
A Framework for Feeding Linked Data to
Complex Event Processing Engines

Dong Liu, Carlos Pedrinaci, and John Domingue

Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

{d.liu,c.pedrinaci,j.b.domingue}@open.ac.uk

Abstract. A huge volume of Linked Data has been published on the
Web, yet is not processable by Complex Event Processing (CEP) or
Event Stream Processing (ESP) engines. This paper presents a frame-
work to bridge this gap, under which Linked Data are first translated
into events conforming to a lightweight ontology, and then fed to CEP
engines. The event processing results will also be published back onto
the Web of Data. In this way, CEP engines are connected to the Web of
Data, and the ontological reasoning is integrated with event processing.
Finally, the implementation method and a case study of the framework
are presented.

Keywords: Linked Data, Complex Event Processing, ontology map-
ping, rule-based reasoning.

1 Introduction

With the development of the Semantic Web, a huge volume of Linked Data has
been published on the Web. On the other hand, with the rise of Complex Event
Processing (CEP) and Event Stream Processing (ESP) [9], steps have been made
towards their integration with semantic technologies, i.e. Semantic CEP [5, 15].
However, Linked Data is not processable by CEP or ESP engines for several
reasons: i) the existing engines, such as Drools Fusion1 and Esper2 are object-
oriented and lack the capability of accessing the Web of Linked Data; ii) although
there are a set of tools for generating Java objects from RDF statements3, it
is still difficult for CEP engines to manipulate Linked Data, because of the
heterogeneity of schemas or ontologies defined by independent data providers;
iii) semantic repositories cannot perform temporal reasoning over RDF triples.
Extensions to RDF and SPARQL have been made to address these issues [14, 3],
but they are not realizable because of the requirement of modifying the semantic
repositories or query execution engines.

1 http://www.jboss.org/drools/drools-fusion.html
2 http://esper.codehaus.org
3 http://semanticweb.org/wiki/Tripresso

2 Dong Liu et al.

This paper presents a more practical approach: Linked Data are imported
from external sources by being transformed into events conforming to EVO-
Core, a lightweight but generic ontology. CEP engines process such events with
the support of a Java API generated for manipulating the EVO-Core ontology.
The results of event processing will be RDF-ified again and published on the Web
of Data. Under this framework, the integration of ontological reasoning and CEP
is achieved without any modifications to the RDF and SPARQL standards.

To demonstrate the workflow of the proposed framework, the development
of a simple analytical system for user logs in iServe is used as a running example
in this paper. iServe [12] is a platform for publishing Semantic Web Service
(SWS) descriptions as Linked Data. It is notable that all the data in iServe,
including logs of the creation and removal of services, are pure RDF. Therefore,
the underlying repository of iServe can be regarded as an external data source
having its own schema. In addition, Drools Fusion is used as the example event
processing engine, due to its ability to deal with both event streams and clouds.

The rest of this paper is organized as follows: Section 2 reviews the recent
work on Semantic CEP. Section 3 summarizes the workflow of the proposed
framework at both design time and runtime. Section 4 and Section 5 respectively
discuss two critical issues regarding the framework: the event modelling and
generation. Section 6 sketches the architecture of the implemented prototype.
Section 7 demonstrates the use of the framework. Finally, Section 8 concludes
the paper and introduces our future research objectives.

2 Related Work

Earlier research on semantic event modelling is presented in [1], which proposes
an approach to reveal the semantics of events by means of classification, aggre-
gation, generalization and association. As a result, a knowledge representation
scheme for events is developed to describe complex events, especially the rela-
tionships between them. However, the paper only presents theoretical work, and
does not touch upon the processing of semantic events.

SQL-like and algebra-based event languages are designed to specify the se-
mantics of events [4, 6]. Nevertheless, they also lack solid support from event
processing engines. With advances in Semantic Web technologies, more practi-
cal solutions to Semantic CEP are proposed [14, 3]. In [14], the authors present
a formal extension to the RDF data model, which is called Time-Annotated
RDF (TA-RDF). The main idea is to attach a timestamp to each group of
RDF triples. The authors of [3] to extend the standard SPARQL query lan-
guage by adding four binary temporal operators: SEQ, EQUALS, OPTIONAL-SEQ,
and EQUALS-OPTIONAL, so that Semantic CEP can be done by executing Event
Processing SPARQL (EP-SPARQL) queries. Obviously, both these two solutions
require modifications to and optimizations of SPARQL query engines and RDF
repositories. In contrast, the framework proposed in this paper is based on stan-
dard semantic modelling and query language, i.e. RDFS and SPARQL, as well
as a mature and well-used CEP engine.

Feeding Linked Data to CEP Engines 3

3 Workflow

At design time, the work to build up an event processor consuming Linked Data
includes three stages listed below. Additionally, it also involves some trivial tasks
such as configuring the connectors to RDF repositories, setting the options of
the CEP engine, etc.

– Event (Stream) Modelling: Define domain specific events and split them
into different streams. Write SPARQL CONSTRUCT queries, which are exe-
cuted at runtime to produce event streams.

– Code Generation: Automatically generate Java API for manipulating
events and the event processing results, using the code generator provided
by RDFReactor. It may also require auxiliary coding work to be done man-
ually, e.g. translating instances of Java Calendar into time in the format of
milliseconds.

– Rule Definition: Define rules for event processing. If needed, develop some
helping functions of, for instance, accessing external SPARQL endpoints on
the Web of Data, publishing rule-base reasoning results as Linked Data, etc.

In brief, the results of work done at design time contain: i) an application
oriented event model, ii) Java libraries for manipulating event model and pro-
cessing results, iii) the specification of rules for event processing. All of these
are inputs to the runtime modules, which work following the flow illustrated
by Fig. 1. Event streams are formed by executing SPARQL CONSTRUCT queries

RDFReactor

Fig. 1. The runtime workflow diagram.

against certain sets of Linked Data on a regular basis, and, when necessary,
SPARQL DESCRIBE queries may also be executed to make a snapshot of the
concerned entities. If a RDF triple store like BigOWLim4 offers a notification
mechanism, the data transformation will be performed when being notified by
the triple store. With the runtime supports of RDFReactor5 and RDF2Go6, the
generated event streams are sent to Drools Fusion in the form of Java objects.
Drools Fusion performs rule-based reasoning, as well as temporal reasoning over
the received Java objects, then RDF-ifies the results and saves into the assigned
semantic repository by invoking the Java APIs generated at design time.

4 http://www.ontotext.com/owlim/big
5 http://semanticweb.org/wiki/RDFReactor
6 http://semanticweb.org/wiki/RDF2Go

4 Dong Liu et al.

4 Event Model

The proposed framework aims at bringing together Linked Data and rule-based
CEP engines, so the following requirements and issues are taken into account
when building the conceptual model of events.

– Usability: This is made up of two aspects: i) following the Linked Data
principles, especially the ability to be interlinked to RDF triples on the Web
of Data; ii) ease of being fed into CEP engines such as Drools Fusion.

– Extendibility: The event model should be in the form of a generic ontology,
rather than a domain specific one, and must be easy to apply to different
application areas.

– Expressiveness: The model may be able to describe complex events and
event streams, as well as the timing, causality, aggregation and hierarchy of
events.

– Simplicity: Some applications powered by CEP engines, e.g. Business Ac-
tivity Monitoring (BAM), are real-time or quasi real-time systems. Thus,
light-weight semantics of the event model should minimize the impact of
ontological reasoning on performance.

ec:Event

ec:AtomicEvent ec:ComplexEvent

owl:Thing ec:EventStream
������
��

sp:Construct

���
�
���
	��
������
	��

������
���

�������
����
��������
����

xsd:dateTime

����
�����

Namespaces
xsd: http://www.w3.org/2001/XMLSchema#
owl: http://www.w3.org/2002/07/owl#

sp: http://spinrdf.org/sp#
ec: http://kmi.open.ac.uk/ontologies/evo-core#

Fig. 2. EVO-Core: a generic event ontology.

As visualized by Figure 2, EVent Ontology Core (EVO-Core) is defined in
RDF Schema to fulfill the presented demands. It contains four key concepts:

– Event, is a concept on the highest level of abstraction and the common
ancestor of AtomicEvent and ComplexEvent. A particular property time-

stamp is used to specify the time when the event happens, and subEventOf

is for modelling the hierarchy of events. The values of property concerns are
external links to instances of owl:Thing.

– AtomicEvent, refers to an instantaneous occurrence of interest.

– ComplexEvent, may be built up from a set of other events that hold certain
temporal relationships or satisfy constraint conditions on their attributes.
The property causedBy captures causality among events.

Feeding Linked Data to CEP Engines 5

– EventStream, is a timely sequence of individual events that come from
a data source. The property inStream associates events to streams that
come into being by repeatedly executing SPARQL CONSTRUCT queries. Here,
the queries are expressed using SPARQL Inferencing Notation (SPIN7),
and stored as instances of sp:Construct associated with event streams via
generatedBy. SPIN is essentially a set of vocabularies for writing SPARQL
queries in RDF. This way, machines can carry out further reasoning over
queries, such as checking their correctness. Similar to subEventOf, the prop-
erty subStreamOf models the hierarchy of event streams.

Efforts have already been made to build the conceptual model of events,
and relevant ontologies are found in [13, 11]. However, they are neither general
purpose, nor suitable for being processed by CEP engines. The Event ontology
originates from research in the digital music area, where an event “is regarded
as an arbitrary classification of a space/time region, by a cognitive agent” [13].

From an artificial intelligent perspective, it is believed that an event may
have five key features: a location, a time, active agents, factors and products.
Thus, the Event ontology defines one property for each of the five features.
However, at least in some cases like the iServe logging analysis, location might
not be applicable. Because the range of the time property is arbitrary temporal
entities, i.e. either Instant or Interval defined in the OWL Time Ontology [10],
events cannot be sent directly to CEP engines like Drools Fusion, which only
can handle timestamps in milliseconds. As for the other three properties, i.e.
agent, factor and product, if necessary, they can be defined as sub-properties
of concerns in EVO-Core. In general, everything that induces or relates to the
occurrence of an event will be a value of concerns, even the instances of Instant
and Interval mentioned above. Another weakness of Event ontology is the lack
of a facility for expressing complex events and event streams. It only provides
one property, called sub event, to capture the hierarchy of events, and nothing
for causal relationships among events.

EVent Ontology (EVO) is another representative event model [11]. It is the
outcome of our previous work, but also the cornerstone of EVO-Core. The differ-
ence between these two ontologies is that the target application area of the EVO
ontology is Semantic Business Process Management (SBMP), especially Busi-
ness Process Analysis (BPA). EVO just extends the Core Ontology for Business
pRocess Analysis (COBRA) with several concepts related to states and transi-
tions of process or activity instances, i.e. seven Process Monitoring Events and
twelve Activity Monitoring Events, so as to track the running status of business
activities. In short, EVO-Core is a generalized version of EVO, further enhanced
by the ability to describe complex events and event streams.

5 Event Generation

As highlighted earlier, Linked Data are published by independent providers,
following different schemas that are not designed for being processed by CEP

7 http://spinrdf.org/spin.html

6 Dong Liu et al.

engines. Therefore, it requires ontological mappings [8] between the schema of
Linked Data and the event model. This section explains the process of mapping
and translating Linked Data into events through an example of iServe logging
system [2]. Listing 1 shows part of the schema definition of iServe user logs.

log:LogEntry a rdfs:Class ; log:hasDateTime time:Instant ;
log:hasAction log:Action ; log:hasAgent foaf:Agent .

time:Instant a rdfs:Class.
time:inXSDDateTime rdfs:domain time:Instant ; rdfs:range xsd:dateTime.
log:Action a rdfs:Class.
log:ServiceRepositoryLogEntry a log:LogEntry.
log:ItemCreation rdfs:subClassOf log:Action ; log:createdItem log:Item.
log:ItemDeleting rdfs:subClassOf log:Action ; log:deletedItem log:Item.

Listing 1. RDF schema of iServe log entries.

Extensions are made to the EVO-Core ontology to describe the iServe user
behaviours. Two new concepts ServiceCreated and ServiceDeleted are de-
fined as sub-classes of AtomicEvent. Moreover, two sub-properties of concerns,
concernsAgent and concernsService are also added to the ontology. The
ServiceCreated event happens when a new service is uploaded to iServe, whereas
ServiceDeleted occurs when it is removed by an iServe user. As the name im-
plies, concernsAgent and concernsService respectively keep the user’s FOAF
ID and the URI of the service. Finally, LoggingSystemError is defined as a
ComplexEvent, which can be caused by not only a wrong temporal relationship,
i.e. a ServiceDeleted event occurred before a ServiceCreated event, but also
by the absence of the corresponding ServiceCreated event of a ServiceDeleted

event.
Formulae (1) and (2) formalize the morphism from the RDF schema of iServe

logs to the extended EVO-Core ontology:

ServiceRepositoyLogEntry(l) ∧ hasAction(l, a) ∧ hasAgent(l, g) ∧ hasDateT ime(l, i)∧
inXSDDateTime(i, t) ∧ ItemCreation(a) ∧ createdItem(a, s) ⊇ ServiceCreated(e)∧ (1)

concernsAgent(e, a) ∧ concernsService(e, s) ∧ timestamp(e, t)

ServiceRepositoyLogEntry(l) ∧ hasAction(l, a) ∧ hasAgent(l, g) ∧ hasDateT ime(l, i)∧
inXSDDateTime(i, t) ∧ ItemDeleting(a) ∧ deletedItem(a, s) ⊇ ServiceDeleted(e)∧ (2)

concernsAgent(e, a) ∧ concernsService(e, s) ∧ timestamp(e, t)

Listing 2 elaborates the SPARQL query written according to formula (1).
It is not hard to come up with a similar one from the other mapping formula,
which is left out from this paper due to space limitations.

CONSTRUCT {
_:v rdf:type ec:ServiceCreated ; ec:timestamp ?time ;

ec:concernsAgent ?agent ; ec:concernsService ?service ;
ec:inStream ec:iServeStream .

} WHERE {
?entry rdf:type log:ServiceRepositoyLogEntry ; ?entry log:hasAgent ?agent ;

log:hasAction ?action .
?action rdf:type log:ItemCreation ; ?action log:createdItem ?service .
?entry log:hasDateTime ?instant .
?instant time:inXSDDateTime ?time.}

Listing 2. An example of SPARQL query for event generation.

Feeding Linked Data to CEP Engines 7

To enable reasoning on the SPARQL queries for ontology translation, the SPARQL
query above is converted into the syntax of SPIN (shown in Listing 3), before
being stored in an RDF repository. There have been the tool8 and online bi-
directional converter9 between SPARQL and SPIN.

_:b1 sp:varName "action "^^xsd:string .
_:b2 sp:varName "service "^^xsd:string .
_:b3 sp:varName "instant "^^xsd:string .
_:b4 sp:varName "agent "^^ xsd:string .
_:b5 sp:varName "time "^^xsd:string .
_:b7 sp:varName "entry "^^ xsd:string .
[] a sp:Construct ;
sp:templates (
[sp:object ec:ServiceCreated ; sp:predicate rdf:type ; sp:subject _:b6]
[sp:object _:b5 ; sp:predicate ec:timestamp ; sp:subject _:b6]
[sp:object _:b4 ; sp:predicate ec:concernsAgent ; sp:subject _:b6]
[sp:object _:b2 ; sp:predicate ec:concernsService ; sp:subject _:b6]
[sp:object ec:iServeStream ; sp:predicate ec:inStream ; sp:subject _:b6]) ;

sp:where (
[sp:object log:ServiceRepositoyLogEntry ;

sp:predicate rdf:type ; sp:subject _:b7]
[sp:object _:b4 ; sp:predicate log:hasAgent ; sp:subject _:b7]
[sp:object _:b1 ; sp:predicate log:hasAction ; sp:subject _:b7]
[sp:object log:ItemCreation ; sp:predicate rdf:type ; sp:subject _:b1]
[sp:object _:b2 ; sp:predicate log:createdItem ; sp:subject _:b1]
[sp:object _:b3 ; sp:predicate log:hasDateTime ; sp:subject _:b7]
[sp:object _:b5 ; sp:predicate time:inXSDDateTime ; sp:subject _:b3]) .

Listing 3. SPARQL query in SPIN syntax.

Listing 4 outlines a log entry in iServe, against which executing the SPARQL
query shown in Listing 2, we can get the first event in Listing 5.

log:logEntry1271364976707 a log:ServiceRepositoyLogEntry ;
log:hasAction log:action1271364976707 ;
log:hasAgent <http :// revyu.com/people/dong > ;
log:hasDateTime time:instant1271364976707 .

log:action1271364976707 a log:ItemCreation ;
log:createdItem service:VEHICLE_PRICE_SERVICE .

time:instant1271364976707 a time:Instant ;
time:inXSDDateTime "2010 -05 -15 T20 :56:16.707Z"^^xsd:

dateTime.

Listing 4. A log entry in iServe.

The other two events in Listing 5 are also generated from the iServe system logs,
and serve as the examples of ServiceDeleted and LoggingSystemError.

:event101307 a ec:ServiceCreated ;
ec:timestamp "2010 -05 -15 T20 :56:16.707Z"^^xsd:dateTime ;
ec:concernsAgent <http :// revyu.com/people/dong > ;
ec:concernsService service:VEHICLE_PRICE_SERVICE ;
ec:inStream ec:iServeStream .

:event107470 a ec:ServiceDeleted ;
ec:timestamp "2010 -04 -15 T20 :56:38.377Z"^^xsd:dateTime ;
ec:concernsAgent <http :// revyu.com/people/dong > ;
ec:concernsService service:VEHICLE_PRICE_SERVICE ;
ec:inStream ec:iServeStream .

8 http://www.topquadrant.com/products/SPIN.html
9 http://sparqlpedia.org/spinrdfconverter.html

8 Dong Liu et al.

:event108946 a ec:LoggingSystemError ;
ec:timestamp "2010 -04 -15 T20 :56:41.546Z"^^xsd:dateTime ;
ec:causedBy event101307 ; ec:causedBy event107470 ;
ec:inStream ec:iServeStream .

Listing 5. Some events in the iServe logging system.

With the helps of RDFReactor on code generation and the Drools’ capability
of manipulating Java objects, what we need to do to empower Drools Fusion to
deal with the ServiceCreated and ServiceDeleted events is just adding the
following declarations to the DRL file:

declare ServiceCreated
@role(event)
@timestamp(timestampInMills)

end

declare ServiceDeleted
@role(event)
@timestamp(timestampInMills)

end

Here, @role tells the CEP engine the type of the declaring entity, and @timestamp

tells which attribute will be used as the source of occurrence time of events.

6 Implementation

Fig. 3 depicts the overall architecture of the prototype developed for proof of con-
cept. BigOWLim serves as the repository for the RDF triples of events. RDF2Go
provides a unified interface to various triple (and quad) stores, through which
RDFReactor goes to get the access to the repository. The event processor runs
on top of the generated Java API for both EVO-Core ontology and analysis
results. It consists of three components, namely, event generator, Drools Fusion
and timer. Their functionalities have been described in Section??. Finally, the
Linked Data provider, which is also implemented based on the generated Java
API, offers several interfaces for clients, including HTML, Linked Data and a
SPARQL endpoint. End users can browse the event processing results with a
plain HTML browser or with an RDF browser, both supported seamlessly by
the server through content negotiation. Third-party applications can interact
with the prototype through the SPARQL endpoint.

7 Case Study

This section concentrates on a case study on applying the proposed framework
to the analysis of iServe logs. First, we are going to answer the question: who
are the top ten active users of iServe so far? Here, active users refer to those
who own the most services in iServe. To this end, two rules (shown in Listing 6)
are defined respectively for processing ServiceCreated and ServiceDeleted

events. Upon submission of a new service, the event generator will put an instance
of ServiceCreated into the iServe Stream. As the reaction to this event, the
event processor finds the user identified by the value of concernsAgent, increases

Feeding Linked Data to CEP Engines 9

Event
Repository

(BigOWLim)

Web of Data

RDF2Go

RDFReactor

Generated Java API

Event Processor

Event
Generator

Drools
Fusion Timer

Linked Data Provider

Linked Data

Content
Negotiator

HTML

RDF
Generator

Page
Generator

SPARQL EndPoint

Fig. 3. The overall architecture of prototype.

the number of services he/she uploaded by one, and updates the time of his/her
last action on iServe. Correspondingly, when ServiceDeleted event happens,
the number of uploaded service will decrease by one, and the last action time
will update in the same way.

rule "Service Created in iServe"
when $e:ServiceCreated() from entry -point "iServe Stream"
then String agent=$e.getAllConcernsAgent ().next().toString ();
LepHelper.get().increaseUploadedServiceNumber(agent);
LepHelper.get().updateLastActionTime(agent ,
$e.getAllTimestamp ().next());

end
rule "Service Deleted in iServe"
when $e : ServiceDeleted() from entry -point "iServe Stream"
then String agent = $e.getAllConcernsAgent ().next().toString ();
LepHelper.get().decreaseUploadedServiceNumber(agent);
LepHelper.get().updateLastActionTime(agent ,$e.getAllTimestamp ().next());

end
rule "Logging System Error Detecting"
when $e : ServiceDeleted() from entry -point "iServe Stream"
and ($e1 : ServiceCreated(this after $e &&

concernsService == $e.concernsService) from entry -point "iServe stream"
or not($e1 : ServiceCreated(concernsService == $e.concernsService)

from entry -point "iServe Stream"))
then
LepHelper.get().createLoggingSystemErrorEvent($e, $e1);

end

Listing 6. Event processing rules definition.

10 Dong Liu et al.

Secondly, in order to guarantee the accuracy of analysis results and to detect
errors in logging system, we define the third rule of Listing 6. It detects the
complex event LoggingSystemError, which occurs when a ServiceDeleted has
a missing ServiceCreated, or when a ServiceDeleted event happens before
the ServiceCreated of the same service. Note that, for the ease of understand-
ing, Drools rule attributes, e.g. no-loop, salience, lock-on-active, etc., are
omitted from Listing 6. In addition, LepHelper is a Java class wrapping var-
ious methods for accessing SPARQL endpoints, invoking EVO-Core API, and
persisting the analysis results as RDF triples.

The schema below is a simple vocabulary for describing the analysis results:

:Agent rdf:type rdfs:Class .
:uploadedServiceNumber a rdf:Property ; rdfs:domain :Agent ;

rdfs:range xsd:nonNegativeInteger .
:lastActionTime a rdf:Property ; rdfs:domain :Agent ;

rdfs:range xsd:dateTime .

According to the schema, it is not hard to come up with a SPARQL SELECT

query retrieving ten users ordered by the number of services they have uploaded
to iServe:

SELECT ?agent ?number ?time WHERE {
?agent a ia:Agent ; ia:uploadedServiceNumber ?number ;

ia:lastActionTime ?time .
} ORDER BY DESC(? number) DESC(?time) LIMIT 10

Especially, when the numbers are the same, they will be ordered by the last
time they accessed iServe. The query results are displayed in Fig. 4. For privacy
reason, some of the FOAF IDs have been concealed.

Fig. 4. The screenshot of query result.

8 Conclusions and Future Work

In this paper, we present a practical way in which Linked Data can be fed into
CEP engines. EVO-Core, a lightweight but generic ontology, is built to describe

Feeding Linked Data to CEP Engines 11

events in RDF, and SPARQL-based ontological mapping technique is adopted to
transform Linked Data into events conforming to EVO-Core. We also introduce
the workflow of developing an application equipped with the event processor.
The development of a simple analytical system of iServe logs shows that the
proposed framework is feasible.

Our future work will focus on the publication of analysis results according
to SDMX-RDF [7]. We will also try to run a public registry for Linked Data
sources, which can be used as the origin of events, together with the correspond-
ing SPARQL queries for ontological translation.

Acknowledgements This work was funded by the EU project SOA4All (FP7-
215219).

References

1. Adi, A., Botzer, D., Etzion, O.: Semantic Event Model and Its Implication on Situ-
ation Detection. In: Proceedings of the 2000 European Conference on Information
Systems (ECIS) (2000)

2. Álvaro Rey, G., Cerizza, D., Di Matteo, G., Ripa, G., Turati, A., Villa, M.: SOA4ll
Project Deliverable: D.2.7.1 - Recommender System First Prototype (2009)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Stream Reasoning and Complex
Event Processing in ETALIS. Semantic Web – Interoperability, Usability, Applica-
bility (Under Review), http://www.semantic-web-journal.net/sites/default/
files/swj90.pdf

4. Brenna, L., Demers, A.J., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riede-
wald, M., Thatte, M., White, W.M.: Cayuga: a high-performance event processing
engine. In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data. pp. 1100–1102. ACM (2007)

5. Etzion, O.: Semantic Approach to Event Processing. In: Proceedings of the 2007
inaugural international conference on Distributed event-based systems (DEBS).
pp. 139–139. ACM, New York, NY, USA (2007)

6. Gyllstrom, D., Wu, E., Chae, H.J., Diao, Y., Stahlberg, P., Anderson, G.: SASE:
Complex Event Processing over Streams. In: Proceeding of the 3rd Biennial Con-
ference on Innovative Data Systems Research (CIDR). pp. 407–411 (2007)

7. Hausenblas, M., Halb, W., Raimond, Y., Feigenbaum, L., Ayers, D.: SCOVO: Using
Statistics on the Web of Data. In: Proceedings of the 6th European Semantic Web
Conference (ESWC). Lecture Notes in Computer Science, vol. 5554, pp. 708–722.
Springer (2009)

8. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

9. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2001)

10. Pan, F., Hobbs, J.R.: Temporal Aggregates in OWL-Time. In: Russell, I., Markov,
Z. (eds.) Proceedings of the 18th International Florida Artificial Intelligence Re-
search Society Conference (FLAIRS). pp. 560–565. AAAI Press (2005)

12 Dong Liu et al.

11. Pedrinaci, C., Domingue, J., de Medeiros, A.K.A.: A Core Ontology for Business
Process Analysis. In: Hauswirth, M., Koubarakis, M., Bechhofer, S. (eds.) Pro-
ceedings of the 5th European Semantic Web Conference (ESWC). Lecture Notes
in Computer Science, Springer Verlag, Berlin, Heidelberg (June 2008)

12. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: a Linked Services Publishing Platform. In: Proceedings of Ontology Repos-
itories and Editors for the Semantic Web at the 7th Extended Semantic Web
Conference (ESWC) (2010)

13. Raimond, Y., Abdallah, S.: The Event Ontology (2007), http://purl.org/NET/
c4dm/event.owl

14. Rodriguez, A., McGrath, R., Liu, Y., Myers, J.: Semantic Management of Stream-
ing Data. In: Proceedings of the 2nd International Workshop on Semantic Sensor
Networks (SSN) at the 8th International Semantic Web Conference (ISWC). pp.
80–95 (Oct 2009)

15. Teymourian, K., Paschke, A.: Enabling Knowledge-based Complex Event Process-
ing. In: Proceedings of the 2010 EDBT/ICDT Workshops. pp. 1–7. ACM, New
York, NY, USA (Mar 2010)

