behaviors. They are typically abtarized by high clustering co-
efficients (average fraction of pairs of neighbors of a nddg &re also neighbors of each
other) and relatively small path length (average minimatatice between two nodes). In
the following, we generate graphs with an average clugesoefficient of0.1 and with
10% shortcuts (i.e., links rewired to a random peer in thevagk).

Starting from the original topology, we apply semantic gpisg techniques iteratively
in order to detect and rectify erroneous translations. Atggimulation step, each peer se-
lects one of its names randomly and issues a query aboutghis fi.e., the query consists
of a projection on one attribute: the name selected). Theygaeropagated to the other
peers (semantic domains) in a Gnutella-like fashion withmatime-to-live (TTL) value.

The syntactic analysis for this simplistic type of query tiaghtforward: peers for-
ward the query through an outgoing translation link if thexésts a translation mapping
the local name used in the query (projection attribute) artother name for the foreign
peer. Now, for detecting and repairing erroneous tramsidinks, we slightly modify the
semantic analysis; we forward queries irrespectively efrésults of previous query for-
warding strategy in order to get as many evidences as pessibt use these results to
reach semantic agreements by gradually modifying trainsiat

Before taking a closer look at the final results, we will ezin the following sections
each of the semantic analyses (cycle and result analygisyately to emphasize their
specificities.

7.2 Cycle Analysis

For every iteration step, peers randomly choose a name asguery for this name and an-
alyze the cycle messages they get in return. Here, we do hpestimate the correctness
of the actual mapping as explained in Section 5.1, but alseraéne which of the possi-
ble mappings is most likely correct and adopt it as a new mrmgppi herefore, peers view
mappings resulting from returned queries as new mappindidates. Consider for exam-
ple Fig. 7, where peer; systematically receives; mapped ontaow, in returned queries
(negative feedback). In addition to evaluating the corress$ of the current mapping,
considers other mappings as well. It adopts the most prgleabtect mapping candidate if
its probability of being correct is above 50%. In this examp| evaluates the correctness
of mappingn; ontons, and might consider to modify it to a mapping onton; .
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Figure 7: New mapping candidates

As indicated in Section 5.1, preexisting knowledge on tretritiution of error prob-
abilities d.,. ande.,. may be used in the computation of semantic similarity,., the
probability of a series of different errors to compensatmgla cycle, is approximated to
(JIC]l = 1)~1, which is the probability of the last erroneous link in theleyto map to the
original name and thus to correct previous errors.

We estimate..,. with standard maximum-likelihood techniques applied ®fgredback
information we receive. From the probability of receivingasitive cycle of lengtH| f||
knowing that the error probability of a translation linkeis,,

(1- Ecyc)llfH +(1-(1- 6cyc)llfH)(gcyc’

and from its negative counterpart, we derive the densitgtion for the likelihood of...:
L(ecye|F) =

K JT (e T (= (=) Ndeye) [T (1= (1= eeye) 1) (1 =)

frert freF-

where K is a normalizing constant. The local maximum of thisction ovel|0, 1] gives a
good approximation of.,,., supposing we have sufficient feedback information.

What is the result of this process in the long run? It deperid®orse on the initial
setting but in the end, this method attempts to obtain a nmgppdnsensus based on the
different feedback cycles detected in the network. Comsidea high density of links and
relatively few erroneous links, the method converges, iepairs all erroneous mappings)
rapidly, since peers can base their decisions on numerausaaningful feedback cycles.
For settings where links are scarce, peers do not have sufficiformation for making
sensible choices, and results may diverge.

Several parameters are of particular interest: The numbpeersn, the fraction of
translations initially erroneousRate, the number of concept’||, the initial time-to-live
TTL of the messages and the number of outgoing translation lipks peer. The figures
below show experimental results for topologies where- 25, eRate = 0.1, ||C|| = 4,
TTL = 5andl = 5 and where one of those parameters varies. All the curvevaraged
over ten consecutive runs. At every step, each peer sendsapjoking a random concept
for every outgoing edge and modifies its mappings dependirigeresults of the analysis
explained above. Steps are represented om-#ves. The graph shows the evolution of the
percentage of erroneous mappings, starting at aeiaige initially. Clearly, the outcome
depends on the density of links, which directly impacts anrthmber of cycles we have
at our disposal for taking mapping decisions (see Fig. 8) /[F& 4 and the topology
considered, we get on average only one positive feedbaakapping candidate, which is
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obviously insufficient to take sensible decisions. Fer5 andl = 6, the value raises to 1.8
and 2.9 respectively and most of the erroneous mappingogeioted after ten iterations.
Finally, fori = 7, we get enough evidences (4.5 per mapping candidate onge)dia
correcting all the erroneous links, thus reaching a pedeatantic agreement, in eight
steps.

% wrong mappings

# steps

Figure 8: Sensitivity to the number of outgoing edges

Similar results may be observed for variable TTLs. Fig. 9sheesults using the same
parameters as before, but this time for a fixed number of audgedges)(= 4) and TTLs
ranging from 3 to 6. Again, for low values, peers do not gaiffigent feedback informa-
tion to correct mappings. Starting wifiT’L. = 4 (1.8 positive feedbacks per decision),
peers receive sufficient information to correct more thath @5 the erroneous mappings
after nine iterations. Low-connectivity networks may thesefit from increasing the TTL
value of their queries in order to get sufficient feedbachinfation for the peers.
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Figure 9: Sensitivity to the TTL

Our approach is rather insensitive to variations of thaah#rror rate (see Fig. 10)
until a certain threshold, where too many bad links are prteiséially to reach a correct
consensus based on the feedback cycles. Finally, it is woethitioning that the approach
scales very well with the number of nodes. This is not suipgisconsidering that the
method relies solely on local interactions (no central congmt or computation) and that
the clustering coefficient of the network is relatively higfig. 11 shows experiments for
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networks ranging from 50 to 800 peers without fundamentallte variations. The small
deviations are due to thehortcutsn the small world topology which connect two random
peers in the network. The bigger the graph, the less lika/that these links can be used
to form cycles within a certain neighborhood.
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Figure 10: Sensitivity to the initial error rate
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Figure 11: Scalability

7.3 Results Analysis

Let us now consider the second part of the analysis, in whégigpanalyze and categorize
documents they receive. The process is as follows: At evepy peers first issue a couple
of queries with a high TTL for estimating the error rate aslaikmd in the preceding
section. Then, for each of their outgoing links, the peeck piconcept randomly and issue
a query asking for documents related to that concept. Innmethey receive documents
they analyze following the method described in Section S.Bey modify the mapping
they have used to forward the query with the most probablepmapf it has a correctness
likelihood of at least 0.5.

For the simulations, we used a fixed set of documents scdttarelomly among the
peers. All documents are assigned to concepts. Each dotuwwesr has a probability
(eres) of misclassifying a document by relating it to a wrong cartceWe use a fixed,
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low value ofe,..s = 5% in the following experiments. For our setting..; is equal to
(el — 1),

Unless specified otherwise, we used a network of 50 peermghartotal 100 docu-
ments, 2 outgoing translation links per peer, 4 conceptg,ladf 3, an initial error rate of
10%, and a probability of 10% of misclassifying documents.

First, it is interesting to see that this approach is veryusblagainst the initial error
rate, mainly because of the short feedback loop (one trémislink suffices here to return
documents) compared to the relatively long cycles usediquely. Fig. 12 shows the
results for a varying initial percentage of wrong mappings.
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Figure 12: Sensitivity to initial error rate

Nevertheless, the approach is rather sensitive to the fatésolassification of docu-
ments, as shown in Fig. 13. This is especially true since weaatdry to evaluate this
parameter but consider a mere fixed value.
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Figure 13: Sensitivity to misclassification rate

The approach taken here is completely local, and does netitédk consideration any
global behavior, and scales well with the number of peers Esg. 14). Here, we increase
the number of documents linearly with the number of peerkeap the average number of
documents per peer constant. This number is essentiald@amiailysis, since it is directly
proportional to the number of evidences a peer gets for eygeyy. This effect is depicted
in Fig. 15: Peers start having trouble correcting the magpias they get less and less
documents returned for their queries (documents scarcity)
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Figure 15: Sensitivity to number of documents

7.4 Combined Results

Many possibilities exist for combining the two analyses. ¥t®se a very simple one:
at each step, every peer first performs a result analysis(stegifying a few mappings
depending on the results returned) and then performs a apellysis step (trying to reach
some local agreement on mappings based on cycle feedbale&)re$ults for topologies
with 25 peers, 4 concepts, 2 outgoing edges, TTLs of 3 (r®soitt6 (cycles) and varying
error rates on initial mappings are depicted in Fig. 16.
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Figure 16: Combined results, varying initial error rate

This method takes more time to converge than the two anadygdied separately; This
is because the analyses keep interfering with each othiéisonie state is reached that is
consistent from both a cycle and a feedback analyses poiwf Note that the combined
method in the end outperforms the two individual methoddiagseparately (e.g., more
than 95% of erroneous mappings corrected after 50 steps5@%h erroneous mappings
initially).

8 Implementation framework

All the tasks of the Chatty Web approach have been been mapypedn implementation
architecture which uses a meta-data model expressed in XM [X&uery as the language
to translate among schemas. The framework assumes thalalgilof a communication
infrastructure, for example, simple web access via HTTP BRR infrastructure such as
JXTA [9]. However, we are not bound to any specific commuieeinfrastructure. All
we require is access to the relevant schema data and thiy ébitjuery information and
results. This can easily be achieved by a standard abstndetyer that maps a specific
communication infrastructure’s interface to the one weauney Since this is a fairly stan-
dard software engineering task we omit it in the followingalission. Based on these
assumptions, Fig. 17 shows the standard architecture asesbfnantic gossiping in the
Chatty Web.

Semantic Processing Data Processing
Network | Network

I

I
— Semantic Result ! Query Router Outgoing Query and
Analyzer ! and Translator Result Handler

T :

I
Neighborhood Semantic Cycle A w Incoming Query and
Exploration Analysis I Cycle Detection Result Handler

[

Meta&data Repository
(neigbboring peers, | Local Data Repository
schemas and i and Query Processor
translations

Legend:
—»  Query
- % Result
— Meta data

Figure 17: Architecture for semantic gossiping

Incoming queries are registered at and handled bynib@ming Query and Result Han-
dler whose task is to communicate with other peers, to forwardjtrexy for further pro-
cessing and to gather partial results which it uses to adeeimbd final result of a specific
guery. The next step then is to detect whether a cycle hasreccuf so, semantic analy-
sis of the cycle is triggered. Otherwise, the query is preedsfirst by querying the local
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database and then by handing it over to@heery Router and Translatdo collect results
from other peers.

For this purpose th@uery Router and Translatanquires for possible translations,
evaluates the quality of the resulting queries, and if ibisva a defined threshold, forwards
the query to the respective peer in a different semantic dmnq@ueries are forwarded by
the Outgoing Query and Result Handlemich is also in charge of collecting the results
and forwarding the results to thecoming Query and Result Handlethich returns them
to the original requester. Additionally, it provides inglztta for semantic result analysis.

This is the main data processing flow of the architecture ahaltel, partly triggered by
the ongoing data processing, there is also semantic piogessdepicted in the left half of
Fig 17. Its main tasks are semantic analyses of results lmstte existing knowledge of
schemas and their relationships and the semantic analffydeteoted cycles. The results of
these analyses are integrated again into the system’s kdgebase and provide the basic
decision criteria for query routing.

Additionally, the knowledge base is updated and improvedekygloring the peer’s
neighborhood and detecting new schemas and translatidresmé€ta-data repository will
try to infer further translations and present new ones fon&w analysis or apply them for
actively detecting semantic agreements in an automatic way

9 Related Work

A number of approaches for making heterogeneous informatairces interoperable are
based on mappings between distributed schemas or ontslegheout making the canoni-
cal assumption on the existence of a global schema.

For example, in OBSERVER [17] each information source naéirstan ontology, ex-
pressed in description logics, to associate semanticsigtinformation stored and to pro-
cess distributed queries. In query processing, OBSERVIER logal measures for the loss
of information when propagating queries and receivingltes@imilarly to OBSERVER,
KRAFT [25] proposes an agent-based architecture to manatgpéogical relationships in
a distributed information system. Relationships amonglogies are expressed in a con-
straint language. [2] proposes a model and architectunméoraging distributed relational
databases in a P2P environment. The authors use locabrelbtiatabase schemas and
represent the relations between those with domain reltod coordination formulas.
These are used to propagate queries and updates. Thensfagi® given between the
local database schemas are always considered as beingtcoime24] a probabilistic
framework for reasoning with assertions on schema relsttiips is introduced. Thus the
approach deals with the problem of having possibly conttady knowledge on schema
relationships. [20] proposes an architecture for the uséMif-based annotations in P2P
systems to establish semantic interoperability.

An approach to self-organizing vocabularies is describd@9]. A set of agents com-
municate by randomly associating a fixed set of words to a fse¢df meanings (which is
called a vocabulary but in fact is an ontology) and repegtedhluate how successful their
communicative acts have been. Depending on the succedsnttieg between a word and
a concept is maintained or replaced by a new random couplihg.decision is based on
sigmoid functions so that the probability of change quidkdcreases if the majority of of
agents uses the same coupling. This approach is relate@ tmethod of cycle analysis
we use and simulate in Section 7. However, it does not emgleyltr analysis. Neverthe-
less [29] shows that semantic agreements are reached gafickly. The additional result
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analysis we perform may help to speed up convergence spedd@ease the scalability
and robustness of the self-organization process. It isgsting to note that [29] shows
that an increased numbers of agents, words, and meaningsidbkead to combinatorial
explosion but implosion. This is due to the fact that the éasing number of words with
consistent meaning narrows the selection space dragtiddlis phenomenon is similar to
the combinatorial implosions described by Kauffman [13]tfee clustering and intercon-
nection of autocatalytic networks.

Edutella [21] is a recent approach to apply the P2P architacprinciple to build a
semantically interoperable information system for thecadional domain. The P2P prin-
ciple is applied at the technical implementation level velaarlogically a commonly shared
ontology is used. The original design of Edutella which isdzhon Gnutella is changed to
a super-peer network approach in [22] which offers bettaladslity and provides sophis-
ticated routing and clustering strategies based on the-dataschemas attributes and on-
tologies used. This approach includes a methodology foiatied between local schemas
at super peers which enables super-peers to route quedenearbine results from differ-
ent semantic domains into one result. It employs transftomaules, so-called correspon-
dences, which have already been used in mediator-basethiation systems [32]Query
Response Assertiofis6] andModel Correspondencd8] are used to express correspon-
dences between heterogeneous schemas.

The Piazza system [10] defines a mapping language to speajfpimgs between sets
of XML or RDF data sources that tries to take into account taiimain and document
structure in the mediation process. The transitive closdirtnese mappings is used to
provide a query answering algorithm over the graph of dateceodefined by the mappings.
Piazza's approach is complementary to our approach siassiimes the existence of pair-
wise mappings between data sources and uses these mappiagswering queries while
we try to detect the quality of mappings in terms of an ovesgleement among nodes
(which can also be seen as a form of transitive closure). Kewée mapping language of
Piazza together with its query rewriting and query ansvgenirethods could also be used
in the Chatty Web approach for more expressive mappingsmprbived query routing.

Approaches for automatic schema matching—see [27] for anvaaw—would ideally
support the approach we pursue in order to generate magpiagemi-automated manner.
In fact, we may understand our proposal as extending appesdor matching two schemas
to an approach matching multiple schemas in a networked@nwvient. One example
illustrating how the schema matching process could be éndlntomated at the local level
is introduced in GLUE [6] which employs machine learningheicues to assist in the
ontology mapping process. GLUE is based on a probabilistidehy employs similarity
measures and uses a set of learning strategies to exploibgigs in multiple ways to
improve the resulting mappings.

Finally, we see our proposal also as an application of gulesiused in Web link analy-
sis, such as [14], in which local relationships of inforratsources are exploited to derive
global assessments on their quality (and eventually theaning).

10 Conclusions

Semantic interoperability is a key issue on the way to the&@dim Web which can push
the usability of the web considerably beyond its currertestéhe success of the Semantic
Web, however, depends heavily on the degree of global agneietinat can be achieved,
i.e., global semantics. In this paper we have presented proagh facilitating the ful-
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fillment of this requirement by deriving global semanticgréements) from purely local
interactions/agreements. This means that explicit locgdpings are used to derive an im-
plicit global agreement. We see our approach as a complanyesffort to the on-going
standardization in the area of semantics which may help pyvaxre their acceptance and
application by augmenting their top-down approach with al dwttom-up strategy. We
have developed our approach in a formal model that is bwltirad a set of instruments
which enable us to assess the quality of the inferred senzaiid demonstrate its validity
and practical usability, the model is applied in a simplepreictically relevant case study.
Also, series of experimental results legitimate our claamsl illustrate our interests in
pursuing research aiming at a better understanding of mktretated properties fostering
semantic interoperability.
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