
A DECENTRALIZED ARCHITECTURE FOR ADAPTIVE MEDIA DISSEMINATION

Philippe Cudré-Mauroux and Karl Aberer

School of Computer and Communication Sciences
Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
{philippe.cudre-mauroux, karl.aberer}@epfl.ch

ABSTRACT

P2P content distribution networks have become extremely popu-
lar on the Internet. Due to their self-organization properties, they
suffer from the lack of control to balance the load among peers
for contents of different popularity. In this paper, we define and
analyze a fully decentralized architecture to support replication of
popular media content in a peer-to-peer network. We show that
by exploiting local knowledge only, this method achieves a near-
optimal behavior with respect to response time in a scenario with
limited storage capabilities at peers.

1. INTRODUCTION

Although streaming media applications have become common-
place over the internet, the overall infrastructure responsible for
delivering media content still lacks performance, scalability and
versatility in order to meet today’s requirements; exclusive and
highly-anticipated media contents (films trailers, album previews
or interactive story excerpts) appear regularly on the Internet, while
other media files gain sudden popularity in unpredictable manners,
generating so-called flash-crowds rushing over specific media as-
sets. This leads to millions of users wanting to access thousands
of resources asynchronously over short periods of time.

In such situations, the usual client-server paradigm, with its
well-known limitations due to the central component responsible
for serving all the requests, can not be applied. Though alterna-
tive architectures (see Section 5) have been devised to remedy this
problem, none of them meets the requirements of a global and scal-
able dissemination network. In particular:

complete decentralization considered here as a necessary condi-
tion for scalability (as central components represent single
points of failure and usually do not scale gracefully).

structural self-organization for autonomy and scalability reasons.
The system should not require any manual configuration
and should manage data in a structured way to support effi-
cient search and replication strategies.

reactiveness as the system has to adapt continually and allocate
its resources based on the current situation in order to max-
imize its utility.

This paper proposes a decentralized architecture for adaptive me-
dia dissemination meeting the criteria defined above. We build
a completely autonomous and decentralized content distribution
network by storing media files in a P-Grid [1, 2] peer-to-peer ac-
cess structure, presented in Section 2. In Section 3, we introduce

a novel mechanism for including reactiveness into the system, fa-
cilitating global load-balancing by replicating media files locally.
Section 4 evaluates the replication scheme. Related works and
conclusions are given in Section 5.

2. DECENTRALIZED SELF-ORGANIZATION

Media files are stored and accessed through a P-Grid, a robust,
scalable and decentralized access structure created over an unreli-
able network (such as the Internet). It is composed around a virtual
binary search tree distributed among a community of peers (i.e.,
the private or public entities forming the distribution network).
Peers meet continually, constructing and refining the structure as
explained in [1]. Each peer holds part of the overall structure
which is built by local interactions only. Names of the assets stored
in the system are mapped to binary bit strings as keys. Similarly,
each peer is virtually positioned in the system by its binary string
path, indicating the pieces of information the peer is responsible
for. For example, the path of peer4 in the P-Grid shown below
(Fig. 1) means that it is responsible for all media items whose keys
start with ‘10’, and thus stores them. The path implicitly parti-
tions the search space and defines the structure of the virtual binary
search tree. As can be seen from the figure, multiple peers may be
responsible for the same path (e.g., peer1 and peer6 in Fig. 1), for
improving robustness and responsiveness, since peers are not on-
line all the time but with a certain, possibly low, probability. For
the rest of this paper, we assume the peers to have reached a stable
and unique position in the tree (each of them is located at a leaf
in the virtual hierarchy). References to peers situated in the other

Routing table
(route keys with prefix P to peer X)

Legend:

Peer X

Data store
(keys have prefix P)

stores data
with key

01 : 2
1 : 5

prefix 00

query(6, 100)

query(5, 100)

stores data
with key
prefix 00

01 : 2
1 : 3

stores data
with key
prefix 01

00 : 6
1 : 4

stores data
with key

0 : 6

stores data
with key
prefix 10

11 : 5
0 : 2

11 : 5

prefix 10

stores data
with key
prefix 11

10 : 4
0 : 6

"virtual binary search tree"

0

00 01 10 11

1

query(4, 100), found!

1 6 2 3 4 5

X

P

P:X

Figure 1: An Example of P-Grid

part of the tree are stored by the peers at each level, so that each
peer may serve as an entry point for any search query; the peer first
checks for the longest common prefix between its path and the key
of the file it is searching for, and eventually forwards the request
to another peer it knows at the level corresponding to the end of
that prefix. A query for ‘100’ sent to peer6 would for example
be forwarded to peer5 at the first level (as the key and the path of
the peer do not share a common prefix, peer6 forwards the query
to a peer it knows responsible for assets starting with ‘1’), before
finishing at peer4, which is capable of answering the request as it
stores assets whose keys start with ‘10’. Note that in a real setting,
multiple peers would be listed for each level in the routing tables,
and one of them would be selected randomly when forwarding the
request.

3. REACTIVENESS

P-Grid provides us with a balanced, distributed, decentralized and
self-organizing structure for accessing media assets in a commu-
nity of peers. On top of this, we build mechanisms for allowing
wide-spread dissemination of popular content. A centralized sys-
tem would typically rank the different assets based on the number
of requests they have generated, and replicate the most popular
files accordingly. This is obviously not suitable for a decentralized
system, where information as well as decision processes are dis-
tributed among the peers. Also, we avoid moving the peers from
one leaf to another (unbalancing the graph de facto by clustering
numerous peers around paths referring to currently popular assets),
as it would imply rewriting most of the routing tables repetitively.
Unlike many systems, we are not interested in geographical op-
timization of caches either; as stated in [3], there is a significant
temporal stability in file popularity, but not much stability in the
domains from which clients access the popular content. Instead,
we take advantage of structural properties of the system to repli-
cate data based on local interactions at strategic locations crossed
while processing the query.

This works as follows: Peers maintain statistics about the num-
ber of times they serve the assets they are responsible for (i.e., the
assets they have to store). An asset is considered as popular if this
number reaches a certain threshold γ (see next section for meth-
ods to compute γ locally), and is immediately granted a popular-
ity level; these levels mask the less significant bits of the key used
to identify the asset. Due to that mask, the key is considered as
shorter, placing the asset virtually higher in the hierarchy, thus im-
plicitly leading to a wider dissemination of the content. For exam-
ple, Fig. 2a depicts a simplified P-Grid at the introduction of a new
asset, represented by key ‘000’. As explained in the preceding sec-
tion, the peer responsible for the key (peer1 here) first possesses
the asset. Then, considering the asset as popular, peer1 grants a
first level of popularity to it; the asset, though concretely keeping
its original key, is now considered as referring to key ‘00’. When
learning about that fact, peer2 replicates the content as it is also
responsible for key ‘00’ (see Fig. 2b, where peer1 has transmitted
the asset along with the original key and the popularity level to
peer2). Now, if we slightly modify the query processing algorithm
by allowing a peer to check if he stores an asset locally before
routing a request any further, peer2 will start to serve requests for
‘000’ when encountering them. Furthermore, as a request for asset
‘000’ is at the second level routed to peer1 or peer2 indifferently,
one half of the requests for this asset will statistically be served by
peer2 from this moment. Now, peer1 estimates again the number

1

Peer storing the
asset '000'
Virtual position of
the asset '000'

0
bit of the key
masked

a) b)

c)

000

0

00 01

010 011000 001

2 3 4 1

00 0

0

00 01

010 011000 001

2 3 4

1

0 0

0

00 01

010 011000 001

2 3 4

0

Figure 2: The Replication Mechanism

of requests it has recently answered for asset ‘000’ (this number
decreases by the order of two after some time due to the popular-
ity level granted to the asset), and grants the file another popularity
level if this number reaches γ again. Treated as if referring to key
‘0’, the asset gets copied to peer3 and peer4. Four peers store the
asset, and each of them answers a quarter of the requests asking
for asset ‘000’. Thus, we see that granting a popularity level to
an asset multiplies by two the number of peers storing the asset
and divides by two the request rate each of them receives for this
particular asset. Finally, we force the peers to always route all
the requests to their final destination, indicating if needed that the
request has already been satisfied (peer3, for example, always for-
wards the request for ‘000’ to peer1, even if it has already handled
the request). Thus, peers are always capable of maintaining accu-
rate statistics about the number of handled and unhandled requests
they receive for an asset they are responsible for.

4. REPLICATION SCHEME EVALUATION

Mean Response Time. In this section, we study the performance
of the mechanism presented above on a simplified system where
all peers have the same bandwidth and processing power available.
We consider a set of peers and a corresponding set of media assets
stored by those peers. All assets are of fixed size, but differ in their
popularity (some assets generate more requests than others). We
consider the popularity of a given asset to be constant over a short
period of time. Originally, each peer is located at a leaf in the P-
Grid and possesses (and thus is responsible for) one distinct asset
assigned randomly. Over time, peers will grant popularity levels
and assets will be replicated at other peers.

Let n be the number of peers and let a1, . . . , an be the assets.
The popularity of the assets is given by a Zipf distribution, i.e.,
requests for the asset ai arrive at a rate λi = i. Peers serve (i.e.,
transmit) the assets with a constant rate µ. At first, all assets start
without any popularity level, but peers grant levels to the assets
they are responsible for as long as the traffic intensity ρi = λi

µ

generated by the asset is equal or greater than γ. As explained
above, each of these levels doubles the number of peers storing the
assets, thus divides by two the request rate λ′i a peer receives for
the asset ai. Following this scheme, peers will start copying assets
and the system will eventually come to an equilibrium, where asset

ai will be granted pi levels of popularity, such that

pi = blog2

(

λi

µ ∗ γ

)

c+ 1 (1)

pi is limited to the depth of the tree mindepth = blog2 (n)c and
cannot be negative. Thus, at equilibrium, 2pi peers store ai and
the traffic resulting from this asset at one of those peers is λ′i =
λi

2
pi

. Requests served by a given peer are either requests for its
original asset or requests for other assets it has replicated. A given
peer, originally storing ai, stores another asset aj 6= ai with a
probability Pstorej = 2

pj−1

n−1
. For the peer storing ai originally,

the overall incoming traffic resulting from all the assets it stores is
at equilibrium

λ′oi = λ′i +

n
∑

j=1,j 6=i

2pj − 1

n− 1
∗ λ′j (2)

Other peers may serve asset ai if they have replicated it. We an-
alyze the request traffic for those peers next. The peer possessing
originally asset aj , j 6= i may serve the asset ai, receiving an over-
all request traffic of

λ′rij = λ′i + λ′j +

n
∑

k=1,k 6=i,k 6=j

2pk − 1

n − 1
∗ λ′k (3)

On average, a peer who did not possess ai originally but who repli-
cated it has a total incoming request traffic of

λ′ri =
1

n− 1

n
∑

j=1,j 6=i

(

λ′i + λ′j +

n
∑

k=1,k 6=i,k 6=j

2pk − 1

n− 1
∗ λ′k

)

(4)
Given 2 and 4, we compute the average incoming traffic rate for
a peer serving asset ai by weighting those two values by their re-
spective likeliness:

λ′i =
1

2pi
λ′oi +

(

1 −
1

2pi

)

λ′ri (5)

Then, modelling the arrivals as a Poisson process (i.e., we have
a M/D/1 queue), we obtain the average response time Ti for a
request targeting asset ai:

Ti =

1 +
1

2

λ′

i

µ

1−
λ′

i

µ

 ∗ S (6)

where S = 1

µ
. Finally, we sum those average response times over

all the requests and divide by the total number of requests to find
the mean response time T of the system for a request:

T =

∑n

i=1
i ∗ Ti

∑i

i=1
i

(7)

Fig. 3 shows the average response time of the system decreasing
as γ gets smaller and assets are granted popularity levels more eas-
ily (for n = 128, µ = 129, S set to 1 sec). Following the curve
from right to left, each discrete step in the function indicates that
a popular item is granted one new level of popularity (thus gets
replicated, distributing its requests among other peers). The func-
tion decreases rapidly when very popular assets enter a previously

0.2 0.4 0.6 0.8 1
g

1.5

1.75

2.25

2.5

2.75

3

3.25

T
�

gamma

T

Figure 3: Average Response Time

0.2 0.4 0.6 0.8 1

5

10

15

20

25

30
Nbre Slots

gamma

Figure 4: Mean Number Of Slots Needed

unoccupied level (at γ ∼= 1, for example). Then, assets less and
less popular fill the level, slowing down the decrease (or even in-
creasing the global function, e.g., at γ ∼= 0.5, where more than
half of the assets have exactly one popularity level). On the ex-
treme right (γ = 1, T ∼= 5), no asset is replicated and the requests
for a given asset are always served by the peer to which the as-
set was assigned originally. In this case, λ′i = λi. On the opposite
side (γ = 0, T = 1.5), we have a perfectly balanced system where

all peers replicate all assets, and where λ′i =

∑

n

i=1
i

n
. The average

number of slots a peer needs to store the assets is a function of γ,
too, and is given in Fig. 4.
Finite Storage Capacity. In practice, peers always have a finite
storage capacity; therefore, there is a tradeoff between the amount
of space dedicated to asset replication and the overall performance
of the system. In this section, we introduce a simple model where
peers reserve c slots per level of popularity for replicating files. A
peer always accepts to replicate an asset if at least one of the slots
corresponding to the popularity level of the asset is still free. If all
those slots are taken, the peer randomly chooses one of the c + 1
assets and abandons it.

For this mechanism, we adapt the equations of the last sec-
tion. Popularity level granting stays unaltered, and we may easily
compute the number of assets populationi having a certain pop-
ularity level pi. The mean request rate generated by asset ai to a
peer storing the asset, if the average number of assets having been
granted popularity level pi is greater than the storage capacity for
this level, i.e., populationi

2
pi

n
> c, is

λ′i =
λi

2pi

c

populationi
2

pi

n

(8)

Also, we weight each factor of the sum in 2 and 4 with the prob-

ability Pstorage(j) of keeping the asset aj knowing that the peer
was asked to replicate it. For example, (2) becomes

λ′oi = λ′i +

n
∑

j=1,j 6=i

λ′j
2pj − 1

n − 1

c

(populationj − 1) 2
pj −1

n−1
+ 1

(9)
if, again, (populationj − 1)∗ 2

pj−1

n−1
+1 > c (note that we do not

take into account the case where pi = pj impacts on the average
number of assets to be stored by the peer for popularity level pj).
Fig. 5 depicts the average response time of the system with a finite
storage capacity as a function of γ (same parameters as before,
c = 2). This time, the system is optimal for γ ∼= 0.2. Below that
point, peers tend to grant popularity levels too easily (therefore
increasing the competition between very popular assets and less
popular ones trying to fill in the slots of a certain level). Above
this value, popular assets are not replicated as widely as would be
necessary to balance the load of the system correctly.

0.2 0.4 0.6 0.8 1

1.8

2.2

2.4

2.6

2.8

3

T

gamma

Figure 5: Average Response Time, Finite Capacity

Implementation Issues. The peers may implement the replication
scheme by storing a moving average window of the number of re-
quests they receive for the assets they are responsible for. Pop-
ularity levels are granted and removed using a local value for γ.
An optimal value for this variable is computable in principle, if all
system parameters are known. However, this optimal value is re-
lated to the load of the system, as performance start dropping when
too many assets compete for the slots in a given popularity level.
Therefore, a peer can get an estimate of the global system by keep-
ing track of the proportion of the requests satisfied by other peers
for its assets over the theoretical possible value for this number: In
an unloaded environment, 2pi − 1 peers would replicate an asset
ai, but this value decreases as the system fills up and as peers hav-
ing replicated the asset drop it for replicating some other content.
So, we define the emptiness indicator κi as this proportion, which
is analytically equal to Pstorage(i) (the probability that a peer ef-
fectively stores an asset given that he is supposed to replicate it).

Fig. 6 shows the average κ as a function of γ; as expected, we ob-
serve the function decreasing rapidly with γ < 0.2, as the system
fills up beyond its capacity with replicas. Peers may implement the
algorithm locally by starting with a high γ and trying to decrease
this value over time as long as the emptiness indicator κ is above a
predefined threshold (κ > 0.9 means that less than ten percent of
the replicas are dropped, and would yield T ∼= 1.8, which is close
to the optimal value of 1.5 for an initial value of 5). Note that γ
and κ do not depend on the size of the system, but only on its load.

0.2 0.3 0.4 0.5

0.7

0.75

0.8

0.85

0.9

0.95

kappa

gamma

Figure 6: Emptiness Indicator κ

5. RELATED WORK AND CONCLUSIONS

This paper presented and analyzed a new scheme for replicating
popular media content on the Internet. Today, manually config-
ured systems based on central monitoring (e.g., Akamai FreeFlow
at http://www.akamai.com/) or on hierarchical cache trees (such
as Squid [4]) are commonly used to distribute content. Those
systems are difficult to maintain and do not scale gracefully. To
remedy this, decentralized or peer-to-peer systems have emerged
recently, but have focused on efficient query routing mechanisms.
Bayeux [5] is an application-level multicasting system based on
a decentralized layer, but does not replicate the content actively.
Freenet [6] is a P2P system protecting anonymity and including
a basic replication scheme (the content is copied to every node
processing the request) but does not include any analysis of the
scheme. Our system is totally autonomous, decentralized, and re-
acts to the global demand by replicating specific assets at strategic
locations, thus achieving near-optimal behavior using local inter-
actions only. We are currently integrating the approach described
in this paper into our P-Grid implementation and will evaluate it in
large-scale experiments. Additionally, we want to make use of an
economic model to provide incentives for collaborative behavior
to the peers.

6. REFERENCES

[1] K. Aberer, M. Punceva, M. Hauswirth, R. Schmid, Improv-
ing Data Access in P2P Systems, IEEE Internet Computing,
Jan./Feb. 2002.

[2] K. Aberer, P-Grid: A self-organizing access structure for P2P
information systems, Proc. of the Ninth International Con-
ference on Cooperative Information Systems (CoopIS 2001),
Trento, Italy, 2001.

[3] V. N. Padmanabhan, L. Qui, The content and access dynamics
of a busy web site: findings and implications, SIGCOMM, p.
111-123, 2000.

[4] A. Chankhunthod et al., A Hierarchical Internet Object Cache,
Proc. of the 1996 USENIX Technical Conference, p. 153-163,
January 1996.

[5] S. Zhuang et al., Bayeux: An architecture for scalable and
fault-tolerant widearea data dissemination, Proc. NOSSDAV
2001, 2001.

[6] I. Clarke et al., Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System, ICSIWorkshop on Design
Issues in Anonymity and Unobservability, July 2000.

