
ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 – Theory and Practice

Bernardo Cuenca Grau
University of Oxford
UK

Birte Glimm
University of Oxford
UK

Pascal Hitzler
Kno.e.sis Center

Wright State University
Dayton, OH, USA

Hector Perez-Urbina
Clark & Parsia, LLC

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 2

Textbook

Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph

Foundations of Semantic Web
Technologies
Chapman & Hall/CRC, 2009

Grab a flyer!

http://www.semantic-web-book.org

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 3

Slides

Available from

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 4

Part 1

OWL 2 – Syntax, Semantics, Reasoning

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 5

OWL

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 6

Main References Part 1

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations
of Semantic Web Technologies, Chapman & Hall/CRC, 2009

OWL 2 Document Overview: http://www.w3.org/TR/owl2-overview/

Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language:
Primer. W3C Recommendation, 27 October 2009.
http://www.w3.org/TR/owl2-primer/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 7

OWL – Overview

• Web Ontology Language
– W3C Recommendation for the Semantic Web, 2004
– OWL 2 (revised W3C Recommendation), 2009

• Semantic Web KR language based on description logics (DLs)
– OWL DL is essentially DL SROIQ(D)
– KR for web resources, using URIs.
– Using web-enabled syntaxes, e.g. based on XML or RDF.

We present
• DL syntax (used in research – not part of the W3C

recommendation)
• (some) RDF Turtle syntax

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 8

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 9

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 10

Rationale behind OWL

• Open World Assumption
• Favourable trade-off between expressivity and scalability
• Integrates with RDFS
• Purely declarative semantics

Features:
• Fragment of first-order predicate logic (FOL)
• Decidable
• Known complexity classes (N2ExpTime for OWL 2 DL)
• Reasonably efficient for real KBs

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 11

OWL Building Blocks

• individuals (written as URIs)
– also: constants (FOL), resources (RDF)
– http://example.org/sebastianRudolph
– http://www.semantic-web-book.org
– we write these lowercase and abbreviated, e.g.

"sebastianRudolph"
• classes (also written as URIs!)

– also: concepts, unary predicates (FOL)
– we write these uppercase, e.g. "Father"

• properties (also written as URIs!)
– also: roles (DL), binary predicates (FOL)
– we write these lowercase, e.g. "hasDaughter"

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

DL syntax FOL syntax

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

• Person(mary)

• 8x (Woman(x) ! Person(x))

• hasWife(john,mary)

• 8x 8y (hasWife(x,y)! hasSpouse(x,y))

ABox statements

TBox statements

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

• :mary rdf:type :Person .

• :Woman rdfs:subClassOf :Person .

• :john :hasWife :mary .

• :hasWife rdfs:subPropertyOf :hasSpouse .

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

DL syntax FOL syntax

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 14

Special classes and properties

• owl:Thing (RDF syntax)
– DL-syntax: >
– contains everything

• owl:Nothing (RDF syntax)
– DL-syntax: ?
– empty class

• owl:topProperty (RDF syntax)
– DL-syntax: U
– every pair is in U

• owl:bottomProperty (RDF syntax)
– empty property

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 15

Class constructors

• conjunction
– Mother ´ Woman u Parent
– :Mother owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf (:Woman :Parent) .

• disjunction
– Parent ´ Mother t Father
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:unionOf (:Mother :Father) .

• negation
– ChildlessPerson ´ Person u :Parent
– :ChildlessPerson owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf (:Person _:y) .
_:y owl:complementOf :Parent .

8x (Mother(x) $ Woman(x) Æ Parent(x))

8x (Parent(x) $ Mother(x) Ç Father(x))

8x (ChildlessPerson(x) $ Person(x) Æ :Parent(x))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 16

Class constructors

• existential quantification
– only to be used with a role – also called a property restriction
– Parent ´ 9hasChild.Person
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Restriction .
_:x owl:onProperty :hasChild .
_:x owl:someValuesFrom :Person .

• universal quantification
– only to be used with a role – also called a property restriction
– Person u Happy ´ 8hasChild.Happy
– _:x rdf:type owl:Class .

_:x owl:intersectionOf (:Person :Happy) .
_:x owl:equivalentClass _:y .
_:y rdf:type owl:Restriction .
_:y owl:onProperty :hasChild .
_:y owl:allValuesFrom :Happy .

• Class constructors can be nested arbitrarily

8x (Parent(x) $
9y (hasChild(x,y) Æ Person(y)))

8x (Person(x) Æ Happy(x) $
8y (hasChild(x,y) ! Happy(y)))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 17

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 18

Understanding SROIQ(D)

The description logic ALC

• ABox expressions:
Individual assignments Father(john)
Property assignments hasWife(john,mary)

• TBox expressions
subclass relationships v

conjunction u
disjunction t
negation :

property restrictions 8
9

Complexity: ExpTime

Also: >, ?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 19

Understanding SROIQ(D)

ALC + role chains = SR

• hasParent o hasBrother v hasUncle

– includes top property and bottom property

• includes S = ALC + transitivity
– hasAncestor o hasAncestor v hasAncestor

• includes SH = S + role hierarchies
– hasFather v hasParent

8x 8y (9z ((hasParent(x,z) Æ hasBrother(z,y)) ! hasUncle(x,y)))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 20

Understanding SROIQ(D)

• O – nominals (closed classes)
– MyBirthdayGuests ´ {bill,john,mary}
– Note the difference to

MyBirthdayGuests(bill)
MyBirthdayGuests(john)
MyBirthdayGuests(mary)

• Individual equality and inequality (no unique name assumption!)
– bill = john

• {bill} ´ {john}
– bill ≠ john

• {bill} u {john} ´ ?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 21

Understanding SROIQ(D)

• I – inverse roles

– hasParent ´ hasChild-

– Orphan ´ 8hasChild-.Dead

• Q – qualified cardinality restrictions
– ·4 hasChild.Parent(john)
– HappyFather ´ ¸2 hasChild.Female
– Car v =4hasTyre.>

• Complexity SHIQ, SHOQ, SHIO: ExpTime.
Complexity SHOIQ: NExpTime
Complexity SROIQ: N2ExpTime

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 22

Understanding SROIQ(D)

Properties can be declared to be

• Transitive hasAncestor
• Symmetric hasSpouse
• Asymmetric hasChild
• Reflexive hasRelative
• Irreflexive parentOf
• Functional hasHusband
• InverseFunctional hasHusband

called property characteristics

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 23

Understanding SROIQ(D)

(D) – datatypes

• so far, we have only seen properties with individuals in second
argument, called object properties or abstract roles (DL)

• properties with datatype literals in second argument are called
data properties or concrete roles (DL)

• allowed are many XML Schema datatypes, including
xsd:integer, xsd:string, xsd:float, xsd:booelan, xsd:anyURI,
xsd:dateTime

and also e.g. owl:real

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 24

Understanding SROIQ(D)

(D) – datatypes

• hasAge(john, "51"^^xsd:integer)

• additional use of constraining facets (from XML Schema)
– e.g. Teenager ´ Person u 9hasAge.(xsd:integer: ¸12 and ·19)

note: this is not standard DL notation!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 25

Understanding SROIQ(D)

further expressive features

• Self
– PersonCommittingSuicide ´ 9kills.Self

• Keys (not really in SROIQ(D), but in OWL)
– set of (object or data) properties whose values uniquely

identify an object
• disjoint properties

– Disjoint(hasParent,hasChild)
• explicit anonymous individuals

– as in RDF: can be used instead of named individuals

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 26

SROIQ(D) constructors – overview

• ABox assignments of individuals to classes or properties
• ALC: v, ´ for classes

u, t, :, 9, 8
>, ?

• SR: + property chains, property characteristics,
role hierarchies v

• SRO: + nominals {o}
• SROI: + inverse properties
• SROIQ: + qualified cardinality constraints
• SROIQ(D): + datatypes (including facets)

• + top and bottom roles (for objects and datatypes)
• + disjoint properties
• + Self
• + Keys (not in SROIQ(D), but in OWL)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 27

Some Syntactic Sugar in OWL

This applies to the non-DL syntaxes (e.g. RDF syntax).

• disjoint classes
– Apple u Pear v ?

• disjoint union
– Parent ´ Mother t Father

Mother u Father v ?

• negative property assignments (also for datatypes)
– :hasAge(jack,"53"^^xsd:integer)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 28

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 29

OWL – Extralogical Features

• OWL ontologies have URIs and can be referenced by others via
– import statements

• Namespace declarations
• Entity declarations (must be done)
• Versioning information etc.

• Annotations
– Entities and axioms (statements) can be endowed with

annotations, e.g. using rdfs:comment.
– OWL syntax provides annotation properties for this purpose.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 30

The modal logic perspective

• Description logics can be understood from a modal logic
perspective.

• Each pair of 8R and 9R statements give rise to a pair of
modalities.

• Essentially, some description logics are multi-modal logics.

• See e.g. Baader et al., The Description Logic Handbook,
Cambridge University Press, 2007.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

The RDFS perspective

• :mary rdf:type :Person .
• :Mother rdfs:subClassOf :Woman .
• :john :hasWife :Mary .
• :hasWife rdfs:subPropertyOf

:hasSpouse

• :hasWife rdfs:range :Woman .
• :hasWife rdfs:domain :Man .

• Person(mary)
• Mother v Woman
• hasWife(john,mary)
• hasWife v hasSpouse

• > v 8hasWife.Woman
• > v 8hasWife-.Man or

9hasWife.> v Man

RDFS also allows to
make statements about statements
! only possible through annotations in OWL
mix class names, individual names, property names (they are all URIs)
! punning in OWL

RDFS semantics is weaker

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 32

Punning

• Description logics impose type separation, i.e. names of
individuals, classes, and properties must be disjoint.

• In OWL 2 Full, type separation does not apply.

• In OWL 2 DL, type separation is relaxed, but a class X and an
individual X are interpreted semantically as if they were different.

• Father(john)
SocialRole(Father)

• See further below on the two different semantics for OWL.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 33

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 34

OWL Semantics

• There are two semantics for OWL.

1. Description Logic Semantics
also: Direct Semantics; FOL Semantics
Can be obtained by translation to FOL.
Syntax restrictions apply! (see next slide)

2. RDF-based Semantics
No syntax restrictions apply.
Extends the direct semantics with RDFS-reasoning features.

In the following, we will deal with the direct semantics only.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 35

OWL Direct Semantics

To obtain decidability, syntactic restrictions apply.

• Type separation / punning

• No cycles in property chains.

• No transitive properties in cardinality restrictions.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 36

OWL Direct Semantics: Restrictions

arbitrary property chain axioms lead to undecidability
restriction: set of property chain axioms has to be regular

there must be a strict linear order ≺ on the properties
every property chain axiom has to have one of the following forms:

R o R v R S– v R S1 o S2 o ... o Sn v R
R o S1 o S2 o ... o Sn v R S1 o S2 o ... o Sn o R v R

thereby, Si ≺ R for all i= 1, 2, . . . , n.

Example 1: R o S v R S o S v S R o S o R v T
 regular with order S ≺ R ≺ T
Example 2: R o T o S v T
 not regular because form not admissible
Example 3: R o S v S S o R v R
 not regular because no adequate order exists

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 37

OWL Direct Semantics: Restrictions

combining property chain axioms and cardinality constraints
may lead to undecidability
restriction: use only simple properties in cardinality expressions
(i.e. those which cannot be – directly or indirectly – inferred from
property chains)
technically:

for any property chain axiom S1 o S2 o ... o Sn v R with n>1, R is non-
simple
for any subproperty axiom S v R with S non-simple, R is non-simple
all other properties are simple

Example: Q o P v R R o P v R R v S P v R Q v S
non-simple: R, S simple: P, Q

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• model-theoretic semantics
• starts with interpretations
• an interpretation maps

individual names, class names and property names...

...into a domain

.I

aI CI

RI

Δ
II IC IR

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 39

Interpretation Example

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a) holds, if aI ∈ CI R(a,b) holds, if (aI,bI) ∈ RI

– C v D holds, if CI ⊆ DI R v S holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R holds if S1

I o S2
I o ... o Sn

I ⊆ RI

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a) holds, if aI ∈ CI R(a,b) holds, if (aI,bI) ∈ RI

– C v D holds, if CI ⊆ DI R v S holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R holds if S1

I o S2
I o ... o Sn

I ⊆ RI

• what’s below gives us a notion of model:

An interpretation is a model of a set of axioms if all the axioms
hold (are evaluated to true) in the interpretation.

• Notion of logical consequence obtained via models (below).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 42

Logical Consequence

A model for an OWL KB is such a mapping I which satisfies all
axioms in the KB.

An axiom ® is a logical consequence
of a KB if every model of the KB is also
a model of ®.

The logical consequences of a KB are all those things which are
necessarily the case in all „realities“ in which the KB is the case.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 43

Notion of logical consequence

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 44

Not a model!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 45

A model

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 46

Models

Is FacultyMember(aifb) a logical consequence?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 47

Counterexample

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 48

Logical Consequence

Is FacultyMember(rudiStuder) a logical consequence?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics via FOL

• but often OWL 2 DL is said to be a fragment of first-order
predicate logic (FOL) [with equality]...

• yes, there is a translation of OWL 2 DL into FOL

• ...which (interpreted under FOL semantics) coincides with the
definition just given.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 50

Inconsistency and Satisfiability

• A set of axioms (knowledge base) is satisfiable (or consistent) if
it has a model.

• It is unsatisfiable (inconsistent) if it does not have a model.

• Inconsistency is often caused by modeling errors.

• Unicorn(beauty)
Unicorn v Fictitious
Unicorn v Animal
Animal v :Fictitious

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 51

Inconsistency and Satisfiability

• A knowledge base is incoherent if a named class is equivalent to ?.

• It usually also points to a modeling error.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 52

A Semantic Puzzle

From Horridge, Parsia, Sattler, From Justifications to Proofs for
Entailments in OWL. In: Proceedings OWLED2009.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-529/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 53

What Semantics Is Good For

• Opinions Differ. Here’s my take.

• Semantic Web requires a shareable, declarative and computable
semantics.

• I.e., the semantics must be a formal entity which is clearly
defined and automatically computable.

• Ontology languages provide this by means of their formal
semantics.

• Semantic Web Semantics is given by a relation – the logical
consequence relation.

• Note: This is considerably more than saying that the semantics
of an ontology is the set of its logical consequences!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 54

In other words

We capture the meaning of information

not by specifying its meaning (which is impossible)
but by specifying

how information interacts with other information.

We describe the meaning indirectly through its effects.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 55

Simple Logical Reasoning

If I ask for soccer team
members, I also want to get

the goalkeepers listed ...

If I ask for cities, I also
want all capitals listed ...

inheritance reasoning

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 56

Less Simple Reasoning

What was again the name of
that russian researcher who
worked on resolution-based

calculi for EL?

Are lobsters spiders?

What is "Käuzchen"
in english?

answering requires
merging of knowledge
from many websites
and using background
knowledge.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 57

SNOMED CT

• SNOMED CT: commercial ontology, medical domain
ca. 300,000 axioms

• InjuryOfFinger ´ Injury u 9site.FingerS
InjuryOfHand ´ Injury u 9site.HandS
FingerS v HandP
HandP v HandS u 9part.HandE

• Reasoning has been used e.g. for
– classification (computing the hidden taxonomy)

e.g., InjuryOfFinger v InjuryOfHand
– bug finding

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 58

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 59

OWL Profiles

• OWL Full – using the RDFS-based semantics
• OWL DL – using the FOL semantics

The OWL 2 documents describe further profiles, which are of
polynomial complexity:

• OWL EL (EL++)
• OWL QL (DL LiteR)
• OWL RL (DLP)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 EL

• allowed:
– subclass axioms with intersection, existential

quantification, top, bottom
• closed classs must have only one member

– property chain axioms, range restrictions (under certain
conditions)

• disallowed:
– negation, disjunction, arbitrary universal quantification,

role inverses

u9>? v u9>?
• Examples: Human v 9hasParent.Person

9married.> u CatholicPriest v ?;
hasParent ± hasParent v hasGrandparent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 RL

• Motivated by the question: what fraction of OWL 2 DL can
be expressed naively by rules (with equality)?

• Examples:
– 9parentOf.9parentOf.> v Grandfather

rule version: parentOf(x,y) parentOf(y,z) ! Grandfather(x)
– Orphan v 8hasParent.Dead

rule version: Orphan(x) hasParent(x,y) ! Dead(y)
– Monogamous v ≤1married.Alive

rule version:
Monogamous(x) married(x,y) Alive(y) married(x,z)
Alive(z)! y=z

– childOf ± childOf v grandchildOf
rule version: childOf(x,y) childOf(y,z) ! grandchildOf(x,z)

– Disj(childOf,parentOf)
rule version: childOf(x,y) parentOf(x,y) !

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 RL

• Syntactic characterization:
– essentially, all axiom types are allowed
– disallow certain constructors on lhs and rhs of

subclass statements

8 : v 9 t
– cardinality restrictions: only on rhs and only ≤1 and

≤0 allowed
– closed classes: only with one member

• Reasoner conformance requires only soundness.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 QL

• Motivated by the question: what fraction of OWL 2
DL can be captured by standard database
technology?

• Formally: query answering LOGSPACE w.r.t. data
(via translation into SQL)

• Allowed:
– subproperties, domain, range
– subclass statements with

• left hand side: class name or expression of type 9r.>
• right hand side: intersection of class names, expressions of

type 9r.C and negations of lhs expressions
• no closed classes!

• Example:
9married.> v :Free u 9has.Sorrow

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 64

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 65

A Reasoning Problem

A is a logical consequence of K
written K ² A

if and only if
every model of K is a model of A.

• To show an entailment, we need to check all models?
• But that‘s infinitely many!!!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 66

A Reasoning Problem

We need algorithms which do not apply the model-based
definition of logical consequence in a naive manner.

These algorithms should be syntax-based.
(Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness)
needs to be proven formally.
Which is often a non-trivial problem requiring substantial
mathematical build-up.

We won‘t do the proofs here.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 67

Proof Theory

We will show the Tableaux Method – implemented, e.g., in Pellet
and Racer.

Alternatives:
• Transformation to disjunctive datalog using basic superposition

done for SHIQ
• Naive mapping to Datalog

for OWL RL
• Mapping to SQL

for OWL QL
• Special-purpose algorithms for OWL EL

e.g. transformation to Datalog

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 68

Proof theory Via Tableaux

• Adaptation of FOL tableaux algorithms.

• Problem: OWL is decidable, but FOL tableaux algorithms do not
guarantee termination.

• Solution: blocking.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 69

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 70

Important Inference Problems

• Global consistency of a knowledge base. KB ² false?
– Is the knowledge base meaningful?

• Class consistency C ´ ??
– Is C necessarily empty?

• Class inclusion (Subsumption) C v D?
– Structuring knowledge bases

• Class equivalence C ´ D?
– Are two classes in fact the same class?

• Class disjointness C u D = ??
– Do they have common members?

• Class membership C(a)?
– Is a contained in C?

• Instance Retrieval „find all x with C(x)“
– Find all (known!) individuals belonging to a given class.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 71

Reduction to Unsatisfiability

• Global consistency of a knowledge base. KB unsatisfiable
– Failure to find a model.

• Class consistency C ´ ??
– KB [{C(a)} unsatisfiable

• Class inclusion (Subsumption) C v D?
– KB [{C u :D(a)} unsatisfiable (a new)

• Class equivalence C ´ D?
– C v D und D v C

• Class disjointness C u D = ??
– KB [{(C u D)(a)} unsatisfiable (a new)

• Class membership C(a)?
– KB [{:C(a)} unsatisfiable

• Instance Retrieval „find all x with C(x)“
– Check class membership for all individuals.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 72

Reduction to Satisfiability

• We will present so-called tableaux algorithms.

• They attempt to construct a model of the knowledge base
in a „general, abstract“ manner.
– If the construction fails, then (provably) there is no model –

i.e. the knowledge base is unsatisfiable.
– If the construction works, then it is satisfiable.

! Hence the reduction of all inference problems to the checking of
unsatisfiability of the knowledge base!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 73

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 74

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 75

Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 76

K and NNF(K) have the same models (are logically equivalent).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 77

Example

P v (E u U) t :(:E t D).

In negation normal form:

:P t (E u U) t (E u :D).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 78

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 79

Naive tableaux algorithm

Reduction to (un)satisfiability.

Idea:
• Given knowledge base K
• Attempt construction of a tree (called Tableau), which

represents a model of K.
(It‘s actually rather a Forest.)

• If attempt fails, K is unsatisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 80

The Tableau

• Nodes represent elements of the domain of the model
! Every node x is labeled with a set L(x) of class expressions.
C 2 L(x) means: "x is in the extension of C"

• Edges stand for role relationships:
! Every edge <x,y> is labeled with a set L(<x,y>) of role names.
R 2 L(<x,y>) means: "(x,y) is in the extension of R"

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 81

Simple example

C(a)
C v 9R.D
D v E

Does this entail
(9R.E)(a)?

(add 8R.:E(a)
and show
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
E
:E (because 8R.:E(a))
Contradiction!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 82

Another example

C(a)
C v 9R.D
D v E t F
F v E

Does this entail
(9R.E)(a)?

(add 8R.:E(a)
and show
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
:E (because 8R.:E(a))
choice: (D v E t F):
1. E (contradiction!)
2. F

E (contradiction!)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 83

Formal Definition

• Input: K=TBox + ABox (in NNF)
• Output: Whether or not K is satisfiable.

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled with sets L(<x,y>) of role names

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 84

Initialisation

• Make a node for every individual in the ABox.
• Every node is labeled with the corresponding class names from

the ABox.
• There is an edge, labeled with R, between a and b, if R(a,b) is in

the ABox.

• (If there is no ABox, the initial tableau consists of a node x with
empty label.)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 85

Example initialisation

Human v 9hasParent.Human
Orphan v Human u :9hasParent.Alive
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 86

Careful: need NNF!

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 87

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide.

• Terminate, if
– there is a contradiction in a node label (i.e., it contains

classes C and :C, or it contains ?), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 88

Naive ALC tableaux rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 89

Example

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

:Orphan t (Human u 8hasParent.:Alive)
1. :Orphan (contradiction)
2. Human u 8hasParent.:Alive

Human
8hasParent.:Alive

Alive

hasParent

:Alive(jamespotter)
i.e. add: Alive(jamespotter)

and search for contradiction

2. :Alive (contradiction)

Orphan

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 90

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 91

There‘s a termination problem

TBox: 9R.>
ABox: >(a1)
• Obviously satisfiable:

Model M with domain elements a1
M,a2

M,...
and RM(ai

M,ai+1
M) for all i ¸ 1

• but tableaux algorithm does not terminate!

a1 x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 92

Solution?

Actually, things repeat!
Idea: it is not necessary to expand x, since it‘s simply a copy of a.

) Blocking

a x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 93

Blocking

• x is blocked (by y) if
– x is not an individual (but a variable)
– y is a predecessor of x and L(x) µ L(y)
– or a predecessor of x is blocked

Here, x is blocked by a.

a x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 94

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide, but only apply a rule if x is not blocked!

• Terminate, if
– there is a contradiction in a node label (i.e., it contains

classes C and :C), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 95

Naive ALC tableaux rules

Apply only if x is not blocked!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 96

Example (0)

• Knowledge base {Human v 9hasParent.Human, Bird(tweety)}
• We want to show that Human(tweety) does not hold,

i.e. that :Human(tweety) is entailed.
• We will not be able to show this.

I.e. Human(tweety) is possible.

• Shorter notation:
H v 9p.H
B(t)

:H(t) entailed?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 97

Example (0)

Knowledge base {:H t 9p.H, B(t), H(t)}

expansion stops. Cannot find contradiction!

t

H
B
:H t 9p.H
1. :H (contradiction)
2. 9p.H

x

2.:
H
blocked by t!

p

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 98

Example (0) the other case

Knowledge base {:H t 9p.H, B(t), :H(t)}

no further expansion possible – knowledge base is satisfiable!

t

:H
B
:H t 9p.H
1. :H cannot be

added. no expansion
in this part

2. 9p.H

x

2.:
H
:H t 9p.H
2.1: :H (contradiction)
2.2: 9p.H

y

2.2:
H
blocked by x

p p

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 99

Example(1)

Show, that
Professor v (Person u Unversitymember)

t (Person u :PhDstudent)
entails that every Professor is a Person.

Find contradiction in:
:P t (E u U) t (E u :S)
P u :E(x)

x

P u :E
P
:E
:P t (E u U) t (E u :S)
1. :P (contradiction)
2. (E u U) t (E u :S)

1. E u U
E (contradiction)

2. E u :S
E (contradiction)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 100

Example (2)

Show that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChildhasChild

9hasChild.:male

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 101

Example (3)

Show that the knowledge base
Bird v Flies
Penguin v Bird
Penguin u Flies v ?
Penguin(tweety)

is unsatisfiable.

TBox:
:B t F
:P t B
:P t :F t ?

tweety

P
:P t B
:B t F
:P t :F
1. :P (contradiction)
2. B

1. :B (contradiction)
2. F

1. :P (contradiction)
2. :F (contradiction)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 102

Example (4)

Show that the knowledge base
C(a) C(c)
R(a,b) R(a,c)
S(a,a) S(c,b)
C v 8S.A
A v 9R.9S.A
A v 9R.C

entails 9R.9R.9S.A(a).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 103

Example (4)

a b

c

x y

TBox:
:C t 8S.A
:A t 9R.9S.A
:A t 9R.C

C
8R.8R.8S.:A

A
8R.8S.:A
:A t 9R.9S.A

9S.A
8S.:A

A
:A

C
:C t 8S.A

R

R

SS

R S

:9R.9R.9S.A ≡ 8R.8R.8S.:A

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 104

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 105

Tableaux Algorithm for SHIQ

• Basic idea is the same.

• Blocking rule is more complicated

• Other modifictions are also needed.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 106

Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 107

NNF(·n R.C) = ·n R.NNF(C)
NNF(¸n R.C) = ¸n R.NNF(C)
NNF(: ·n R.C) = ¸(n+1)R.NNF(C)
NNF(: ¸n R.C) = ·(n-1)R.NNF(C), where ·(-1)R.C = ?

K and NNF(K) have the same models (are logically equivalent).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 108

Formal Definition

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled

• either with sets L(<x,y>) of role names or inverse role
names

• or with the symbol = (for equality)
• or with the symbol ≠ (for inequality)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 109

Initialisation

• Make a node for every individual in the ABox. These nodes are
called root nodes.

• Every node is labeled with the corresponding class names from
the ABox.

• There is an edge, labeled with R, between a and b, if R(a,b) is in
the ABox.

• There is an edge, labeled ≠, between a and b if a ≠ b is in the
ABox.

• There are no = relations (yet).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 110

Notions

• We write S-- as S.
• If R 2 L(<x,y>) and R v S (where R,S can be inverse roles), then

– y is an S-successor of x and
– x is an S-predecessor of y.

• If y is an S-successor or an S--predecessor of x, then y is an
neighbor of x.

• Ancestor is the transitive closure of Predecessor.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 111

Blocking for SHIQ

• x is blocked by y if x,y are not root nodes and
– the following hold: ["x is directly blocked"]

• no ancestor of x is blocked
• there are predecessors y', x' of x
• y is a successor of y' and x is a successor of x'
• L(x) = L(y) and L(x') = L(y')
• L(<x',x>) = L(<y',y>)

– or the following holds: ["x is indirectly blocked"]
• an ancestor of x is blocked or
• x is successor of some y with L(<y,x>) = ;

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 112

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide.

• Terminate, if
– there is a contradiction in a node label, i.e.,

• it contains ? or classes C and :C or
• it contains a class · nR.C and

x also has (n+1) R-successors yi and yi≠ yj (for all i ≠ j)
– or none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 113

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 114

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 115

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 116

Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 117

Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

backtracking!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 118

Example (1): cardinalities – again

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john) and peter ≠ paul

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male

≠

can backtrack only between x
and peter – also leads to
contradiction

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 119

Example (2): cardinalities

Show, that
¸2hasSon.>(john) hasSon v hasChild

entails ¸2hasChild.>(john).

john

yx

hasSon
hasSon

¸2hasSon.>
·1hasChild.>

:¸2hasSon.> ≡ ·1hasChild.>

≠

hasSon-neighbors are also hasChild-neighbors,
tableau terminates with contradiction

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 120

Example (3): choose

¸3hasSon(john)
·2hasSon.male(john)
Is this contradictory?

No, because the following tableau is complete.

john¸3hasSon
·2hasSon.male

x

y

z

hasSon

hasSon

hasSon
≠

≠
≠

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 121

Example (4): inverse roles

9hasChild.human(john)
human v 8hasParent.human
hasChild v hasParent-
zu zeigen: human(john)

john is hP--predecessor of x, hence hP-neighbor of x

john xhasChild9hasChild.human
:human

human
:human t 8hasParent.human

human

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 122

Example (5): Transitivity and Blocking

human v 9hasFather.>
human v 8hasAncestor.human
hasFather v hasAncestor Trans(hasAncestor)
human(john)

Does this entail ·1hasFather.>(john)?
Negation: ¸2hasFather.>(john)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 123

Example (5): Transitivity and Blocking

human v 9hasFather.>
hasFather v hasAncestor Trans(hasAncestor)
8hasAncestor.human(john)
human(john) ¸2hasFather.>(john)

john

x x1

y

h
¸2hF.>
8hA.h
:h t 9hF.>

hF

hF

hF

same as branch above

x2

...

h
:h t 9hF.>
8hA.h

hF

x2 now blocked by x1 :
Pair (x1,x2) repeats (x,x1)

h
:h t 9hF.>
8hA.h

h
:h t 9hF.>
8hA.h

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 124

Example (6): Pairwise Blocking

:C u (·1F) u 9F-.D u 8R-.(9F-.D), where
D = C u (·1F) u 9F.:C, Trans(R), and F v R,
is not satisfiable.

x y z

:C
·1F
9F-.D
8R-.(9F-.D)

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

F- F-

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

Without pairwise blocking, z would be blocked, which shouldn‘t happen:
Expansion of 9F.:C yields :C for node y as required.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 125

Example (7): Dynamic Blocking

A u 9S.(9R.> u 9P.> u 8R.C u8P.(9R.>) u 8P.(8R.C) u 8P.(9P.>))
with C = 8R-.(8P-.(8S-.:A)) and Trans(P), is not satisfiable.

Part of the tableau:

x y v

z w

A
...

9R.>
9P.>
8R.C
8P.(9R.>)
8P.(9P.>)
8P.(8R.C)

S

P

R

R

C

L(y)

At this stage, z would be blocked by y (assuming the presence of another pair).
However, when C from v is expanded, z becomes unblocked, which is
necessary in order to label w with C which in turn labels x with :A, yielding
the required contradiction.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 126

Tableaux Reasoners

• Fact++
– http://owl.man.ac.uk/factplusplus/

• Pellet
– http://www.mindswap.org/2003/pellet/index.shtml

• RacerPro
– http://www.sts.tu-harburg.de/~r.f.moeller/racer/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 127

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 128

OWL tools (incomplete listing)

Reasoner:
• OWL 2 DL:

– Pellet http://clarkparsia.com/pellet/
– HermiT http://www.hermit-reasoner.com/

• OWL 2 EL:
– CEL http://code.google.com/p/cel/

• OWL 2 RL:
– essentially any rule engine

• OWL 2 QL:
– essentially any SQL engine (with a bit of query rewriting on

top)
Editors:
• Protégé
• NeOn Toolkit
• TopBraid Composer

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 129

Main References

• W3C OWL Working Group, OWL 2 Web Ontology Language:
Document Overview. http://www.w3.org/TR/owl2-overview/

• Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter Patel-
Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language:
Primer. http://www.w3.org/TR/owl2-primer/

• Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, Peter F. Patel-Schneider, The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edition, 2007.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 130

Main References – Textbooks

• Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph, York Sure,
Semantic Web – Grundlagen.
Springer, 2008.
http://www.semantic-web-grundlagen.de/
(In German.)
(Does not cover OWL 2.)

• Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph,
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.
http://www.semantic-web-book.org/wiki/FOST
(Ask for a flyer from us.)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 131

Further References

• DL complexity calculator: http://www.cs.man.ac.uk/~ezolin/dl/

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI-08), pp. 80–
84. IOS Press 2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP:
Tractable Rules for OWL 2. In: Amit Sheth, Steffen Staab, Mike
Dean, Massimo Paolucci, Diana Maynard, Timothy Finin,
Krishnaprasad Thirunarayan (eds.), The Semantic Web - ISWC
2008, 7th International Semantic Web Conference. Springer
Lecture Notes in Computer Science Vol. 5318, 2008, pp. 649-664.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 132

Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 133

OWL 2 and Rules
–

Optional Part, If Enough Time

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 134

Main References Optional Part

Main References:
• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description

Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS
Press 2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean,
Massimo Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad
Thirunarayan, eds.: Proceedings of the 7th International Semantic
Web Conference (ISWC-08), pp. 649–664. Springer 2008.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 135

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 136

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 137

Motivation: OWL and Rules

• Rules (mainly, logic programming) as alternative ontology
modelling paradigm.

• Similar tradition, and in use in practice (e.g. F-Logic)

• Ongoing: W3C RIF working group
– Rule Interchange Format
– based on Horn-logic
– language standard forthcoming 2009

• Seek: Integration of rules paradigm with ontology paradigm
– Here: Tight Integration in the tradition of OWL
– Foundational obstacle: reasoning efficiency / decidability

[naive combinations are undecidable]

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 138

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 139

Preliminaries: Datalog

• Essentially Horn-rules without function symbols

general form of the rules:

p1(x1,...,xn) Æ ...Æ pm(y1,...,yk) ! q(z1,...,zj)

semantics either as in predicate logic
or as Herbrand semantics (see next slide)

• decidable
• polynomial data complexity (in number of facts)
• combined (overall) complexity: ExpTime
• combined complexity is P if the number of variables per rule is

globally bounded

body ! head

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

Datalog semantics example

• Example:
p(x) ! q(x)
q(x) ! r(x)

! p(a)

• predicate logic semantics:

(8x) (p(x) ! r(x))
and
(8x) (:r(x) ! :p(x))
are logical consequences

q(a) and r(a)
are logical consequences

• Herbrand semantics

those on the left are not logical
consequences

q(a) and r(a)
are logical consequences

material implication:
apply only to known constants

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 141

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 142

More rules than you ever need: SWRL

• Union of OWL DL with (binary) function-free Horn rules
(with binary Datalog rules)

• undecidable
• no native tools available

• rather an overarching formalism

• see http://www.w3.org/Submission/SWRL/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 143

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 144

SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 145

SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

orderedDish rdfs:range Dish.

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 146

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 147

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 148

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)
Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 149

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 150

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 151

Retaining decidability I: DL-safety

• Reinterpret SWRL rules:
Rules apply only to individuals which are explicitly given in the
knowledge base.
– Herbrand-style way of interpreting them

• OWL DL + DL-safe SWRL is decidable
• Native support e.g. by KAON2 and Pellet

• See e.g. Boris Motik, Ulrike Sattler, and Rudi Studer. Query
Answering for OWL-DL with Rules. Journal of Web Semantics
3(1):41–60, 2005.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 152

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Unhappy(sebastian) cannot be concluded

{DL-safe

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 153

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

{DL-safe

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 154

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 155

Retaining decidability II: DL Rules

• General idea:
Find out which rules can be encoded in OWL (2 DL) anyway

• Man(x) Æ hasBrother(x,y) Æ hasChild(y,z) ! Uncle(x)
– Man u 9hasBrother.9hasChild.> v Uncle

• ThaiCurry(x) ! 9contains.FishProduct(x)
– ThaiCurry v 9contains.FishProduct

• kills(x,x) ! suicide(x) suicide(x) ! kills(x,x)
– 9kills.Self v suicide suicide v 9kills.Self

Note: with these two axioms,
suicide is basically the same as kills

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 156

DL Rules: more examples

• NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
– NutAllergic ≡ 9nutAllergic.Self

NutProduct ≡ 9nutProduct.Self
nutAllergic o U o nutProduct v dislikes

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
– Dish ≡ 9dish.Self

dislikes o contains– o dish v dislikes

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University ≡ 9worksAtUniversity.Self
PhDStudent ≡ 9phDStudent.Self
worksAtUniversity o supervises o phDStudent v professorOf

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 157

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
– C u 9R.{a} u 9S.(D u 9T.{a}) v E

duplicating
nominals

is
okE E

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 158

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)

C u 9R.{a} v 9R1.Self
D u 9T.{a} v 9R2.Self
R1 o S o R2 v V

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 159

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• complex classes are allowed in the rules

– Mouse(x) Æ 9hasNose.TrunkLike(y) ! smallerThan(x,y)

– ThaiCurry(x) ! 9contains.FishProduct(x)

Note: This allows to reason with unknowns (unlike Datalog)

– allowed class constructors depend on the chosen underlying
description logic!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 160

DL Rules: definition

Given a description logic D,
the language D Rules consists of
• all axioms expressible in D,
• plus all rules with

– tree-shaped bodies, where
– the first argument of the conclusion is the root, and
– complex classes from D are allowed in the rules.
– <plus possibly some restrictions concerning e.g. the use of

simple roles – depending on D>

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 161

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 162

The rules hidden in OWL 2: SROIQ Rules

• N2ExpTime complete

• In fact, SROIQ Rules can be translated into SROIQ
i.e. they don't add expressivity.

Translation is polynomial.

• SROIQ Rules are essentially helpful syntactic sugar for OWL 2.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 163

SROIQ Rules example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

!not a SROIQ Rule!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 164

SROIQ Rules normal form

• Each SROIQ Rule can be written ("linearised") such that
– the body-tree is linear,
– if the head is of the form R(x,y), then y is the leaf of the tree,

and
– if the head is of the form C(x), then the tree is only the root.

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)
– (C u 9R.{a})(x) Æ S(x,y) Æ (D u 9T.{a})(y) ! V(x,y)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 165

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 166

Retaining tractability I: OWL 2 EL Rules

• EL++ Rules are PTime complete

• EL++ Rules offer expressivity which is not readily available in
EL++.

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 167

OWL 2 EL Rules: normal form

• Every EL++ Rule can be converted into a normal form,where
– occurring classes in the rule body are either atomic or

nominals,
– all variables in a rule's head occur also in its body, and
– rule heads can only be of one of the forms A(x), 9R.A(x),

R(x,y), where A is an atomic class or a nominal or > or ?.

• Translation is polynomial.

• 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ
PhDStudent(z)

! professorOf(x,z)

• ThaiCurry(x) ! 9contains.FishProduct(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 168

OWL 2 EL Rules in a nutshell

Essentially, OWL 2 EL Rules is

• Binary Datalog with tree-shaped rule bodies,
• extended by

– occurrence of nominals as atoms and
– existential class expressions in the head.

• The existentials really make the difference.

• Arguably the better alternative to OWL 2 EL (aka EL++)?
– (which is covered anyway)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 169

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 170

Retaining tractability II: DLP 2

• DLP 2 is
– DLP (aka OWL 2 RL) extended with
– DL rules, which use

• left-hand-side class expressions in the bodies and
• right-hand-side class expressions in the head.

• Polynomial transformation into 5-variable Horn rules.

• PTime.

• Quite a bit more expressive than DLP / OWL 2 RL ...

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 171

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 172

Retaining tractability III: ELP

Putting it all together:

• ELP is
– OWL 2 EL Rules +
– a generalisation of DL-safety +
– variable-restricted DL-safe Datalog +
– role conjunctions (for simple roles).

• PTime complete.
• Contains OWL 2 EL and OWL 2 RL.
• Covers variable-restricted Datalog.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 173

DL-safe variables

• A generalisation of DL-safety.
• DL-safe variables are special variables which bind only to named

individuals (like in DL-safe rules).
• DL-safe variables can replace individuals in EL++ rules.

• C(x) Æ R(x,xs) Æ S(x,y) Æ D(y) Æ T(y,xs) ! E(x)
with xs a safe variable is allowed, because

C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
is an EL++ rule.

duplicating
nominals

is
okE E

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 174

Variable-restricted DL-safe Datalog

• n-Datalog is Datalog, where the number of variables occurring in
rules is globally bounded by n.

• complexity of n-Datalog is PTime (for fixed n)
– (but exponential in n)

• in a sense, this is cheating.
• in another sense, this means that using a few DL-safe Datalog

rules together with an EL++ rules knowledge base shouldn't
really be a problem in terms of reasoning performance.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 175

Role conjunctions

• orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

• In fact, role conjunctions can also be added to OWL 2 DL without
increase in complexity.

• Sebastian Rudolph, Markus Krötzsch, Pascal Hitzler, Cheap Boolean
Role Constructors for Description Logics. In: Steffen Hölldobler and
Carsten Lutz and Heinrich Wansing (eds.), Proceedings of 11th
European Conference on Logics in Artificial Intelligence (JELIA),
volume 5293 of LNAI, pp. 362-374. Springer, September 2008.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 176

Retaining tractability III: ELP

• ELPn is
– OWL 2 EL Rules generalised by DL-safe variables +

– DL-safe Datalog rules with at most n variables +
– role conjunctions (for simple roles).

• PTime complete (for fixed n).
– exponential in n

• Contains OWL 2 EL and OWL 2 RL.
• Covers all Datalog rules with at most n variables. (!)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 177

ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

not an EL++ rule

[okay]

[okay – role conjunction]

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 178

ELP example

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
as SROIQ rule translates to

Dish ≡ 9dish.Self
dislikes o contains– o dish v dislikes

but we don't have inverse roles in ELP!

• solution: make z a DL-safe variable:

dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

this is fine

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 179

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 180

ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 181

ELP Reasoner ELLY

• Implementation currently being finalised.
• Based on IRIS Datalog reasoner.
• In cooperation with STI Innsbruck (Barry Bishop, Daniel Winkler,

Gulay Unel).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 182

The Big Picture

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 183

Closed World and ELP

• There's an extension of ELP using (non-monotonic) closed-
world reasoning – based on a well-founded semantics for hybrid
MKNF knowledge bases.

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, A Coherent Well-
founded model for Hybrid MKNF knowledge bases. In: Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.),
Proceedings of the 18th European Conference on Artificial
Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008,
pp. 99-103.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 184

The Big Picture II

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

data-tractable

hybrid ELP
(local

closed
world)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 185

Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 186

References OWL and Rules

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS Press
2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean, Massimo
Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad
Thirunarayan, eds.: Proceedings of the 7th International Semantic
Web Conference (ISWC-08), pp. 649–664. Springer 2008.

• http://www.w3.org/Submission/SWRL/
• Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for

OWL-DL with Rules. Journal of Web Semantics 3(1):41–60, 2005.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 187

References OWL and Rules

• Sebastian Rudolph, Markus Krötzsch, Pascal Hitzler, Cheap Boolean
Role Constructors for Description Logics. In: Steffen Hölldobler and
Carsten Lutz and Heinrich Wansing (eds.), Proceedings of 11th
European Conference on Logics in Artificial Intelligence (JELIA),
volume 5293 of LNAI, pp. 362-374. Springer, September 2008.

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, A Coherent Well-
founded model for Hybrid MKNF knowledge bases. In: Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.),
Proceedings of the 18th European Conference on Artificial
Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008,
pp. 99-103.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 188

See also our books

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
York Sure,
Semantic Web – Grundlagen. Springer, 2008.
http://www.semantic-web-grundlagen.de/

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.
http://www.semantic-web-book.org/wiki/FOST

(Grab a flyer.)

The University of Manchester

Creative Commons License

A Practical Introduction to
Ontologies & OWL

Tutorial ISWC 2010

Bernardo Cuenca Grau, Birte Glimm, Pascal
Hitzler, Héctor Pérez-Urbina

Material adapted from the Protégé OWL Tutorial originally
developed by the BHIG group at the University of Manchester

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Overview

► Pizzas – Card Sorting

► Protégé Introduction

►Creating a Class Hierarchy

►Consistency

►Disjointness

► Properties

► Restrictions

►Defined Classes

►Union Classes

► The Open World Assumption

►Closure

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Our Domain

►Pizzas have been used in Manchester tutorials for years.

►Pizzas were selected as a domain for several reasons:
► They are fun

► They are internationally known

► They are highly compositional

► They have a natural limit to their scope

► They are fairly neutral

►Although arguments still break out over representation

► Even pizzas can do this - its an inevitable part of knowledge modelling

►ARGUING IS NOT BAD!

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

You are the Expert

►Most often it is not the domain expert that formalises their
knowledge – because of the complexity of the modelling it is
normally a specialist “knowledge engineer”
Hopefully, as tools get easier to use, this will change

►Having access to experts is critical for most domains

► Luckily, we are all experts in Pizzas, so we just need some
material to verify our knowledge…

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Our Ontology

► When building an ontology we need an application in mind – ontologies
should not be built for the sake of it

► Keep the application in mind when creating concepts – this should help
you scope the project

► The PizzaFinder application has been developed so that you can plug
your ontology in at the end of the day and see it in action

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Our Application

www.co-ode.org/downloads/pizzafinder/

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 1: Card Sorting

► You have been given a selection of pizza toppings from a
takeway menu

►Group the toppings into several piles
►What similarities and differences are there between the different piles?

► Are there any concepts missing?

► Feel free to add you own toppings to the cards

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Card Sorting - Issues

► different viewpoints
► Tomato – Vegetable or Fruit?

► culinary vs biological

► Ambiguity
► words not concepts

► Missing Knowledge
► What is peperonata?

► multiple classifications (2+ parents)

► lots of missing categories (superclasses?)

► competency questions
► What are we likely to want to “ask” our ontology?

► bear the application in mind

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

► Editing the RDF/XML by hand is probably not recommended (as we have seen)

► Ontologies range in size, but because of their explicit nature they require
verbose definitions

► Thankfully we have tools to help us reduce the syntactic complexity

► However, the tools are still in the process of trying to reduce the semantic
complexity

► Building ontologies in OWL is still hard

Editing OWL

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

OWL Editors

http://www.xml.com/pub/a/2004/07/14/onto.html

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

…

► Is a knowledge modelling environment

► Is free, open source software

► Is developed by Stanford / Manchester

►Has a large user community (approx 30k)

► Protégé 4/4.1 Built solely on OWL modelling language

► Supports development of plugins to allow backend /
interface extensions

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 2: Create Class Hierarchy

► It is helpful to be consistent in naming your entities–
especially when trying to find things in your ontology

►Create a class hierarchy in an empty ontology.

►Arrange Pizza, PizzaBase, and PizzaTopping as a subclasses
of Food, sort your toppings into classes under PizzaTopping

►We demo the initial steps in Protégé.

►Make sure you save your ontologies on a regular basis!

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Labels – so what?

►Humans might be able to interpret what the labels mean and
how they are defined, but the computer cannot.

A

B

C

D

Food

Pizza

PizzaBase

PizzaTopping

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Consistency Checking

► Let’s make a MeatyVegetableTopping as subclass of MeatTopping
and VegetableTopping!

► We demo this

► We’ve just created a class that doesn’t really make sense
► What is a MeatyVegetableTopping?

► We’d like to be able to check the logical consistency of our model

► This is one of the tasks that can be done automatically by software
known as a Reasoner

► Being able to use a reasoner is one of the main advantages of using
a logic-based formalism such as OWL (and why we are using OWL-
DL)

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Reasoners

► Reasoners are used to infer information that is not explicitly contained within the
ontology

► You may also hear them being referred to as Classifiers

► Standard reasoner services are:
► Consistency Checking

► Subsumption Checking

► Equivalence Checking

► Instantiation Checking

► Reasoners can be used at runtime in applications as a querying mechanism (esp
useful for smaller ontologies)

► We will use one during development as an ontology “compiler”. A well designed
ontology can be compiled to check its meaning is that intended

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Why is MeatyVegetableTopping not
Inconsistent?

► We have asserted that a MeatyVegetableTopping is a subclass of
two classes, but these classes are not disjoint

► The disjoint means nothing can be a MeatTopping and a
VegetableTopping at the same time

► Try and make all direct subclasses of Thing disjoint and use the
reasoner again

► We demo this

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Why is MeatyVegetableTopping
Inconsistent?

► The disjoint means nothing can be a MeatTopping and a
VegetableTopping at the same time

► This means that MeatyVegetableTopping can never contain any
individuals

► The class is therefore unsatisviable- this is what we expect!

► It can be useful to create classes we expect to be inconsistent to
“test” your model – often we refer to these classes as “probes” –
generally it is a good idea to document them as such to avoid later
confusion

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Relationships in OWL

► In OWL-DL, relationships can only be formed between
Individuals or between an Individual and a data value.
(In OWL-Full, Classes can be related, but this cannot be reasoned with)

► Relationships are formed along Properties

►We can restrict how these Properties are used:
►Globally – by stating things about the Property itself

►Or locally – by restricting their use for a given Class

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Creating Properties

► We often create properties using 2 standard naming patterns:

► has… (e.g., hasColour)

► is…Of (e.g., isTeacherOf) or other suffixes (e.g., …In …To)

► This has several advantages:

► It is easier to find properties

► It is easier for tools to generate a more readable form
(see tooltips on the classes in the hierarchy later)

► Inverses properties typically follow this pattern
e.g., hasPart, isPartOf

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 3: Properties

►Create a set of (object) properties that can be used to
define some pizzas

►Create at least hasTopping and hasBase as subproperties of
hasIngredient

►We demo the creation of properties

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Primitive Classes

► All classes in our ontology so far are Primitive

► We describe primitive pizzas

► Primitive Class = only Necessary Conditions

► They are marked as plain orange circles in the class hierarchy

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Polyhierarchies

► By the end of this tutorial we intent to create a VegetarianPizza

► Some of our existing Pizzas should be types of VegetarianPizza

► However, they could also be types of CheeseyPizza

► We need to be able to give them multiple parents in a principled way

► We could just assert multiple parents like we did with
MeatyVegetableTopping (without disjoints)

BUT…

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Asserted Polyhierarchies

We believe asserting polyhierarchies is bad

let the reasoner do it!

►We lose some encapsulation of knowledge
► Why is this class a subclass of that one?

►Difficult to maintain
► Adding new classes becomes difficult because all subclasses may need to

be updated
► Extracting from a graph is harder than from a tree

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Describing Classes using Properties

► To do this, we go back to the Pizza class and add some further
information

► This comes in the form of Restrictions

► Restrictions are a type of anonymous class

► They describe the relationships that must hold for members
(Individuals) of this class

► We create Restrictions using the Class Description Frame

► Conditions can be any kind of Class – you have already added Named
superclasses in the Class Description Frame. Restrictions are a type of
Anonymous Class

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Anonymous Classes

►Made up of logical expressions
► Unions and Intersections (Or, And)

► Complements (Not)

► Enumerations (specified membership)

► Restrictions (related to Property use)

► The members of an anonymous class are the set of Individuals that satisfy its
logical definition

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

An example

Existential restriction on primitive class Shark:

necessarily hasMouthPart some Teeth

Shark Teeth

“Every member of the Shark class must have at least one mouthpart from
the class Teeth”

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

An example

Existential restriction on primitive class Shark:

necessarily hasMouthPart some Teeth

Shark Teeth

“There can be no member of Shark, that does not have at least one
hasMouthPart relationship with an member of class Teeth”

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Restriction Types

Existential, someValuesFrom “Some”, “At least one”

Universal, allValuesFrom “Only”

hasValue “equals x”

Cardinality “Exactly n”

Max Cardinality “At most n”

Min Cardinality “At least n”

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 4: Restrictions

►Create a restriction for pizzas stating that pizzas have some
topping and have some base

►We demo this

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 5: Define some Named Pizzas

►Create a subclass of Pizza, called NamedPizza, and a
subclass of NamedPizza, called MargheritaPizza.

►Add an anonymous superclass for MargerithaPizza stating
that MargerithaPizza has some MorzarellaTopping and
some TomatoTopping

► In addition, to this example, create different kinds of pizza
using the Pizza menu.

►We demo this

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

CheesyPizza

►A CheesyPizza is any pizza that has some cheese on it

►We would expect then, that some pizzas might be named
pizzas and cheesy pizzas (among other things later on)

►We can use the reasoner to help us produce this
polyhierarchy without having to assert multiple parents

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Creating a CheesyPizza

► We normally create primitive classes and then migrate them to defined classes

► All of our defined pizzas will be direct subclasses of Pizza

► So, we create a CheesyPizza Class (do not make it disjoint) and add a
restriction:
“Every CheesyPizza must have at least one CheeseTopping”
in the Superclasses widget

► Classifying shows that we currently don’t have enough information to do any
classification

► We then move the conditions from the Superclasses block to the Equivalent
classes block which changes the meaning

► And classify again…

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 6: Create a Defined Class

►Add a class CheesyPizza below Pizza

►Add an anonymous superclass “hasTopping some
CheeseTopping”

►Classify and look at the inferred hierarchy

►Add the anonymous class under Equivalent classes

►Classify again and check the inferred hierarchy

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Reasoner Classification

► The reasoner has been able to infer that anything that is a Pizza that has
at least one topping from CheeseTopping is a CheesyPizza

► MargheritaPizza can be found under both NamedPizza and
CheeseyPizza in the inferred hierarchy

► We don’t currently have many kinds of primitive pizza but its easy to see
that if we had, it would have been a substantial task to assert
CheesyPizza as a parent of lots, if not all, of them

► And then do it all over again for other defined classes like MeatyPizza
or whatever

Mission Successful!

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Why?
Defined Classes

► Each set of necessary & sufficient conditions is an Equivalent Class

► CheeseyPizza is equivalent to the intersection of Pizza and hasTopping some
CheeseTopping

► Classes, all of whose individuals fit this definition are found to be subclasses of
CheeseyPizza, or are subsumed by CheeseyPizza

Pizza
hasTopping some
CheeseTopping

CheeseyPizza

Pizza

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Viewing polyhierarchies

►As we now have multiple
inheritance, the tree view
is less than helpful in
viewing our “hierarchy”

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Viewing our Hierarchy Graphically

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Viewing our Hierarchy Graphically

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Using OWLViz to untangle

► The asserted hierarchy should, ideally, be a tidy tree of
disjoint primitives

► The inferred hierarchy will be tangled

► By switching from the asserted to the inferred hierarchy, it is
easy to see the changes made by the reasoner

►OWLViz can be used to spot tangles in the primitive tree

► http://code.google.com/p/co-ode-owl-
plugins/wiki/OWLViz

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Defined Classes

► We’ve created a Defined Class, CheesyPizza

► It has a definition. That is at least one Necessary and Sufficient condition

► Classes, all of whose individuals satisfy this definition, can be inferred to be
subclasses

► Therefore, we can use it like a query to “collect” subclasses that satisfy its conditions

► Reasoners can be used to organise the complexity of our hierarchy

► It’s marked with an equivalence symbol in the interface

► Defined classes are rarely disjoint

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Define a Vegetarian Pizza

►Not as easy as it looks…

►Define in words?
► “a pizza with only vegetarian toppings”?

► “a pizza with no meat (or fish) toppings”?

► “a pizza that is not a MeatyPizza”?

►More than one way to model this

We’ll start with the first example

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Define a Vegetarian Pizza

To be able to define a vegetarian pizza as
a Pizza with only Vegetarian Toppings

we need:

1. To be able to create a vegetarian topping
This requires a Union Class

2. To be able to say “only”
This requires a Universal Restriction

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

A or B includes all
individuals of class A and
all individuals from class B
and all individuals in the
overlap (if A and B are
not disjoint)

► aka “disjunction”

► This OR That OR TheOther

Union Classes

► Commonly used for:
► Covering axioms

► Closure

A
B

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Covering Axioms

► Covering axiom – a union expression containing several covering
classes

► A covering axiom in the Necessary & Sufficient Conditions of a class
means:
the class cannot contain any instances other than those from the
covering classes

► NB. If the covering classes are subclasses of the covered class, the
covering axiom only needs to be a Necessary condition – it doesn’t
harm to make it Necessary & Sufficient though – its just redundant

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Covering PizzaBase

► In this example, the class PizzaBase is
covered by ThinAndCrispy or
DeepPan

► “All PizzaBases must be
ThinAndCrispy or DeepPan”

► “There are no other types of
PizzaBase”

PizzaBase

DeepPan
ThinAndCrispy

PizzaBase ≡ ThinAndCrispy or DeepPan

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 7: Define a Class
VegetarianTopping

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Universal Restrictions

►We need to say our VegetarianPizza can only have
toppings that are vegetarian toppings

►We can do this by creating a Universal or only restriction

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 8: Create a class VegetarianPizza

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

VegetarianPizza Classification

► Nothing classifies under VegetarianPizza

► Actually, there is nothing wrong with our definition of VegetarianPizza

► It is actually the descriptions of our Pizzas that are incomplete

► The reasoner has not got enough information to infer that any Pizza is
subsumed by VegetarianPizza

► This is because OWL makes the Open World Assumption

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Open World Assumption

► In a closed world (like DBs), the information we have is everything

► In an open world, we assume there is always more information than is
stated

► Where a database, for example, returns a negative if it cannot find
some data, the reasoner makes no assumption about the completeness of
the information it is given

► The reasoner cannot determine something does not hold unless it is
explicitly stated in the model

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Open World Assumption

► Typically we have a pattern of several Existential restrictions
on a single property with different fillers – like primitive
pizzas on hasTopping

► Existential restrictions should be paraphrased by “amongst
other things…”

►Must state that a description is complete

►We need closure for the given property

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Closure

► This is in the form of a Universal Restriction with a filler that
is the Union of the other fillers for that property

►Closure works along a single property

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Closure example: MargheritaPizza

All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and
at least 1 topping from TomatoTopping and
only toppings from MozzarellaTopping or TomatoTopping

► The last part is paraphrased into “no other toppings”
► The union closes the hasTopping property on MargheritaPizza

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Exercise 9: Closing Pizzas

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Summary

You should now be able to:

► extract Knowledge (and act as an expert)

► identify components of the Protégé-OWL Interface

► create Primitive Classes and Properties

► create some basic Restrictions on a Class

►Create Defined Classes and classify using a reasoner to
check expected results

►Create Covering Axioms

►Close Class Descriptions and understand the Open World
Assumption

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Reference Material

► Further material is available from:
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

► Protégé: http://protege.stanford.edu/
Protégé wiki: http://protegewiki.stanford.edu/

►HermiT OWL Reasoner: http://www.hermit-reasoner.com

► Pellet OWL Reasoner: http://clarkparsia.com/pellet/

►OWLViz: http://protegewiki.stanford.edu/wiki/OWLViz

► Pizza Finder: http://www.co-
ode.org/downloads/pizzafinder/

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/�
http://www.hermit-reasoner.com�
http://clarkparsia.com/pellet/�
http://www.co-ode.org/downloads/pizzafinder/�
http://www.co-ode.org/downloads/pizzafinder/�

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Extra Exercise 10: Cardinality
Restrictions

► In OWL we can describe the class of individuals that have at
least, at most or exactly a specific number of relationships with
other individuals or datatype values.

►We have min, max and exactly Cardinality Restrictions.

►We can create InterestingPizza, which is defined a a Pizza
that has at least 3 PizzaToppings.

Introduction to Ontologies Tutorial
The University of Manchester

Creative Commons License

Extra Exercise 11: Qualified
Cardinality Restrictions

►QCRs are more specific than the previous example in that
they state the class of objects within the restriction

►We can define a type of FourCheesePizza, that is defined
as having exactly four cheese toppings.

►Can a four cheese pizza have other toppings other than
cheese?

Building Ontology-based
Applications using Pellet

Bernardo Cuenca-Grau
Oxford University Computing Laboratory

International Semantic Web
Conference 2010

What is Clark & Parsia?
Small semantic software firm in Washington,
DC and Boston
Provides software development and
integration services
Specializing in Semantic Web, web services,
and advanced AI technologies for federal and
enterprise customers

http://clarkparsia.com/
Twitter: @candp

http://clarkparsia.com/
http://twitter.com/candp

What is Pellet?
Pellet is an OWL-DL reasoner

Supports OWL 2
Sound and complete reasoner

Written in Java and available from http:
//clarkparsia.com/pellet
Dual-licensed

AGPL license for open-source applications
Commercial license for commercial applications

http://clarkparsia.com/pellet
http://clarkparsia.com/pellet

Talk Roadmap
OWL and Reasoning
Developing ontologies

Validate and debug schema definitions
Connecting multiple ontologies

Ontology alignment
Validating instance data

Identify and resolve inconsistencies in the data
 Reasoning with instance data

Answer queries over combined data using Pellet
Scalability and performance considerations

OWL and Reasoning

OWL in 3 Slides (1)
ENTITIES

Class: Person, Organization, Project, Skill, ...
Datatype: string, integer, date, ...

Individual: Evren, C&P, POPS, ...
Literal: "Evren Sirin", 5, 5/26/2008, ...

Object Property: worksAt, hasSkill, ...
Data property: name, proficiencyLevel, ...

OWL in 3 Slides (2)
EXPRESSIONS

Class expressions
and, or, not
some, only, min, max, exactly, value, Self
{ ... }

Datatype definitions

and, or, not
<, <=, >, >=
{ ... }

OWL in 3 Slides (3)
AXIOMS

Class axioms
subClassOf, equivalentTo, disjointWith

Property axioms

subPropertyOf, equivalentTo, inverseOf,
disjointWith, subPropertyChain, domain, range

Property characteristics

Functional, InverseFunctional, Transitive,
Symmetric, Asymmetric, Reflexive, Irreflexive

Individual assertions

Class assertion, property assertion, sameAs,
differentFrom

OWL Example
Employee equivalentTo (CivilServant or Contractor)
CivilServant disjointWith Contractor
Employee subClassOf
 employeeID some integer[>= 100000, <= 999999]
Employee subClassOf employeeID exactly 1
worksOnProject domain Person
worksOnProject range Project
Person0853 type CivilServant
Person0853 employeeID 312987
Person0853 worksOnProject Project2133

OWL Example
Employee equivalentTo (CivilServant or Contractor)
CivilServant disjointWith Contractor
Employee subClassOf
 employeeID some integer[>= 100000, <= 999999]
Employee subClassOf employeeID exactly 1
worksOnProject domain Person
worksOnProject range Project
Person0853 type CivilServant
Person0853 employeeID 312987
Person0853 worksOnProject Project2133

Schema (TBox)

Data (ABox)

Reasoning in OWL
1. Check the consistency of a set of axioms

Verify the input axioms do not contain contradictions

Inconsistency Examples

Example 1
CivilServant disjointWith Contractor
Person0853 type CivilServant , Contractor

Example 2

ActiveProject subClassOf endDate max 0
Project2133 type ActiveProject
Project2133 endDate "1/1/2008"^^xsd:date

Unsatisfiability
Unsatisfiable class cannot have any instances

Consistent ontologies may contain unsatisfiable
classes
Declaring an instance for an unsatisfiable class
causes inconsistency

Example
CivilServant disjointWith Contractor
CivilServantContractor subClassOf
 (CivilServant and Contractor)

Reasoning in OWL
1. Check the consistency of a set of axioms

Verify the input axioms do not contain contradictions
Mandatory first step before any other reasoning
service
Fix the inconsistency before reasoning

Why?
Because any consequence can be inferred from
inconsistency

Inference Examples
Input axioms

1. Employee equivalentTo (CivilServant or Contractor)
2. CivilServant disjointWith Contractor
3. isEmployeeOf inverseOf hasEmployee
4. isEmployeeOf domain Employee
5. Person0853 type CivilServant
6. Person0853 isEmployeeOf Organization5349

Some inferences
CivilServant subClassOf Employee { 1 }
Person0853 type Employee { 1, 5 }, { 4, 6 }
Person0853 type not Contractor { 2, 5 }
Organization5349 hasEmployee Person0853 { 3, 6 }

Reasoning in OWL
1. Check the consistency of a set of axioms

Verify the input axioms do not contain contradictions
Mandatory first step before any other reasoning service
Fix the inconsistency before reasoning

Any consequence can be inferred from inconsistency

2. Infer new axioms from a set of axioms
Truth of an axiom is logically proven from asserted axioms
Infinitely many inferences for any non-empty ontology
Inferences can be computed as a batch process or as
required by queries

Common Reasoning Tasks
Classification

Compute subClassOf and equivalentClass
inferences between all named classes

Realization
Find most specific types for each instance
Requires classification to be performed first

Asserted Ontology

Inferred Subclasses

Classification Tree

Instance Realization

SPARQL Queries
Retrieve subclasses

 SELECT ?C WHERE {
 ?C rdfs:subClassOf :Employee .
 }

Retrieve instances
 SELECT ?X WHERE {
 ?X rdf:type :Employee .
 }

Retrieve subclasses and their instances
 SELECT ?X ?C WHERE {
 ?X rdf:type ?C .
 ?C rdfs:subClassOf :Employee .
 }

Ontology Development

Developing Ontologies
Incremental, iterative process

We do not have to start with a perfect model!
Derive the ontology from the sources
Link it to existing ontologies!
Revise, modify, improve

Editing tools
Protégé
TopBraid composer

Use reasoning to get it right!

Building the Ontology from the Sources

Structured data
Map tables and columns to concepts and relations

Class: Adult
Relations: hasName, livesIn

Does the Data change frequently?

No
Extract, Transform, Load
Execute queries over sources
Populate concepts and relations

Yes
Query rewriting
Leave the data where it is
Use the mappings when querying the ontology

Dealing with Semi/Unstructured Data

Extract metadata from documents
Filetype, Author, Description, ...

Extract further knowledge from the content
Keywords
Topics
Key sentences
Document similarity
Coreference resolution
Concepts
Relations

Ontology Alignment

POPS and FOAF
People, Organizations, Projects, and Skills
ontology

Developed by Clark & Parsia
Expertise location in a large organization (NASA)
People, contact information, work history, evidence of
skills, publications, etc.

Friend Of A Friend ontology
Project devoted to linking people and information
using the Web
People, agents, projects, organizations, etc.

Data Integration

Integrate data from multiple sources
Sources use different vocabularies
Establish a common vocabulary to enable
uniform access to all data sources

Use single queries to retrieve instances
from all relevant data sets

Simple Alignment
pops:Employee subClassOf foaf:Person
pops:Project equivalentTo foaf:Project
pops:Organization equivalentTo foaf:Organization
pops:hasEmployee subPropertyOf foaf:member
pops:mbox_sha1sum equivalentTo foaf:mbox_sha1sum

Alignment with SWRL

Mapping sometimes not straight-forward
POPS defines firstName and lastName
FOAF defines name
Concat first and last names to get the full name

SWRL rule with a built-in function
pops:firstName(?person, ?first) ^
pops:lastName(?person, ?last) ^
?name = swrlb:concat(?first " " ?last)
=>
foaf:name(?person, ?name)

More SWRL Mapping
Another example

POPS uses worksOnProject property for both
current and previous projects
FOAF distinguishes currentProject and
pastProject

Solution: POPS also defines ActiveProject class
SWRL rule to encode conditional subproperty

pops:worksOnProject(?person, ?project) ^
pops:ActiveProject(?project)
=>
foaf:currentProject(?person, ?project)

Programming with Pellet

APIs for accessing Pellet

Pellet can be used via four different APIs
Internal Pellet API (Deprecated soon...)
New (2.3) native Pellet API: Ortiz
Manchester OWLAPI
Jena

Each API has pros and cons
Choice will depend on your applications’ needs and
requirements

Pellet Internal API
API used by the reasoner

Designed for efficiency, not usability
Uses ATerm library for representing terms
Fine-grained control over reasoning
Misses features (e.g. parsing & serialization)

Pros: Efficiency, fine-grained control
Cons: Low usability, missing features
Big Con: Will be deprecated in Pellet 2.3

Ortiz API
New API designed for OWL

idiomatic, Java-friendly API
one API for the Pellet family of OWL 2 reasoners
not slavishly tied to OWL 2 specifications
unifies:

SPARQL queries
SWRL rules
OWL axioms

Pros: Very Java-friendly, OWL-centric API
Cons: New...

Manchester OWLAPI
API designed for OWL

Closely tied to OWL structural specification
Support for many syntaxes (RDF/XML, OWL/XML,
OWL functional, Turtle, ...)
Native SWRL support
Integration with reasoners
Support for modularity and explanations

Pros: OWL-centric API
Cons: Not as stable, no SPARQL support (yet)
More info: http://owlapi.sf.net

http://jena.sf.net/

Jena API
RDF framework developed by HP labs

An RDF API with OWL extensions
In-memory and persistent storage
Built-in rule reasoners and integrated with Pellet
SPARQL query engine

Pros: Mature and stable and ubiquitous
Cons: Not great for handling OWL, no specific
OWL 2 support
More info: http://jena.sf.net

http://jena.sf.net

Jena Basics
Model contains set of Statements
Statement is a triple where

Subject is a Resource
Predicate is a Property
Object is an RDFNode

InfModel extends Model with inference
OntModel extends InfModel with ontology API

Creating Inference Models

// create an empty non-inferencing model
Model rawModel = ModelFactory.createDefaultModel();

// create Pellet reasoner
Reasoner r = PelletReasonerFactory.theInstance().create();

// create an inferencing model using the raw model
InfModel model = ModelFactory.createInfModel(r, rawModel);

Creating Ontology Models

// create an empty non-inferencing model
Model rawModel = ModelFactory.createDefaultModel();

// create an ontology model using Pellet spec and raw model
OntModel model = ModelFactory.createOntologyModel(
 PelletReasonerFactory.THE_SPEC, rawModel);

Which Model to Use?
Ontology API may introduce some overhead

Additional object conversions (from RDF API
objects to OWL API objects)
Additional queries to the underlying reasoner

Data Validation

Consistency Checking

// create an inferencing model using Pellet reasoner
InfModel model = ModelFactory.createInfModel(r, rawModel);

// get the underlying Pellet graph
PelletInfGraph pellet = (PelletInfGraph) model.getGraph();

// check for inconsistency
boolean consistent = pellet.isConsistent();

Explaining Inconsistency
// IMPORTANT: The option to enable tracing should be turned
// on before the ontology is loaded to the reasoner!
PelletOptions.USE_TRACING = true;

// create an inferencing model using Pellet reasoner
InfModel model = ModelFactory.createInfModel(r, rawModel);
PelletInfGraph pellet = (PelletInfGraph) model.getGraph();

// create an inferencing model using Pellet reasoner
if(!pellet.isConsistent()) {
 // create an inferencing model using Pellet reasoner
 Model explanation = pellet.explainInconsistency();
 // print the explanation
 explanation.write(System.out);
}

Dealing with Inconsistency
Inconsistencies are unavoidable

Distributed data, no single point of enforcement
Expressive modeling language

Classical logical formalisms are not good at
dealing with inconsistency

Reasoners refuse to reason with inconsistent
ontologies

Paraconsistent logics not practical
Complexity, tool support, etc.

What can we do?

An Automated Solution
Typical process for solving a contradiction

Use Pellet to find which axioms cause contradiction
Domain expert (human) inspects the axiom set
Expert edits/deleted incorrect axioms

An automated (and cautious) solution
Use Pellet to find which axioms cause contradiction
Delete all reported axioms (WIDTIO)

When to use the automated solution
Pros: Completely automated, guaranteed to retain
only consistent information
Cons: May remove too much information

Resolving Inconsistencies
// continue until all inconsistencies are resolved
while (!pellet.isConsistent()) {
 // get the explanation for current inconsistency
 Graph explanation = pellet.explainInconsistency();
 // iterate over the axioms in the explanation
 for (Triple triple : explanation.find(Triple.ANY).toList()) {
 // remove any individual assertion that contributes
 // to the inconsistency (assumption: all the axioms
 // in the schema are believed to be correct and
 // should not be removed)
 if (isIndividualAssertion(triple))
 graph.remove(triple);
 }
}

Closed vs. Open World
Two different views on truth

CWA: Any statement that is not known to be true is false
OWA: A statement is false only if it is known to be false

Used in different contexts
Databases use CWA because (typically) you have
complete information
Ontologies use OWA because (typically) you have
incomplete information

Data validation results significantly different
when using CWA instead of OWA

Example (1)
Input axioms

Employee subClassOf
 employeeID some integer
Person0853 type Employee

OWA
Consistent: true
Reason: Person0853 has an employeeID but we don't
know the exact value

CWA
Consistent: false
Reason: Person0853 does not have an employeeID

Example (2)
Input axioms

isEmployeeOf range Organization
Person0853 isEmployeeOf Organization5349

OWA
Consistent: true
Inference: Organization5349 type Organization

CWA
Consistent: false
Reason: Organization5349 type Organization is
not explicitly asserted

Example (3)
Input axioms

hasManager Functional
Organization5349 hasManager Person0853
Organization5349 hasManager Person1735

OWA
Consistent: true
Inference: Person0853 sameAs Person1735

CWA
Consistent: false
Reason: Organization5349 has more than one
value for hasManager

CWA or OWA Validation?
Should I use CWA or OWA?

Of course use both!
In the application domain there is complete
information about some parts but not others

We might have...
Complete knowledge about employees
Incomplete information about external publications

Retrieved from conference proceedings, etc

An axiom can be interpreted with...
OWA - regular OWL axiom
CWA - integrity constraint (IC)

How to use ICs in OWL
Two easy steps

1. Specify which axioms should be ICs
2. Validate ICs with Pellet

Ontology developer
Develop ontology as usual
Separate ICs from regular axioms

Annotation, separation of files, named graphs, ...
Pellet IC validator

Translates ICs into SPARQL queries automatically
Execute SPARQL queries with Pellet
Query results show constraint violations

Download: http://clarkparsia.com/pellet/download/oicv-0.1.1

http://clarkparsia.com/pellet/download/oicv-0.1.1

IC Validation
// create an inferencing model using Pellet reasoner
InfModel dataModel = ModelFactory.createInfModel(r);

// load the schema and instance data to Pellet
dataModel.read("file:data.rdf");
dataModel.read("file:schema.owl");

// Create the IC validator and associate it with the dataset
JenaICValidator validator = new JenaICValidator(dataModel);

// Load the constraints into the IC validator
validator.getConstraints().read("file:constraints.owl");

// Get the constraint violations
Iterator<ConstraintViolation> violations =
 validator.getViolations();

Resolving IC Violations
IC violations are similar to logical
inconsistencies but not exactly the same

Lack of information may cause IC violation
ICs do not cause new inferences

Used to detect violations
Resolving IC violations

Add more information
Example: Add the missing employee ID info

Delete existing information
Example: Remove the employee

Query Answering

Querying via RDF API
// Get the resource we want to query about
Resource Employee = model.getResource(
 NS + "Employee");
// Retrieve subclasses
Iterator subClasses = model.listSubjectsWithProperty(
 RDFS.subClassOf, Employee);
// Retrieve direct subclasses
Iterator directSubClasses = model.listSubjectsWithProperty(
 ReasonerVocabulary.directSubClassOf, Employee);
// Retrieve instances
Iterator instances = model.listSubjectsWithProperty(
 RDF.type, Employee);

Querying via Ontology API
// Get the resource we want to query about
OntClass Employee = ontModel.getResource(
 NS + "Employee");
// Retrieve subclasses
Iterator subClasses = Employee.listSubClasses();
// Retrieve direct subclasses
Iterator supClasses = Employee.listSubClasses(true);
// Retrieve instances
Iterator instances = Employee.listInstances();

Querying with SPARQL
Query query = Query.create(
 PREFIXES +
 "SELECT ?X ?C " +
 "WHERE {" +
 " ?X rdf:type ?C ." +
 " ?C rdfs:subClassOf :Employee ." +
 "}");
// Create a query execution engine with a Pellet model
QueryExecution qe =
 QueryExecutionFactory.create(query, model);

// Run the query
ResultSet results = qe.execSelect();

...with SPARQL-DL
Query query = Query.create(
 PREFIXES +
 "SELECT ?X ?C " +
 "WHERE {" +
 " ?X sparqldl:directType ?C ." +
 " ?C rdfs:subClassOf :Employee ." +
 "}");
// Create a query execution engine with a Pellet model
QueryExecution qe =
 SparqlDLQueryExecutionFactory.create(query, model);

// Run the query
ResultSet results = qe.execSelect();

SPARQL Engines
ARQ query engine (comes with Jena)

ARQ handles the query execution
Calls Pellet with single triple queries
Supports all SPARQL constructs
Does not support OWL expressions

Pellet query engine
Pellet handles the query execution
Supports only Basic Graph Patterns
Supports OWL expressions

Mixed query engine
ARQ handles SPARQL algebra, Pellet handles
Basic Graph Patterns
Supports all OWL and SPARQL constructs

Questions?

More info
Clark & Parsia, LLC

http://clarkparsia.com/
News, updates, tips/tricks on twitter

#candp

Thank you!

	OWL 2 – Theory and Practice�
	Textbook
	Slides
	Slide Number 4
	OWL
	Main References Part 1
	OWL – Overview
	Contents
	Contents
	Rationale behind OWL
	OWL Building Blocks
	DL syntax FOL syntax
	DL syntax FOL syntax
	Special classes and properties
	Class constructors
	Class constructors
	Contents
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	SROIQ(D) constructors – overview
	Some Syntactic Sugar in OWL
	Contents
	OWL – Extralogical Features
	The modal logic perspective
	The RDFS perspective
	Punning
	Contents
	OWL Semantics
	OWL Direct Semantics
	OWL Direct Semantics: Restrictions
	OWL Direct Semantics: Restrictions
	OWL Direct Semantics
	Interpretation Example
	OWL Direct Semantics
	OWL Direct Semantics
	Logical Consequence
	Notion of logical consequence
	Not a model!
	A model
	Models
	Counterexample
	Logical Consequence
	OWL Direct Semantics via FOL
	Inconsistency and Satisfiability
	Inconsistency and Satisfiability
	A Semantic Puzzle
	What Semantics Is Good For
	In other words
	Simple Logical Reasoning
	Less Simple Reasoning
	SNOMED CT
	Contents
	OWL Profiles
	OWL 2 EL
	OWL 2 RL
	OWL 2 RL
	OWL 2 QL
	Contents
	A Reasoning Problem
	A Reasoning Problem
	Proof Theory
	Proof theory Via Tableaux
	Contents
	Important Inference Problems
	Reduction to Unsatisfiability
	Reduction to Satisfiability
	Contents
	ALC tableaux: contents
	Transform. to negation normal form
	Slide Number 76
	Example
	ALC tableaux: contents
	Naive tableaux algorithm
	The Tableau
	Simple example
	Another example
	Formal Definition
	Initialisation
	Example initialisation
	Careful: need NNF!
	Constructing the tableau
	Naive ALC tableaux rules
	Example
	ALC tableaux: contents
	There‘s a termination problem
	Solution?
	Blocking
	Constructing the tableau
	Naive ALC tableaux rules
	Example (0)
	Example (0)
	Example (0) the other case
	Example(1)
	Example (2)
	Example (3)
	Example (4)
	Example (4)
	Contents
	Tableaux Algorithm for SHIQ
	Transform. to negation normal form
	Slide Number 107
	Formal Definition
	Initialisation
	Notions
	Blocking for SHIQ
	Constructing the tableau
	SHIQ Tableaux Rules
	SHIQ Tableaux Rules
	SHIQ Tableaux Rules
	Example (1): cardinalities
	Example (1): cardinalities
	Example (1): cardinalities – again
	Example (2): cardinalities
	Example (3): choose
	Example (4): inverse roles
	Example (5): Transitivity and Blocking
	Example (5): Transitivity and Blocking
	Example (6): Pairwise Blocking
	Example (7): Dynamic Blocking
	Tableaux Reasoners
	Contents
	OWL tools (incomplete listing)
	Main References
	Main References – Textbooks
	Further References
	Slide Number 132
	Slide Number 133
	Main References Optional Part
	Contents
	Contents
	Motivation: OWL and Rules
	Contents
	Preliminaries: Datalog
	Datalog semantics example
	Contents
	More rules than you ever need: SWRL
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	Contents
	Retaining decidability I: DL-safety
	DL-safe SWRL example
	DL-safe SWRL example
	Contents
	Retaining decidability II: DL Rules
	DL Rules: more examples
	DL Rules: definition
	DL Rules: definition
	DL Rules: definition
	DL Rules: definition
	Contents
	The rules hidden in OWL 2: SROIQ Rules
	SROIQ Rules example
	SROIQ Rules normal form
	Contents
	Retaining tractability I: OWL 2 EL Rules
	OWL 2 EL Rules: normal form
	OWL 2 EL Rules in a nutshell
	Contents
	Retaining tractability II: DLP 2
	Contents
	Retaining tractability III: ELP
	DL-safe variables
	Variable-restricted DL-safe Datalog
	Role conjunctions
	Retaining tractability III: ELP
	ELP example
	ELP example	
	DL-safe SWRL example
	ELP example
	ELP Reasoner ELLY
	The Big Picture
	Closed World and ELP	
	The Big Picture II
	Slide Number 185
	References OWL and Rules
	References OWL and Rules
	See also our books
	ProtegeHandsOn.pdf
	�A Practical Introduction to �Ontologies & OWL
	Overview
	Our Domain
	You are the Expert
	Our Ontology
	Our Application
	Exercise 1: Card Sorting
	Card Sorting - Issues
	Editing OWL
	OWL Editors
	…
	Exercise 2: Create Class Hierarchy
	Labels – so what?
	Consistency Checking
	Reasoners
	Why is MeatyVegetableTopping not Inconsistent?
	Why is MeatyVegetableTopping Inconsistent?
	Relationships in OWL
	Creating Properties
	Exercise 3: Properties
	Primitive Classes
	Polyhierarchies
	Asserted Polyhierarchies
	Describing Classes using Properties
	Anonymous Classes
	An example
	An example
	Restriction Types
	Exercise 4: Restrictions
	Exercise 5: Define some Named Pizzas
	CheesyPizza
	Creating a CheesyPizza
	Exercise 6: Create a Defined Class
	Reasoner Classification
	Why? �Defined Classes
	Viewing polyhierarchies
	Viewing our Hierarchy Graphically
	Viewing our Hierarchy Graphically
	Using OWLViz to untangle
	Defined Classes
	Define a Vegetarian Pizza
	Define a Vegetarian Pizza
	Union Classes
	Covering Axioms
	Covering PizzaBase
	Exercise 7: Define a Class VegetarianTopping
	Universal Restrictions
	Exercise 8: Create a class VegetarianPizza
	VegetarianPizza Classification
	Open World Assumption
	Open World Assumption
	Closure
	Closure example: MargheritaPizza
	Exercise 9: Closing Pizzas
	Summary
	Reference Material
	Extra Exercise 10: Cardinality Restrictions
	Extra Exercise 11: Qualified Cardinality Restrictions

