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Abstract. We consider the problem of tag prediction in collaborative
tagging systems where users share and annotate resources on the Web.
We put forward HAMLET, a novel approach to automatically propa-
gate tags along the edges of a graph which relates similar documents.
We identify the core principles underlying tag propagation for which
we derive suitable scoring models combined in one overall ranking for-
mula. Leveraging these scores, we present an efficient top-k tag selection
algorithm that infers additional tags by carefully inspecting neighbors
in the document graph. Experiments using real-world data demonstrate
the viability of our approach in large-scale environments where tags are
scarce.

1 Introduction

The past few years have witnessed the rise of Web 2.0 applications promot-
ing the sharing of documents through online communities. Documents shared
by users in such applications vary largely, from scientific publications on CiteU-
Like (http://www.citeulike.org) to images on Flickr (http://www.flickr.com) or
bookmarks on del.icio.us (http://del.icio.us). One standard practice in all these
scenarios is to rely on user-provided metadata to foster search capabilities. Tags
are short textual annotations used to describe documents and represent such
user-generated metadata in Web 2.0 applications. Tags are essential in resolving
user queries targeting shared documents, yet require human attention to be gen-
erated. Users typically tag a small fraction of the shared documents only, leaving
most of the other documents with incomplete metadata. This lack of metadata
seriously impairs search, as documents without proper annotations are typically
much harder to retrieve than correctly annotated documents.

Several attempts have already been made to foster the creation of additional
tags in such a context. A number of successful projects, such as the E.S.P. game
(http://www.espgame.org), are based on incentives compelling the end-users to
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create additional tags. Automatic tag creation techniques can produce good re-
sults for specific tag categories; they fail however in general, as automating the
labeling of arbitrary documents is an inherently challenging research problem.

In the following, we present a tag inference technique to assign tags to previ-
ously un-tagged documents or to extend the set of tags for already tagged docu-
ments by propagating existing tags from one document to related documents. We
put forward HAMLET (Harvesting Adjacent Metadata in Large-ScalE Tagging
Systems), a suite of principles, scoring models and algorithms for metadata prop-
agation. HAMLET is based on the assumption that similar documents share
similar tags, therefore we take advantage of a graph relating similar documents,
and suppose that a tag attached to one particular document in the graph might
be appropriate for the neighboring documents as well. Our approach is triggered
by the observation that in our considered scenarios links very often stay in the
topic of the source document. As this has been shown for Web pages, it is even
more visible in citation of scientific papers (where authors refer to related work).

We apply our principles on real data extracted from two popular Web portals:
CiteULike and del.icio.us. CiteULike is an application where users can create
online libraries of academic papers, tag papers, and search for scientific articles
while del.icio.us provides similar functionalities for organizing bookmarks.

1.1 Computational Model

Our model is based on three concepts: documents, tags, and document neighbor-
hoods. A document d ∈ D is uniquely identifiable and represents in our scenarios
scientific publications or Web pages. The documents are created and shared by
users who interact with the tagging system. A tag t ∈ T represents a user-
provided, unstructured piece of metadata attached to a document. We write
t 7→ d to indicate that a particular tag t is attached to a document d and T (d)
to denote the bag of tags {t | t 7→ d} attached to a given document d.

The document graph is generated by the authors of the documents by refer-
ences (citations) to other publications in the case of scientific publications or by
linking via html links in the case of Web pages. To propagate tags from one doc-
ument to the others, we take advantage of document graphs organizing related
documents together. We write di → dj to indicate that the author of a document
has decided to relate document di to document dj through a link in the graph.
The neighborhood of a document d is denoted N(d) and contains all documents
which are reachable from d by traversing the edges of the graph. We will devise
a top-k algorithm to dynamically explore the neighborhood of a particular docu-
ment in order to infer new tags which are relevant for the considered document.

1.2 Contributions and Outline

Our contributions can be summarized as follows:

• We identify document graphs explicitly created by end-users in two real
world scenarios (citation graph for scientific publications and Web graph) as
an instrument for tag inference;



• We present a scoring model to assess the relevance of tags propagated along
edges of the document graph;

• We show how to cast our tag propagation problem into a top-k selection
problem and adapt state-of-the-art top-k algorithms to our context;

• We experimentally evaluate the performance of our approach by analyzing
the propagation of tags for documents from two real world tagging portals.

We start below by reviewing related work in Section 2. We highlight the
peculiarities of our setting, present the principles underpinning tag propagation
and introduce our new scoring model in Section 3. In Section 4 we describe
how to cast our tag propagation problem into a top-k aggregation problem, and
present a new algorithm tailored to our needs. We discuss experimental results
in Section 5 before concluding in Section 6.

2 Related Work

Recently the sphere of social annotations has gained increasing attention. The
term folksonomy has been widely used to denote the process of collaboratively
generating unstructured annotations for documents. Efforts in this area have
concentrated on formalizing generic collaborative tagging systems. The work
by Mika [17] considers a tri-partite model of instances, users, and concepts and
mines the relationships among these three entities. [8, 16, 7] have concentrated on
understanding the tagging process and the resulting social annotations by exam-
ining tag distributions, constructing tag-tag correlation networks and extracting
statistics of users’ tagging behavior. [14] investigate the overlap between anchor-
text and tags for a Web page. [9] present an in-depth analysis of the del.icio.us
tagging portal and conclude that the data contained in tagging portals represents
valuable information which could enhance the performance of search engines. A
similar conclusion is drawn by Yanbe et al. [24] who also investigate the pos-
sibility of a hybrid search approach, based both on PageRank and on social
annotations. Bao et al. [2] introduce two algorithms which integrate information
extracted from the tags into the search process. In [19] Schenkel et al. propose
a new method to leverage social tags for improved content search. While their
method also incorporates users in the query processing, it does not consider tag
propagation using document-to-document similarities. Their method is orthogo-
nal to our method as we focus on tag retrieval which is an important ingredient
for meaningful document retrieval in social networks.

A different body of work deals with the problem of extracting semantic infor-
mation from unstructured annotations. A probabilistic model has been proposed
in [23] in order to derive the emergent semantics which characterize the collab-
orative tagging process. The authors also describe a framework for discovering
semantically related tags based on the relations between the three entities: tags,
users and resources. Rattenbury et al. [18] extract events and place semantics
from Flickr tags based on geographical and temporal metadata attached to im-
ages. Schmitz et al. [20] address a similar problem and propose a solution based



on a subsumption model for deriving an ontology from social annotations. While
the above mentioned approaches are similar to our work, they are actually or-
thogonal since the authors do not directly address the problem of inferring tags
for resources.

Addressing the problem of inferring new annotations for resources, the ap-
proach in [3] generates personal annotations based on the content of the docu-
ments or on data from the personal desktop. Our method enhances the annota-
tion set of documents by solely relying on their context and uses content-based
information only to optimize the results.

Sigurbjörnsson et al. [21] address a similar problem of automatic tag sug-
gestion in the Flickr portal by using a co-occurrence measure for assessing tag
relatedness. As opposed to our approach, the authors do not consider the local
context of a resource and rely exclusively on global statistics.

The work by Jäschke et al. [13] considers a tripartite model of users, resources,
and tags and employ their Folkrank [11] algorithm, a PageRank like, iterative
algorithm, to assign tags to resources. While the general idea is similar to ours,
it requires knowledge of the global graph.

The same problem is tackled by Heymann et al. [10] where the authors pre-
dict tags for Web pages in del.icio.us based on the anchortext, Web page content
and on the surrounding hosts. The authors predict tags from the set of 100 most
frequent tags found in del.icio.us by training a classifier which runs a binary
classification task for each tag. The classifier is trained on a set of very popular
bookmarks. As opposed to this method our approach does not rely on classifica-
tion. In addition, we do not restrict ourselves to a predefined set of tags which
are predicted. By doing so we could expect a gain in precision; however, this
would drastically restrict our general approach to only a small number of tags
which can be inferred.

Tag prediction is treated as a classification problem by Song et al. [22] who
propose a real-time automatic tag recommendation method. The authors start
by building document clusters offline and then assign a new document to those
clusters with some probability in an online process. Again, our method is different
since we do not consider any learning algorithms.

Our idea of using the context of a document (defined by its neighborhood
in the graph) is furthermore supported by the observations in, e.g., [4], showing
that in a Web graph most outgoing hyperlinks stay in the same topic as the
originating page.

Existing work in the area of graph based classification [15, 1] is also poten-
tially relevant to our approach. [1] is in particular related to our approach since
it considers content based node similarities as edge weights in the citation graph
which supports our initiative of using links to relate documents. However, these
classification algorithms are inherently limited to only a few classes, usually
rely on global computations, or require several iterations, which makes these
approaches hardly applicable in our envisioned scenario.
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Fig. 1. The four principles underpinning our notion of tag propagation

3 Scoring Model

In the following we introduce the main characteristics of our setting, discuss
generic principles underpinning our tag propagation framework and show how
these principles can be applied to create a scoring model for assessing tag rele-
vance w.r.t. a document.
Our setting has the following characteristics:
Scarce Information: tagging documents requires human attention, which is

one of the scarcest resources today. Realistically, only a small subset of users
will make the effort of tagging a given shared document and most probably
the number of tags attached will be small too.

Document Organization: the document collections we analyze are not flat,
as documents are organized through user-defined links which are in our case
html links or citations. Hence, in addition to the notion of document col-
lection classically defined in information retrieval, we always take into con-
sideration document neighborhoods defined by following series of links from
one given document.

3.1 Principles

Our tag propagation algorithm relies on four key principles (cf. Figure 1) which
help us determine whether a tag should be propagated towards a given document
or not, i.e., to which extent the tag is relevant to the given document.

i. the frequency with which a tag appears in a given document neighborhood
(tag occurrence);

ii. the frequency with which a pair of tags is simultaneously attached to a
document (tag co-occurrence);

iii. the distance between a potential tag and a given document in the resource
graph (tag distance);

iv. the similarity between the documents the tags are attached to (document
similarity).

In the following we will present the different measures which we use to capture
these principles and which will be later combined into an overall scoring function.



3.2 Measures of Tag Relevance

Tag Occurrence The importance of a term in a document is usually consid-
ered as increasing proportionally with the term frequency, i.e., with the number
of times the term appears in the document. In our setting where most tags are
missing, however, tags rarely occur more than once for a given document, prov-
ing the measure pointless most of the time. Instead, we define the notion of tag
occurrence as the number of times a tag t′ appears in a certain neighborhood of
a document d, N(d): occN (t′) =

∑
d′∈N(d) 1d′(t′), where 1d′(t′) is an indicator

function equal to one if t′ 7→ d′, to zero otherwise. Hence, the tag occurrence can
be seen as capturing the popularity of a tag in a neighborhood. Note that we con-
sider only a boolean decision, i.e., a tag is attached to a document or not. We do
not consider how often a tag is assigned to a document as we aim at searching for
support of tags in the entire neighborhood and do not want to push the influence
of tags that occur often in some documents but rarely in the neighborhood.

Tag Co-Occurrence The tags attached to a document are usually not inde-
pendent. Some tags regularly appear together as they describe correlated facets
of a given document (e.g., Macintosh and Apple). Therefore we consider mea-
sures for tag co-occurrence like the Dice or Jaccard coefficients or conditional
probabilities as one ingredient of assessing tag relatedness. Using such measures
we can assess the potential relevance co occ(t′, t) of a tag t′ for a document
that already contains a tag t. As documents typically contain more than one
tag, we extend this notion for sets of tags T (d) attached to a document d:
co occ(t′, T (d)) =

∑
t∈T (d) co occ(t

′, t).
As one particular instantiation, we consider in our work the conditional prob-

ability that a document contains tag t′ given that it already contains tag t:
P (t′ 7→ d | t 7→ d). We treat all initial tags individually, i.e., we do not consider
an aggregated score for an observed tag t′ ∈ N(d) to all possible subsets of the
initial set of tags attached to d. In the case when the set of initial tags is empty
we synthetically introduce a tag ts for the considered document that co-occurs
once with t′ in the whole collection.

Document Similarity Another ingredient of our scoring model is the degree
of similarity between the documents to which the tags are attached. We employ
a standard vector space model and use the following cosine similarity metric:

sim(d, d′) =
∑

i wd[i] ∗ wd′ [i]√∑
i wd[i]2 ∗

√∑
i wd′ [i]2

,

where wd is the vector representation of document d and wd[i] its i-th entry, i.e.
reflecting the importance of term termi for d. There are multiple ways to quantify
this importance, such as the relative term frequency rtf = tf/tfmax which we
have chosen in this work, where tf is the term frequency which is defined as
the number of occurrences for a particular term in a particular document. tfmax

denotes the largest tf value for one document. In order to assess the relatedness
of documents which are several hops away we consider the product of similarities
along the path between the observed document and the initial document:



Π
|path(d,d′)|−1
i=0 sim(di, di+1)

Tag Distance We assume that documents which are closer to each other in the
graph have more related tags. Thus, an important metric is the distance from
from one document d to another document d′. We define this distance as the
shortest path (in terms of the number of graph edges): dist(d, d′) = path(d, d′).
We will use this distance as a dampening factor reducing the score of those tags
that are located further away in the graph.

Due to the top-k fashion of our algorithm that explores the neighbors in a
greedy way, we cannot (as we will see in Section 4) use the exact shortest path
length. Instead, we compute the path with the smallest “cost” and use its length
to approximate the minimal distance between the documents. The “cost” of a
path is defined in this case in terms of 1 minus the similarity score of the path
as described above.

3.3 Combined Scoring Function

We combine the four principles described above and produce a scoring function,
used to assess the degree of relevance of a tag t′ (observed in the neighborhood
of d) for a document d.

score(t′, d) =
m∑

d′∈N(d)∧t′ 7→d′

S ∗O

The final score of tag t′ observed up to m times in the neighborhood of the
initial document d represents the sum of partial scores for each of its single
occurrences. The parameter m controls the number of tag occurrences to be
considered in the final aggregation. As we will see in the following section, m is
required to compute the upper and lower bound scores to enable tag pruning in
the top-k retrieval and therefore influences the size of the neighborhood which
will be explored.

The partial score for each observation of t′ is computed as a product of two
factors. The first factor, coined S, consists of the aggregated similarities along
the path between a document d′ and the initial document d, i.e., principle (iv),
dampened by the distance between the documents. The rationale behind this
dampening stems from the fact that the relevance of a tag decreases with its
distance to the initial document, which is one of our fundamental assumptions,
i.e., principle (iii).

S =
Π
|path(d,d′)|−1
i=0 sim(di, di+1)
log(1 + dist(d, d′))

The second factor, denoted O, expresses the relatedness of a particular tag
t′ to the set of tags obtained from the initial document T (d), which reflects the
second principle (ii).



O = log(1 + co occ(t′, T (d)))

In the overall scoring function, the sum aggregates the various occurrences of tag
t′ in the neighborhood of d, N(d), following principle (i). Overall, the term (i.e.,
tag) specific influence is weighted by the objective importance of the term. This
importance is in our case modeled by the distance from the point of observation
to the initial document.

4 Top-k Tag Selection

Our algorithm starts from an initial document for which new tags should be
inferred and traverses its neighborhood while computing scores for each observed
tag. In the following, we show how tag propagation can be cast into a top-k
selection problem that finds the most relevant tags for a given document in the
graph while minimizing the number of documents visited.
As of today, the most efficient top-k query processing algorithms are based on
the family of threshold algorithms (TA) (cf., e.g., [5]). In particular, the NRA
(or TA-sorted) algorithm [6] only uses sequential (sorted) data access and hence
is particularly interesting for our graph-based top-k problem. Our top-k tag
selection algorithm is based on the concepts developed in this context, but adapts
this family of algorithms to fit our unique context.
A common feature of these threshold algorithms is that they consider monotone
aggregation functions, on which we focus here as well. We employ summation
as the aggregation function, as it reflects the paradigm of considering the tag
occurrences in a neighborhood.

Our computational model is the following: We consider the tag propagation
along multiple edges in the graph towards an initial document d as a top-k
aggregation problem where every document d′ ∈ N(d) represents one particular
index list consisting of a series of (tag, score) pairs. These (tag, score) pairs are
sorted in descending order w.r.t. to their score and express the relevance of a
particular tag to the initial document d. Each edge in the document graph leads
from one index list to other index lists (the actual number of index lists it leads
to depends on the out-degree). The algorithm starts at the document for which
we want to infer new tags and traverses the graph while computing scores for
each observed tags t′.

Algorithm 1 depicts our nested top-k graph traversal and top-k aggregation
algorithm. The algorithm performs a greedy traversal of the graph as follows:
In the beginning, the algorithm inserts all neighbors of the initial document
into a priority queue (Qdocs). Then, it chooses the neighbor with the highest
document similarity (line 8) and aggregates the (tag, score) pairs of the selected
document incorporating the document similarity as a weight as mentioned above.
Subsequently, the neighbors of the current document are inserted in the priority
queue. Index lists are thus accessed on-demand depending on their expected
contribution to the final result.
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Figure 2. An example of a particular
state during the top-k aggregation. The
thick lines indicate the edges of the span-
ning tree. All nodes touching these edges
have been visited so far. The black circles
denote the current border line (candidate
nodes to be visited in the next step) which
is responsible for the score upper bounds
of the tags.

getTopKTags(Document dinit)
1 PriorityQueue<document, score> Qdocs = ∅
2 PriorityQueue<tag, score> Qcand = ∅
3 Array(T, float) topk = ∅
4 Qdocs.enqueue(firstlevelneighbors(dinit))
5 smax = 1
6 min-k = 0
7 while (Qcand.size > 0 and m ∗ smax > min-k){
8 dcurrent = Qdocs.dequeue()
9 topborder = Qdocs.peek().score
10 for t′ ∈ dcurrent{
11 t′.worstscore+ = score(t, dcurrent)
12 t′.seen + +
13 if t′.worstscore > min-k then {
14 topk.update(t′)
15 min-k = topk[k]
16 }
17 t′.bestscore = ... (see below) ...
18 if t′.bestscore ≤ min-k then Qcand.delete(t′)
19 }
20 Qdocs.enqueue(firstlevelneighbors(dcurrent))
21 Qcand.updateBestScore(m, smax)
22 smax = topborder ∗min(co occ)
23 }
24 return topk

Algorithm 1. Top-K Algorithm

The algorithm maintains a list of potential candidate tags (Qcand) and a list
of the current top-k results (topk). Following the standard concepts of top-k
query processing [6], we define worstscore(t′) (line 11) as the lower bound score
for tag t′ by considering those scores that have already been reported for t′.
Similarly, bestscore(t′) denotes the upper bound score for tag t′, that is the
score considering all previously seen scores plus the largest possible scores for
t′ coming from unexplored regions of the graph. We denote the worstscore of
the tag currently at rank-k as min-k. A tag t′ with bestscore(t′) < min-k can
be safely dismissed since it has no chance of getting into the final top-k results
(line 18).

The main difficulty in our scenario stems from the fact that the number of
documents in the neighborhood is unknown. Considering summation as the ag-
gregation function is then problematic since it does not allow for pruning candi-
date tags during the top-k query processing, as the expected score mass is poten-
tially unbounded. In our algorithm, the document queue describes, at any point
in time, the borderline to the currently unexplored graph regions (cf. the solid
black circles in Figure 2). Since we cannot look beyond that line, we are not aware
of the tags and documents occurring there. However, we know the score of the
best path (or of the multiple best paths) to one (or more) of the documents at the
border line, coined topborder. The bestscore (upper bound score) of a tag t′ ob-
served so far m′ times with worstscore (lower bound score) is based on the most
promising document on the borderline and on the co-occurrence value of the tag
w.r.t. the initial document. A tag that has been seen m′ out of m possible obser-
vations can at most gain m−m′ times the current maximum score, which is sim-
ilar to existing work, solely based on the tag scores. More formally we can write:

bestscore = worstscore+(m−m′)( topborder

log(1 + dist(dinit, dborder))
∗ log(1+co occ)).



5 Experiments

5.1 Experimental Setup

We experimentally confirm the validity of our approach using two datasets which
we have crawled in 2007 from two popular tagging portals. All algorithms have
been implemented in Java 1.6. The simulation ran on a 2x2.33 GHz Quad-Core
Intel Xeon CPU with 8GB RAM. The data is stored in an Oracle 11g database.
We consider the following real-world datasets:

CiteULike: This dataset consists of documents and tags from CiteULike, a
tagging portal for academic publication. We take advantage of the bibliographic
information, i.e., citations, to define the document graph: we add an edge di → dj

whenever di cites dj . We automate the citation extraction by relying on the
citation information available on CiteSeer. Our dataset consists of approximately
540, 000 papers annotated with 195, 000 distinct tags. From this set of papers we
have randomly crawled a total of 2200 pdf documents which we indexed using
Lucene (http://lucene.apache.org).

Del.icio.us: We have obtained the del.icio.us crawl from [19]. This dataset
consists of approximately 120, 000 html pages, annotated by users with 59, 143
distinct tags. We have built the document graph by adding an edge di → dj

whenever a page di has a hyperlink pointing to another page dj . The Web pages
were crawled and indexed using Lucene.

We tested our approach having three specific metrics in mind:

– Precision: We considered the “precision at k” of the tag propagation, which
is defined as follows: precision@k = #relevant tags/k, where the relevance
of the tag is either taken from a human expert evaluation or automatically
computed. In order to have an assessment as fair as possible, we disregard
all inferred tags that were among the initial tags of the document, i.e., we
concentrate on k new tags systematically.

– NDCG: In addition to the precision we also report on the NDCG (Normalized
Discounted Cumulative Gain) [12]. This measure takes into consideration the
ranking of the results in addition to their relevance.

– Number of documents visited: To assess the practical viability of our algo-
rithm, we decided to measure the number of nodes visited in the document
graph during the tag inference process. This was preferred over CPU or
processing time in order to get easily reproducible results.

Note that we do not report on recall since (i) we focus on top-k retrieval, and
(ii) the number of relevant tags for a document is unknown and potentially very
large.

In order to compute the precision, we consider two different kinds of relevance
assessments: human expert evaluation and automatic evaluation. In the first
case we ask a group of experts to mark the newly inferred tags as relevant



or non-relevant. This measure is referred to as absolute precision. Secondly, we
make use of existing tags attached to documents in order to run an automatic
precision evaluation. We “hide” parts of the already assigned sets of tags, then
try to infer new tags with our algorithm. We use the “hidden” tags to assess
the relevance of the inferred ones, i.e., an inferred tag is considered relevant only
if it occurred in the set of initial (but hidden) tags. This is actually a relative
precision measure, since it is reported w.r.t. to the set of already assigned tags.
Naturally, the relative precision values tend to be smaller, as potentially relevant
tags are deemed irrelevant because they did not appear in the initial set of tags.
However this approach allows us to run experiments on a larger scale which is
difficult to achieve when relying on manual relevance assessments.

As an illustrative example, consider for instance the paper entitled “Rout-
ing Indices For Peer-to-Peer Systems”. The set of initial tags contained the tags
{“index”, “search”, “20050923”, “p2p”, “p2p-search”, “20050923”, “peer-to-p”,
“semantic”, “survey”, “unstructured-network”} which our algorithms extended
for k = 5 with the additional tags {“network”, “search”, “distributed”, “secu-
rity”, “system”}, yielding a precision of 80%.

Algorithms under Comparison Our experiments start by randomly selecting
a set of initial documents (academic papers or bookmarked Web pages). For
each of these initial documents we run our algorithm to infer the top-k most
relevant tags which are new for the initial document (i.e., not in the set of
already assigned tags). We always report on the average values of precision@k,
NDCG@k and visited neighbors for the set of initial documents.

In the following we present the set of algorithms on whose performance we will
later report. Besides our approach, we include a set of baselines which implement
different measures of tag relevance for a given document.

Document Similarity Baseline: Our first baseline ignores the document
graph and only considers the document similarity as an indicator for tag rele-
vance. For each initial document d we compute a ranked list of the most similar
documents d′ ∈ D from the dataset. As a measure for document similarity we
employed the cosine similarity sim(d, d′) presented in Section 3.1. In order to
build a set of the most relevant k tags, we traverse the ranked list starting with
the most similar document and copy its tags T (d′) into our top-k list. We stop
when we have copied k new tags and compute the corresponding precision@k.
In case the last document selected delivers more than k tags we randomly select
among them.

Tag Co-Occurrence Baseline: Our second baseline is build upon the tag
co-occurrence as a measure of relevance of a tag t′ to a document d. For each
of the initial documents d we build a ranked list of tags which have the highest
co-occurrence scores co occ(t′, T (d)) w.r.t. the initial set of tags T (d) of the doc-
ument. These scores are computed as described in Section 3.1. The precision@k
is computed by selecting the first k tags from this list.

Tag Overlap Baseline: Our last baseline considers those documents which
have the highest number of tags in common with the initial document as good
candidates for tag propagation. Therefore we rank all documents in our dataset



d′ ∈ D according to the size of the intersection between their sets of tags T (d′)
and the set of tags T (d) of the initial document d: I = T (d) ∩ T (d′). We then
compose our top-k list by copying the remaining tags from the set T (d′) \ I.

HAMLET: This is our ranking and graph traversal algorithm which com-
bines the measures of tag relevance and the top-k ranking algorithm presented in
the previous sections. For each of the initial documents d we explore the neigh-
borhood N(d) in a greedy best-first manner by carefully selecting only those
neighbors d′ which have a high chance of delivering potentially relevant tags for
the initial document according to our principles of tag relevance. Our algorithm
stops when there are no more possible top-k tags to be discovered.

5.2 Experimental Results

We start by presenting the results obtained for the citeulike benchmark where
we considered 30 initial documents and collected manual assessments of tag
relevance from 20 colleagues in order to evaluate the precision@k. Table 1 reports
on the precision@k and NDCG@k values and on the number of visited neighbors
for HAMLET. Our precision@k is promising in particular for k < 10, where we
achieve 73% for k = 3 and 65% for k = 5. Intuitively, the precision values decrease
with a higher k.

m k Precision@k NDCG Neighbors
3 3 0.73 0.74 41
3 5 0.65 0.68 93
3 7 0.55 0.60 74
3 10 0.51 0.58 217
3 15 0.44 0.53 234
5 3 0.70 0.72 124
5 5 0.65 0.69 153
5 7 0.57 0.63 247
5 10 0.52 0.59 328
5 15 0.45 0.53 386
7 3 0.72 0.74 243
7 5 0.65 0.69 257
7 7 0.57 0.64 356
7 10 0.51 0.59 421
7 15 0.46 0.54 486

10 3 0.74 0.76 293
10 5 0.65 0.69 385
10 7 0.57 0.64 468
10 10 0.51 0.59 517
10 15 0.46 0.54 543

Table 1. Precision@k, NDCG@k and num-
ber of visited neighbors for the citeulike bench-
mark (30 initial documents) with manual preci-
sion evaluation.

m k Rel. Prec.@k NDCG Neighbors
3 3 0.50 0.51 1.65
3 5 0.42 0.46 1.65
3 7 0.36 0.42 1.67
3 10 0.30 0.37 1.67
3 15 0.23 0.31 1.67
5 3 0.50 0.51 1.67
5 5 0.42 0.46 1.65
5 7 0.36 0.42 1.67
5 10 0.30 0.37 1.67
5 15 0.23 0.31 1.67
7 3 0.50 0.51 1.67
7 5 0.42 0.46 1.65
7 7 0.36 0.42 1.67
7 10 0.30 0.37 1.67
7 15 0.23 0.31 1.67

10 3 0.50 0.51 1.67
10 5 0.42 0.46 1.66
10 7 0.36 0.42 1.67
10 10 0.30 0.37 1.67
10 15 0.23 0.31 1.67

Table 2. Relative Precision@k, relative
NDCG@k and number of visited neighbors for
the del.icio.us benchmark (140 initial docu-
ments) with automatic precision evaluation.

The parameter m, which controls the number of occurrences that are con-
sidered for a tag, influences the number of documents that are visited during
run-time, e.g., for k = 3 our algorithm visits only 41 neighbors when m = 3 and
293 for m = 10. This is expected since m directly influences the upper bound



scores of observed tags which are essential for the candidate pruning and hence
the stopping of the algorithm. With m large, a higher number of tags is kept in
the candidate queue as their bestscore might still be larger than the score of the
current tag at rank-k (min-k). However, the influence of m on the precision@k is
almost negligible which supports the initial hypothesis that the most promising
tags are actually found in the close vicinity of a document and that exploring
further regions does not contribute substantially to the top-k result.

The results of the three baseline algorithms for the citeulike experiment
are presented in Table 3 (precision) and Table 4 (NDCG). As expected, the
precision values of the individual baselines are much lower than those achieved
by our combined scoring scheme. This is mainly due to the fact that without
any links between the documents we loose the context information captured by
document graph and therefore the quality of the chosen tags, based only on
global statistics, drops considerably. Still, the co-occurrence baseline achieves a
precision of 53% which supports the general claim that the co-occurrence score
of two tags is closely related to their semantics.

k CoOcc DocDoc Overlap HAMLET
3 0.53 0.20 0.14 0.70 - 0.74
5 0.39 0.20 0.16 0.65
7 0.31 0.20 0.16 0.55 - 0.57

10 0.25 0.17 0.15 0.51 - 0.52
15 0.22 0.17 0.14 0.44 - 0.46

Table 3. Precision@k for the three baselines
for the citeulike benchmark (30 initial docu-
ments) with manual precision evaluation. Sum-
marized HAMLET performance for ease of com-
parison.

k CoOcc DocDoc Overlap HAMLET
3 0.54 0.19 0.15 0.74 - 0.76
5 0.45 0.19 0.16 0.69 - 0.68
7 0.39 0.19 0.16 0.60 - 0.64

10 0.35 0.17 0.16 0.58 - 0.59
15 0.31 0.17 0.15 0.53 - 0.54

Table 4. NDCG@k for the three baselines for
the citeulike benchmark (30 initial documents)
with manual precision evaluation. Summarized
HAMLET performance for ease of comparison.

For the del.icio.us dataset we took advantage of the fact that popular book-
marks are annotated with a large set of tags and we implemented the above
described automatic method for evaluating our precision. We selected book-
marks which were annotated with more than 20 and less than 40 tags and for
each of them we randomly chose 4 tags (corresponding to the average number
of tags per document in the whole dataset) as an input for our algorithm and
disregarded the rest. We then ran our algorithm for each initial document and
its 4 initial tags and computed the relative precision@k w.r.t. the hidden tags.
We expect the real precision values to be higher, since the set of relevant tags for
a document is potentially much bigger than the tags which have already been as-
signed by users. Table 2 reports on the results of our algorithm on the del.icio.us
benchmark consisting of 140 initial documents and for which we automatically
assessed the relative precision@k and NDCG@k. This second set of results shows
the performance of our algorithm (e.g., 50% precision for k = 3) when ran on a
larger scale. As described above this is a measure of relative precision as we use
as the ground truth the set of initial tags already attached to a document. This
set of tags presumably represents only a small portion of all the relevant tags
for that document. Another observation is that the number of visited neighbors



k CoOcc DocDoc Overlap HAMLET
3 0.04 0.006 0.13 0.50
5 0.03 0.005 0.13 0.42
7 0.02 0.003 0.13 0.36

10 0.02 0.004 0.12 0.30
15 0.02 0.004 0.11 0.23

Table 5. Relative Precision@k for the three
baselines for the del.icio.us benchmark (140
initial documents) with automatic precision
evaluation. Summarized HAMLET performance
for ease of comparison.

k CoOcc DocDoc Overlap HAMLET
3 0.05 0.007 0.13 0.51
5 0.04 0.006 0.13 0.46
7 0.04 0.005 0.13 0.42

10 0.03 0.005 0.13 0.37
15 0.03 0.005 0.12 0.31

Table 6. Relative NDCG@k for the three
baselines for the del.icio.us benchmark (140
initial documents) with automatic precision
evaluation. Summarized HAMLET performance
for ease of comparison.

is much lower and remains constant as compared to the citeulike experiment.
This is caused by the sparsely annotated general Web graph, i.e., documents
have often only a few neighbors which are also tagged in del.icio.us. Therefore,
in this the setting parameter m looses its importance since the annotated neigh-
borhood of a document is small. However, our reported relative precision proves
that our approach works well in both settings and does not depend significantly
on the properties of the considered datasets.

The results of the baseline algorithms for the del.icio.us benchmark can be
observed in Table 5 (precision) and Table 6 (NDCG). Similarly to the previous
experiment the relative precision@k values are much lower than those achieved
by our algorithm. The baseline precisions are very low in this case and this is
mainly due to the heterogeneity of the del.icio.us dataset. While citeulike repre-
sents a more restrictive domain of academic publications, our del.icio.us dataset
represents a small subset of the Web, which means that the global measures will
give far less accurate results. Our algorithm achieves higher precision values by
limiting the scope of the tag inference to the neighborhood of a document and
thus filtering out tags which are not directly related to that particular context.

In general, we can consider our method as accurate, given the inherent com-
plexity of the task at hand. By taking advantage of a user-defined document
graph and devising specific scoring and pruning methods, we reach a precision
of 73% for the newly inferred tags when we use manual relevance assessments
and 50% relative precision in the automatic case. Furthermore, our approach
operates without any domain-specific knowledge, and with a number of compu-
tational operations sufficiently low to accommodate large settings.

6 Conclusions

Retrieving information from Web 2.0 applications opens up new challenges, as
well as many exciting opportunities. We have put forward HAMLET, an ap-
proach for metadata propagation which is based on a socially-driven graph re-
lating similar documents. The techniques we have developed throughout this
work can potentially be extended beyond our showcase scenario focusing on aca-
demic papers and html bookmarks. As concrete examples, we believe it would
be reasonable to extend our algorithm to images, songs, or movies explored on-
line by communities of users. In addition, our approach could be used to rank
existing tags of a document based on their support from the neighborhood.
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