
Silk Server - Adding missing Links while
consuming Linked Data

Robert Isele, Anja Jentzsch, and Christian Bizer

Freie Universität Berlin, Web-based Systems Group
Garystr. 21, 14195 Berlin, Germany

robertisele@googlemail.com

mail@anjajentzsch.de

chris@bizer.de

Abstract. The Web of Linked Data is built upon the idea that data
items on the Web are connected by RDF links. Sadly, the reality on
the Web shows that Linked Data sources set some RDF links point-
ing at data items in related data sources, but they clearly do not set
RDF links to all data sources that provide related data. In this paper,
we present Silk Server, an identity resolution component, which can be
used within Linked Data application architectures to augment Web data
with additional RDF links. Silk Server is designed to be used with an
incoming stream of RDF instances, produced for example by a Linked
Data crawler. Silk Server matches the RDF descriptions of incoming in-
stances against a local set of known instances and discovers missing links
between them. Based on this assessment, an application can store data
about newly discovered instances in its repository or fuse data that is
already known about an entity with additional data about the entity
from the Web. Afterwards, we report on the results of an experiment in
which Silk Server was used to generate RDF links between authors and
publications from the Semantic Web Dog Food Corpus and a stream of
FOAF profiles that were crawled from the Web.

Keywords: Linked Data, Link Discovery, Identity Resolution

1 Introduction

The Web of Linked Data [3] is built upon two simple ideas: Structured data is
published on the Web using dereferencable URIs to represent data items wherein
related data items are connected using RDF links. At its present state, the Web
of Linked Data contains only a fraction of the links that would be desirable to be
set1. According to Rodriguez [14], the Web of Data graph merely consists of two
weakly connected components with a large diameter of 10 and an average path
length of 3.4. A Linked Data application which wants to exploit the relationships

1 http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/

DataSets/LinkStatistics



2 R. Isele, A. Jentzsch, C. Bizer

between data items from different data sources thus might want to augment Web
data with additional links before using it in the application context.

In order to tackle this problem, we provide the Silk Link Discovery Frame-
work [15]. Silk generates RDF links between data items based on user-provided
link specifications which are expressed using the Silk Link Specification Language
(Silk-LSL). Silk is provided in three different variants which address different use
cases:

• Silk Single Machine is used to generate RDF links between two datasets on
a single machine.

• Silk MapReduce is based on Hadoop and enables Silk to scale out to very
big datasets by distributing the link generation to multiple machines.

• Silk Server can be used as an identity resolution component within applica-
tions that consume Linked Data from the Web.

This paper is focused on Silk Server which has been recently added as a new
component to the Silk Link Discovery Framework. Silk Single Machine and Silk
MapReduce are described on the Silk homepage2.

Silk Server is designed to be used with an incoming stream of RDF instances,
produced for example by a Linked Data crawler such as LDSpider3. Silk Server
matches incoming instances against a local set of known instances and discovers
missing links between them. Incoming instances which do not match a known
instance are added to the local set of instances continuously. Based on this
assessment, an application can store data about newly discovered instances in
its repository or fuse data that is already known about an entity with additional
data about the entity from the Web.

The main features of the Silk Server are:

• It runs as an HTTP server and offers a REST interface [9] that allows ap-
plications to check whether an entity that has been discovered on the Web
is already known to the system. If the entity is already known, Silk Server
returns an RDF link pointing at the URI identifying the known entity.

• It provides a flexible, declarative language for specifying the conditions which
determine whether an entity is already known to the system.

• It is high-performing by holding the data about all known instances in an in-
memory cache, which is updated as soon as new instances are discovered. In
addition, the performance can be further enhanced using a blocking feature.

The paper is structured as follows: Section 2 explains the role Silk Server can
play within Linked Data application architectures. In Section 3, the architecture
and workflow of the Silk Server are presented. Section 4 reports on the results
of an experiment in which Silk Server was used to generate RDF links between
the data about authors and publications from the Semantic Web Dog Food
Corpus [12] and a stream of FOAF4 profiles that were crawled from the Web.
Section 5 compares Silk Server with related work.

2 http://www4.wiwiss.fu-berlin.de/bizer/silk/
3 http://code.google.com/p/ldspider/
4 http://www.foaf-project.org



Silk Server - Adding missing links while consuming Linked Data 3

2 Silk Server within Linked Data Application
Architectures

This section discusses the role of Silk Server within Linked Data application
architectures. Figure 1 gives an overview of the architecture of a fully-fledged
Linked Data application which operates on top of the public Web of Linked
Data [3].

Fig. 1. Schematic Architecture of Linked Data Applications

All data that is published on the Web according to the Linked Data principles
becomes part of a giant global graph - the Web of Linked Data. This logical graph
is depicted in the Web of Linked Data layer in Figure 1. Applications that utilize
this graph might implement the modules (or a subset of the modules) depicted in
the Data Access, Integration and Storage Layer. In the following, we will describe
the functionality of the different modules.

1. Web Data Access Module The basic means to access Linked Data on the
Web is to dereference HTTP URIs into RDF descriptions and to discover
additional data by traversing RDF links. Such link traversal can for instance



4 R. Isele, A. Jentzsch, C. Bizer

be implemented using readily available Linked Data crawlers such as LD-
spider. In addition, the data access module might download RDF data set
dumps or utilize SPARQL endpoints (for an overview about SPARQL-based
distributed query architectures please refer to [10]). Data set dumps and
SPARQL endpoints might be discovered by the data access module by rely-
ing on VOID descriptions [1] and Semantic Web Sitemaps [6] published on
the Web by the data sources.

2. Vocabulary Mapping Module Different Linked Data sources often use
different RDF vocabularies to represent the same type of information. In
addition, data sources often use a mixture of terms from widely-used vo-
cabularies, such as FOAF, SIOC or Dublin Core, and proprietary terms to
represent data. In order to understand as much Web data as possible, Linked
Data applications might employ a vocabulary mapping module to translate
terms from different vocabularies into the application’s target schema. This
tranlation can rely on owl:sameClass or owl:sameProperty mappings as
well as on rdfs:subClass and rdfs:subProperty statements that are pub-
lished on the Web together with the vocabulary definitions or can employ
more expressive mapping languages and discovery features, as for instance
provided by the R2R Famework5.

3. Identity Resolution Module Different Linked Data sources use different
URIs to identify the same entity in order to enable clients to directly re-
trieve data describing the entity from the different sources using the HTTP
protocol. In addition, data sources might publish owl:sameAs links pointing
at URIs that are used by other data sources to identify the same entity.
In contrast, it is often desirable for Linked Data applications to locally use
only a single URI as the subject of all RDF statements about an entity
while keeping track of the provenance of the statements. Thus in addition
to using the owl:sameAs statements that are part of the ordinal Web data,
applications might also employ an local identity resolution module, which
generates additional owl:sameAs statements and interlinks newly discovered
data about entities with data about them that is already known by the ap-
plication. Silk Server provides this functionality and can thus be used as an
identity resolution module within Linked Data applications.

4. Quality Evaluation Module Due to the open nature of the Web, any Web
data needs to be treated with suspicion and Linked Data applications should
thus consider RDF statements which they discover on the Web as claims by
a specific source rather than as facts. In order to determine which claim to
accept and trust, Linked Data applications should employ a data quality
evaluation module. This module may filter RDF SPAM, prefer data from
sources that are known for good quality and optionally resolves data con-
flicts [4]. An overview about the different information quality assessment
heuristics that can be used by the quality evaluation module is given in [2].

5. Integrated Web Data At the end of the processing pipeline, the cleaned
Web data is stored in a repository together with provenance information to

5 http://www4.wiwiss.fu-berlin.de/bizer/r2r/



Silk Server - Adding missing links while consuming Linked Data 5

be used by the application layer. A commonly used model for representing
Web data together with provenance information are Named Graphs [5]. Dif-
ferent vocabularies for exposing provenance information are currently com-
pared by the W3C Provenance Incubator Group6.

3 The Silk Server

Silk Server is an identity resolution component that can be used within Linked
Data application architectures. It runs as an HTTP server and matches instances
of an incoming RDF stream against a local set of known instances based on user-
provided link specifications. In the following, we will describe the architecture
of the Silk Server as well as the general linking workflow.

3.1 Architecture

The Silk Server is composed of the following three layers:

The in-memory instance cache builds the bottom layer which holds all
known instances and keeps track of newly discovered instances. For each in-
stance, the values of all relevant properties which are later required for the
comparison are stored. As soon as a new instance is discovered, it is added to
the instance cache. This enables the server to generate links to the newly discov-
ered instance in future requests. Currently, the instance cache is held in memory,
but can be replaced by a persistent cache in future versions of Silk. The current
implementation of the instance cache can fit approximately 10 million instances
into 8GB of main memory.

The Silk Linking Engine generates the links based on a set of link specifica-
tions and forms the central part of Silk Server. The details of the link generation
process are covered in Section 3.3.

The REST interface enables applications to commit newly discovered re-
sources and receive the generated links. New resources are accepted through an
HTTP POST request using one of the supported RDF serialization formats, such
as RDF/XML or N-Triples. The response contains all generated links optionally
including statements declaring unknown instances i.e. instances for which no link
could be generated. The server can process multiple requests in parallel.

3.2 Data Processing Workflow

Figure 2 illustrates the Silk Server workflow.

6 http://www.w3.org/2005/Incubator/prov/



6 R. Isele, A. Jentzsch, C. Bizer

Fig. 2. Silk Server Workflow

The Silk Server workflow is divided into 2 phases:
In the Setup phase the server loads all data sets which are specified by the

user-provided link specifications. For each link specification, one instance cache
is used to hold the part of the data that is later required for matching instances.

The Service phase starts as soon as all data sets have been loaded. If an
application discovers new instances on the Web, it issues a request to the server
containing the newly found data. The request may contain multiple instances
with different types. On receiving the request, the Server matches the given
instances with its link specifications. If a link specification can be applied to
a specific instance, the server forwards it to the Silk Linking Engine. The Silk
Linking Engine generates links for the given instances based on the corresponding
link specifications as described in Section 3.3.

The generated links are processed by the server to find the set of instances
which are not matched by any known instance. The instance cache is updated
with the set of unmatched instances. Thus, in future request the server will also
generate links to the newly found unmatched instances.

After the update has been completed, the generated links along with state-
ments containg the unmatched instances are returned.

3.3 The Silk Linking Engine

When receiving new instances to be matched, the Silk Linking Engine generates
new buckets consisting of a provided instance and a set of instances from the
cache. Each bucket is processed in 3 subsequent phases:

The optional Blocking phase partitions the incoming buckets into clusters.
Since comparing every source resource to every single target resource results in
a number of n ∗ m comparisons (n being the number of source resources, m
the number of target resources), blocking can be used to reduce the number of
comparisons. Blocking partitions similar data items into clusters limiting the
comparisons to items in the same cluster. For example, given a set of books to
be compared, in order to reduce the number of comparisons, one could block
the books by publisher. In this case only books from the same publisher will be
compared.



Silk Server - Adding missing links while consuming Linked Data 7

The Link Generation phase reads the incoming buckets and computes
a similarity value for each pair of instances. The incoming data items, which
might be allocated to a cluster by the preceding blocking phase, are written to
an internal cache. From the cache, pairs of data items are generated. If blocking
is disabled, this will generate the complete cartesian product of the two data
sets. If blocking is enabled, only data items from the same cluster are compared.
For each pair of data items, the link condition is evaluated, which computes a
similarity value between 0 and 1. Each pair generates a preliminary link with a
confidence according to the similarity of the source and target data item.

The Filtering phase filters the incoming links in two stages: In the first stage,
all links with a lower confidence than the user-defined threshold are removed.
In the second stage, all links which originate from the same subject are grouped
together. If a limit is defined on the number of links per subject, only the links
with the highest confidence are forwarded to the output.

3.4 Implementation

Silk Server is implemented in Scala7 and runs as a Servlet on the Jetty Web
Server8. The REST interface has been realized using the Lift Web Framework9.
The Silk Link Discovery Framework including Silk Server can be downloaded
from the project homepage10 under the terms of the Apache Software License.

4 Evaluation

This section reports on the results of an experiment in which we used Silk Server
to generate RDF links between authors and publications from a Semantic Web
Dog Food Corpus dump and a stream of FOAF profiles that we crawled from
the Web. Semantic Web Dog Food Corpus publishes information on people and
publications from Semantic Web conferences. FOAF is a widely used vocabu-
lary to describe persons, their connections, projects, publications and interests.
Twitter is a social networking and microblogging website which provides user
information as RDFa. Given these different sources for information on persons,
the experiment aims at linking duplicate person descriptions. In the following,
we explain the Silk-LSL specification used by Silk Server in the experiment; we
then first describe the setup of the experiment and finally report on and discuss
the results of the experiment.

7 http://scala-lang.org
8 http://jetty.codehaus.org
9 http://liftweb.net

10 http://www4.wiwiss.fu-berlin.de/bizer/silk/



8 R. Isele, A. Jentzsch, C. Bizer

4.1 The Link Specification used

Figure 3 contains the link configuration used in the experiment for linking data
items describing the same person. The complete link configuration for discovering
RDF links between persons as well as publications is available online11.

The involved data sources for this experiment are the Semantic Web Dog
Food Corpus dump (line 5) and an RDF input stream (line 9).

A link configuration may contain several link specifications if links for dif-
ferent types of data items should be generated. Silk Server will set owl:sameAs
links between duplicates as configured in line 16.

Link specifications contain link conditions which define the conditions that
data entities must fulfill in order to be interlinked. Link conditions may apply
similarity metrics to multiple property values of an entity or related entities. The
resulting similarity scores can be combined and weighted using various similarity
aggregation functions.

Link Conditions The link condition specifies how two data entities are com-
pared for similarity. It consists of a number of comparison operators which are
combined using aggregation functions.

A comparison operator evaluates two inputs and computes their similarity
based on a user-defined metric. Silk provides several similarity metrics including
string, numeric, date, and URI similarity. String comparison methods cover the
most common ones like Jaro, Jaro-Winkler and Levenshtein. Silk can easily be
enhanced with new metrics.

Multiple comparisons can be aggregated using a specific aggregation method
by using the <Aggregate> directive.

In the given experiment’s link condition we compute similarity values for
the FOAF names, homepages, and mailbox hash sums (lines 24 to 45). The
overall similarity value of two data entities is derived by the weighted average of
the similarity values of all comparisons. To identify a person uniquely, either a
homepage or a mailbox hash sum is required. Thus, two persons are considered
equal if both names and either the homepage or the mailbox hash sum match.

Some comparison operators might be more relevant for the correct establish-
ment of a link between two resources than others and can therefore be weighted
higher. If no weight is supplied, a default weight of 1 will be assumed. As a
person may be known under different names, matching homepages or mailbox
hash sums are more important and therefore weighted higher (line 35).

Filtering The generated links can be filtered by using the <Filter> directive.
A threshold for the minimum similarity of two data items required to generate
a link between them can be defined (line 47). The number of links originating
from a single data item can be limited. Only the highest-rated links per source
data item will remain after the filtering.

11 http://www4.wiwiss.fu-berlin.de/bizer/silk/linkspecs/persons_and_

publications.xml



Silk Server - Adding missing links while consuming Linked Data 9

01 <Silk>
02 <Prefixes>
...
03 </Prefixes>
04 <DataSources>
05 <DataSource id="sw_dog_food" type="file">
06 <Param name="file" value="semantic_web_dog_food.rdf"/>
07 <Param name="format" value="RDF/XML"/>
08 </DataSource>
09 <DataSource id="input_stream" type="rdf">
10 <Param name="format" value="N-TRIPLE"/>
11 <Param name="input" value=""/>
12 </DataSource>
13 </DataSources>
14 <Interlinks>
15 <Interlink id="persons">
16 <LinkType>owl:sameAs</LinkType>
17 <SourceDataset dataSource="input_stream" var="a">
18 <RestrictTo> ?a rdf:type foaf:Person . </RestrictTo>
19 </SourceDataset>
20 <TargetDataset dataSource="sw_dog_food" var="b">
21 <RestrictTo> ?b rdf:type foaf:Person . </RestrictTo>
22 </TargetDataset>
23 <LinkCondition>
24 <Aggregate type="average">
25 <Aggregate type="max" required="true">
26 <Compare metric="jaroWinkler">
27 <TransformInput function="lowerCase">
28 <Input path="?a/foaf:name"/>
29 </TransformInput>
30 <TransformInput function="lowerCase">
31 <Input path="?b/foaf:name"/>
32 </TransformInput>
33 </Compare>
34 </Aggregate>
35 <Aggregate type="max" weight="2" required="true">
36 <Compare metric="jaroWinkler">
37 <Input path="?a/foaf:homepage"/>
38 <Input path="?b/foaf:homepage"/>
39 </Compare>
40 <Compare metric="jaroWinkler">
41 <Input path="?a/foaf:mbox_sha1sum"/>
42 <Input path="?b/foaf:mbox_sha1sum"/>
43 </Compare>
44 </Aggregate>
45 </Aggregate>
46 </LinkCondition>
47 <Filter threshold="0.9"/>
48 </Interlink>
49 </Interlinks>
50 </Silk>

Fig. 3. Example: Interlinking persons in FOAF profiles

4.2 Setup of the Experiment

For the experiment, we loaded the Semantic Web Dog Food Corpus into the
Silk Server. The Semantic Web Dog Food Corpus contains profiles for 3,739
persons from which 2,580 provide either a homepage or a mailbox hash which is
required to uniquely identify them. We have set up a Linked Data crawler which
takes a number of FOAF profile URIs as seeds and follows linked profiles. The
crawled documents are forwarded to Silk Server which generates owl:sameAs



10 R. Isele, A. Jentzsch, C. Bizer

links to known persons from the Semantic Web Dog Food Corpus. All generated
links have been written to an ouput file which has been analyzed for the results
presented in section 4.3.

The crawler was also used to traverse the RDFa of Twitter accounts for which
the server identified the corresponding persons in the Semantic Web Dog Food
Corpus if any.

In order to show the flexibility of Silk Server, the link configuration was
further enhanced to also match publications. For this purpose the crawler was
employed to also follow publication links in addition to FOAF profiles.

4.3 Results of the Experiment

Generated links to FOAF profiles At first, we evaluated how exhaustive the
found links are. For this purpose, we exploited the fact that for 56 persons the
Semantic Web Dog Food Corpus already sets links to their FOAF profile. For 51
of these persons, Silk Server was able to reconstruct links from the stream. For
some persons even multiple duplicated profiles could be identified. For example
e.g. in addition to Tom Heath’s12 official FOAF profile <http://tomheath.com/
id/me>, Silk Server also identified him on <http://www.eswc2006.org/people/

#tom-heath>. Because in some cases, Silk Server found a link to another profile
than the one given in the data set, we checked all links manually for correctness.
Thereby, all generated links have been found to be correct.

Next, we evaluated for how many persons in the Semantic Web Dog Food
Corpus, the server was able to generate links to a FOAF profile. In total, Silk
Server was able to find profiles for 228 persons in the data set. Thus, Silk Server
was able to discover links to the FOAF profile of additional 177 persons for which
the Semantic Web Dog Food Corpus did not contain a link yet.

Generated links to Twitter accounts For 89 persons in the Semantic Web
Dog Food Corpus, Silk Server was able to find a corresponding Twitter ac-
count. Silk Server was able to detect more than one account for persons hold-
ing multiple accounts. For example, it found that Ralph Hodgson13 not only
uses the account http://twitter.com/ralphtq but also the account http:

//twitter.com/oegovnews.

Generated links to publications For 37 publications in the Semantic Web
Dog Food Corpus Silk Server was able to find the corresponding publication in
the Web of Data. The number of links is lower than the number of found FOAF
profiles because many persons do not link their publications in their profile.. One
exception is the Digital Enterprise Research Institute (DERI), which publishes
the meta data about all publications as RDF14.

12 http://data.semanticweb.org/person/tom-heath
13 http://data.semanticweb.org/person/ralph-hodgson
14 http://www.deri.ie/publications/



Silk Server - Adding missing links while consuming Linked Data 11

5 Related Work

Discovering links between data items across data sets requires record linkage and
duplicate detection techniques. There is a large body of related work on these
topics within the database community [16][7] as well as on ontology matching in
the knowledge representation community [8].

Silk builds on the research results from within these communities. Silk can
be used in scenarios where different types of links should be discovered between
Web data sources which often make use of terms from different vocabularies.

Besides Silk, there are two related tools for generating RDF links:
LinQuer [11] is a tool for semantic link discovery over relational data, based

on string and semantic matching techniques and their combinations. The Lin-
Quer framework consists of LinQL, a declarative language that allows specifi-
cation of linkage requirements in a wide variety of applications. The framework
rewrites LinQL queries into standard SQL queries that can be run over relational
data sources. LinQuer is meant to be used together with relational databases to
RDF wrappers such as D2R Server15 or Virtuoso RDF Views16.

Related work that also focuses on Linked Data includes Raimond et al. [13]
who propose a link discovery algorithm that takes into account both the simi-
larities of web resources and of their neighbors. The algorithm is implemented
within the GNAT tool and has been evaluated for interlinking music-related data
sets.

While LinQuer and GNAT only allow batch processing, Silk Server is the
first identity resolution component that works on an on-demand fashion and can
be used together with RDF data streams.

The EU-funded project OKKAM17 offers an Entity Name System (ENS),
which supportes the storage and reuse of global entity identifiers. While OKKAM
ENS contains several matching modules per default, it does not provide a flexible
and comprehensive link specification language.

The RKBExplore sameAs service18 is targeted at providing a unified view
over multiple data sources by managing owl:sameAs links to identify duplicate
URIs. In contrast to Silk Server the links are not generated based on user-defined
link specifications, but must be provided to the system from external sources.

6 Conclusion

Vint Cerf, the inventor of the internet, said in his keynote speech at 19th In-
ternational World Wide Web Conference (WWW2010) that in the age of the
internet where everything should be connected, he would also expect database
management systems to automatically connect new records that are added to a
database with all related entities that are already stored in the database. With

15 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
16 http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
17 http://www.okkam.org/
18 http://www.rkbexplorer.com/sameAs/



12 R. Isele, A. Jentzsch, C. Bizer

Silk Server, we make a first step to provide such functionality for the Linked
Data context.

7 Acknowledgments

This work was supported in part by Vulcan Inc. as part of its Project Halo
(www.projecthalo.com) and by the EU FP7 project LOD2 - Creating Knowledge
out of Interlinked Data (http://lod2.eu/, Ref. No. 257943).

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J. Describing linked datasets.
In Proc. of the 2nd Workshop on Linked Data on the Web (LDOW2009), 2009.

2. Christian Bizer and Richard Cyganiak. Quality-driven information filtering using
the wiqa policy framework. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 7(1):1–10, 2009.

3. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

4. Bleiholder, J., Naumann, F. Data fusion. ACM Computing Surveys, 41(1):1–41,
2008.

5. Carroll, J., Bizer, C., Hayes, P., Stickler, P. Named graphs. Journal of Web
Semantics, 3(4):247–267, 2005.

6. Cyganiak, R., Delbru, R., Stenzhorn, H., Tummarello, G., Decker, S. Semantic
sitemaps: Efficient and flexible access to datasets on the semantic web. In Proceed-
ings of the 5th European Semantic Web Conference (ESWC2008), 2008.

7. Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Dupli-
cate record detection: A survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1–16,
2007.

8. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidel-
berg (DE), 2007.

9. Roy T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

10. Olaf Hartig and Andreas Langegger. A database perspective on consuming linked
data on the web. Datenbank Spektrum, to appear.

11. Oktie Hassanzadeh, Reynold Xin, Rene J. Miller, Anastasios Kementsietsidis,
Lipyeow Lim, and Min Wang. Linkage query writer, 2009.

12. Knud Möller, Tom Heath, Siegfried Handschuh, and John Domingue. Recipes for
semantic web dog food - the eswc and iswc metadata projects. In ISWC/ASWC,
pages 802–815, 2007.

13. Y. Raimond, C. Sutton, and M. Sandler. Automatic Interlinking of Music Datasets
on the Semantic Web . In Proc. of the 1st Linked Data on the Web Workshop,
2008.

14. Marko A. Rodriguez. A graph analysis of the linked data cloud. CoRR,
abs/0903.0194, 2009.

15. Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering
and maintaining links on the web of data. In International Semantic Web Confer-
ence, pages 650–665, 2009.

16. William E. Winkler. Overview of record linkage and current research directions.
Technical report, Bureau of the Census, 2006.


