
Evaluating Semantic Web Service Tools using the

SEALS platform

Liliana Cabral1, Ioan Toma
2

1 Knowledge Media Institute, The Open University, Milton Keynes, UK

2 STI Innsbruck, University of Innsbruck, Austria

l.s.cabral@open.ac.uk, ioan.toma@sti2.at

Abstract. This paper describes the approach for the automatic evaluation of

Semantic Web Service (SWS) tools, based on the infrastructure under

development within the SEALS project. We describe the design of evaluations,

considering existing test suites as well as repository management and

evaluation measure services that will enable evaluation campaign organizers

and participants to evaluate SWS tools. Currently, we focus on the SWS

discovery activity, which consists of finding Web Services based on their

semantic descriptions. Tools for SWS discovery or matchmaking can be

evaluated on retrieval performance, where for a given goal, i.e. a semantic

description of a service request, and a given set of service descriptions, i.e.

semantic descriptions of service offers, the tool returns the match degree

between the goal and each service, and the platform measures the rate of

matching correctness based on a number of metrics.

Keywords: Semantic Web Services, automatic evaluation.

1 Introduction

The evaluation of Semantic Web Services is currently being pursued by a few

initiatives using different evaluation methods. Although these initiatives have

succeeded in creating an initial evaluation community in this area, they have been

hindered by the difficulties in creating large-scale test suites and by the complexity of

manual testing to be done. In principle, it is very important to create test datasets

where semantics play a major role for solving problem scenarios; otherwise

comparison with non-semantic systems will not be significant, and in general it will

be very difficult to measure tools or approaches based purely on the value of

semantics. Therefore, providing an infrastructure for the evaluation of SWS that

supports the creation and sharing of evaluation artifacts and services, making them

widely available and registered according to problem scenarios, using agreed

terminology, can benefit evaluation participants and organizers.

In this paper we describe the approach for the automatic evaluation of Semantic

Web Services using the SEALS platform, that is, the services of the SEALS platform

raul
Texto escrito a máquina
Proceedings of the International Workshop on Evaluation of Semantic Technologies (IWEST 2010). Shanghai, China. November 8, 2010.

for SWS tools. The SEALS (Semantic Evaluation at Large Scale) project1 aims to

create a lasting reference infrastructure for semantic technology evaluation (the

SEALS platform). The SEALS Platform will be an independent, open, scalable,

extensible and sustainable infrastructure that will allow online evaluation of semantic

technologies by providing an integrated set of evaluation services and a large

collection of datasets. Semantic Web Services are one of the technologies which are

supported by SEALS. By the time of this writing, the SEALS project completed 15

months of its 36-month duration. Hence, the results presented in this paper are

ongoing and under testing. An overview of existing SWS approaches, matchmaking

algorithms or evaluation measures is not in the scope of this paper.

Within SEALS, we propose an approach that is informed by and improves existing

SWS tool evaluation initiatives (Section 2.1). In this sense, our approach shares the

goals and objectives of these initiatives. We describe the design of evaluations

(Section 3), considering existing test suites (Section 2.2) as well as repository

management and evaluation measure services (Section 4) that will enable evaluation

campaign organizers and participants to evaluate SWS tools. Currently, we focus on

the SWS discovery activity, which consists of finding Web Services based on their

semantic descriptions. Tools for SWS discovery or matchmaking can be evaluated on

retrieval performance, where for a given goal, i.e. a semantic description of a service

request, and a given set of service descriptions, i.e. semantic descriptions of service

offers, the tool returns the match degree between the goal and each service, and the

platform measures the rate of matching correctness based on a number of metrics.

The evaluation of SWS tools uses metadata, described via ontologies, about the

evaluation scenario, tools, testdata and results stored in repositories. The evaluation

scenario metadata informs which test suites and tools participate in a specific

evaluation event, and provides the evaluation workflow. The testdata metadata

(Section 3.1) informs how the testdata is structured for consumption. More

specifically, the metadata for SWS discovery test suites describes the set of service

descriptions, the list of goals and the reference sets (expert's relevance values between

a goal and a service). In addition, the evaluation of SWS tools produces two types of

results: raw results, which are generated by running a tool with specific testdata; and

interpretations, which are the results obtained after the evaluation measures are

applied over the raw results. The format of the results (Section 3.1) is also described

via ontologies.

In Section 5, we describe the interface of the SWS plugin API, which must be

implemented for participating tools. In Section 6 we describe the evaluation workflow

as well as examples of tools and available test suites for SWS discovery. The

workflow performs access to the SEALS repositories and services. In the first phase

of the project this workflow will be available to the evaluation campaign organizers

only and executed over tools registered in a specific SWS evaluation campaign

scenario. Finally in Section 7 we describe our conclusions and future work.

1 http://www.seals-project.eu/

2 Related Work

Semantic Web Service (SWS) technologies enable the automation of discovery,

selection, composition, mediation and execution of Web Services by means of

semantic descriptions of their interfaces, capabilities and non-functional properties.

SWS build on Web service standards such as WSDL, SOAP and REST (HTTP), and

as such provide a layer of semantics for service interoperability. Current results of

SWS research and industry efforts include a number of reference service ontologies

(e.g. OWL-S, WSMO, WSMO-Lite) and semantic annotation extension mechanisms

(e.g. SAWSDL, SA-REST, MicroWSMO).

The work performed in SEALS regarding SWS tools will be based upon the

Semantic Web Service standardization effort that is currently ongoing within the

OASIS Semantic Execution Environment Technical Committee (SEE-TC)2. A

Semantic Execution Environment (SEE) is made up of a collection of components

that are at the core of a Semantic Service Oriented Architecture (SOA). These

components provide the means for automating many of the activities associated with

the use of Web Services, thus they will form the basis for creating the SWS plugin

APIs and services for SWS tools evaluation.

2.1 Existing SWS Evaluation Initiatives

In the following we provide information, extracted from the respective websites,

about three current SWS evaluation initiatives: the SWS Challenge; the S3 Contest;

and the WS Challenge (WSC).

The SWS Challenge3 (SWSC) aims at providing a forum for discussion of SWS

approaches based on a common application base. The approach is to provide a set of

problems that participants solve in a series of workshops. In each workshop,

participants self-select which scenario (e.g. discovery, mediation or invocation) and

problems they would like to solve. Solutions to the scenarios provided by the

participants are manually verified by the Challenge organising committee. The

evaluation is based on the level of effort of the software engineering technique. That

is, given that a certain tool can solve correctly a problem scenario, the tool is certified

on the basis of being able to solve different levels of the problem space. In each level,

different inputs are given that requires a change in the provided semantics. A report

on the methodology for the SWSC has been published in the W3C SWS Testbed

Incubator4. One of the important goals of the SWSC is to develop a common

understanding of the various technologies evaluated in the workshops. So far, the

approaches range from conventional programming techniques with purely implicit

semantics, to software engineering techniques for modelling the domain in order to

more easily develop application, to partial use of restricted logics, to full semantics

annotation of the web services.

2 www.oasis-open.org/committees/ex-semantics
3 http://sws-challenge.org
4 http://www.w3.org/2005/Incubator/swsc/XGR-SWSC-20080331

The Semantic Service Selection (S3) contest5 is about the retrieval performance

evaluation of matchmakers for Semantic Web Services. S3 is a virtual and

independent contest, which runs annually since 2007. It provides the means and a

forum for the joint and comparative evaluation of publicly available Semantic Web

service matchmakers over given public test collections. S3 features three tracks:

OWL-S matchmaker evaluation (over OWLS-TC); SAWSDL matchmaker evaluation

(over SAWSDL-TC); cross evaluation (using JGD6 collection). The participation in

the S3 contest consists of: a) implementing the SME27 plug-in API for the

participant’s matchmaker together with an XML file specifying additional

information about the matchmaker; and b) using the SME2 evaluation tool for testing

the retrieval performance of the participant’s matchmaker over a given test collection.

This tool has a number of metrics available and provides comparison results in

graphical format. The presentation and open discussion of the results with the

participants is performed by someone from the organisational board at some event

like the SMR2 workshop (Service Matchmaking and Resource Retrieval in the

Semantic Web).

The Web Service Challenge8 (WSC) runs annually since 2005 and provides a

platform for researchers in the area of web service composition that allows them to

compare their systems and exchange experiences. Starting from the 2008 competition,

the data formats and the contest data are based on the OWL for ontologies, WSDL for

services, and WSBPEL for service orchestrations. In 2009, services were annotated

with non-functional properties. The Quality of Service of a Web Service is expressed

by values expressing its response time and throughput. The WSC awards the most

efficient system and also the best architectural solution. The contestants should find

the composition with the least response time and the highest possible throughput.

WSC uses the OWL format, but semantic evaluation is strictly limited to taxonomies

consisting of sub and super class relationship between semantic concepts only.

Semantic individuals are used to annotate input and output parameters of services.

Four challenge sets are provided and each composition system can achieve up to 18

points and no less than 0 points per challenge set. Three challenge sets will have at

least one feasible solution and one challenge set will have no solution at all.

2.2 Existing SWS Test Collections

The OWL-S Test Collection (OWLS-TC)9 is intended to be used for evaluation of

OWL-S matchmaking algorithms. OWLS-TC is used worldwide (it is among the top-

10 download favourites of semwebcentral.org) and the de-facto standard test

collection so far. It has been initially developed at DFKI, Germany, but later corrected

and extended with the contribution of many people from a number of other

institutions (including e.g. universities of Jena, Stanford and Shanghai, and FORTH).

The OWLS-TC4 version consists of 1083 semantic web services described with

5 http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html
6 http://fusion.cs.uni-jena.de/professur/jgd
7 http://www.semwebcentral.org/projects/sme2/
8 http://ws-challenge.georgetown.edu/wsc09/technical_details.html
9 http://projects.semwebcentral.org/projects/owls-tc/

OWL-S 1.1, covering nine application domains (education, medical care, food, travel,

communication, economy, weapons, geography and simulation). OWLS-TC4

provides 42 test queries associated with binary as well as graded relevance sets. The

relevance sets were created with the SWSRAT (Semantic Web Service Relevance

Assessment Tool) developed at DFKI. The graded relevance is based on a scale using

4 values: highly relevant (value: 3); relevant (value: 2); potentially relevant (value:

1); and non-relevant (value: 0). 160 services and 18 queries contain Precondition

and/or Effect as part of their service descriptions.

The SAWSDL Test Collection (SAWSDL-TC) is a counterpart of OWLS-TC, that

is, it has been semi-automatically derived from OWLS-TC. SAWSDL-TC is intended

to support the evaluation of the performance of SAWSDL service matchmaking

algorithms. The SAWSDL-TC3 version provides 1080 semantic Web services written

in SAWSDL (for WSDL 1.1) and 42 test queries with associated relevance sets.

Model references point to concepts described in OWL2-DL exclusively.

The Jena Geography Dataset (JGD)10 is a test collection of about 200 geography

services that have been gathered from web sites like seekda.com, xmethods.com,

webservicelist.com, programmableweb.com, and geonames.org. JGD is available via

the OPOSSum Portal11. The services are described using natural language. In

addtition, the input and output parameter types have been manually linked to

WordNet sense keys. The portal can also store ontologies to which service

descriptions can refer. It is worth noting that the JGD collection has been used to

support evaluations across formalisms. Semantic descriptions (including OWL-S and

SAWSDL) for subsets of JGD have been created for evaluations within the context of

the JGD cross-evaluation track at the S3 Contest.

3 SWS Tools Evaluation Design

Following on the SEALS infrastructure, SWS evaluation descriptions, test data, tool

and evaluation results (including metadata) will be stored in respective repositories

and used by the SEALS platform. The SEALS platform will basically run evaluations

registered in the Evaluation Descriptions Repository. An Evaluation Description

refers to the test data and tools participating in a specific evaluation scenario and

provides the evaluation workflow for this scenario. Evaluation measures will be

available as services, which can be used within evaluation workflows. The SEALS

platform will also execute the SWS tool plugin, which must be implemented by tool

providers (evaluation campaign participants).

We can summarize the goals of SWS tool evaluation as below:

 Provide a platform for the joint and comparative evaluation of publicly

available Semantic Web service tools over public test collections.

 Provide a forum for discussion of SWS approaches.

 Provide a common understanding of the various SWS technologies.

 Award tools as a result of solving common problems.

10 http://fusion.cs.uni-jena.de/professur/jgd
11 http://fusion.cs.uni-jena.de/OPOSSum/

 Improve programmer productivity and system effectiveness by making

semantics declarative and machine-readable.

We are interested in evaluating performance and scalability as well as solution

correctness of application problems. We comment below on how we consider several

evaluation criteria for SWS tools.

 Performance - This is specific to the type of SWS activity. For retrieval

performance in discovery activities (i.e. service matchmaking), measures such

as Precision and Recall are usually used. More generic performance measures

are execution time and throughput.

 Scalability - Scalability of SWS tools are associated with the ability to perform

an activity (e.g. discovery) involving an increasing amount of service

descriptions. This can be measured together with performance (above),

however, this is also related to the scalability of repositories.

 Correctness - This is related to the ability of a tool to respond correctly to

different inputs or changes in the application problem by changing the

semantic descriptions. This criterion is related to mediation and invocation of

SWS. Messages resulting from the invocation or interaction of services should

be checked against a reference set.

 Conformance - We are not concerned with measuring the conformance of a

tool to a predefined standard. Instead, we will use a reference SWS

architecture in order to define a SWS plugin API and a measurement API.

 Interoperability - As we are interested in evaluating SWS usage activities

instead of the interchange of SWS descriptions, we are not concerned with

measuring interoperability between tools.

 Usability - Although it might be useful to know which SWS tools have an easy

to-use user interface or development environment, we consider that at this

point in time due to the few number of front-ends for SWS development, a

comparison would be more easily done using feedback forms. Therefore, we

will not be concerned with measuring usability of SWS tools.

3.1 Metadata

In SEALS, artifacts such as test suites and results are stored in the SEALS

Repositories. Every artifact is described using metadata in RDF/OWL. Generic

metadata such as artifact version, name and description are associated with every

artifact, however the metadata can be specialized for different types of tools. In

particular, in this Section we describe the ontologies used to represent test suites and

results for SWS discovery (see also [2]). The ontologies will be made publicly

available at http://www.seals-project.eu/ontologies/.

The terminology used to describe a SWS discovery test data suite is provided by

the DiscoveryTestSuite ontology, as graphically represented in Figure 1. The

DiscoveryTestSuite ontology extends the generic TestSuite ontology defined in [3].

The main class DiscoveryTestSuite represents a discovery test suite and is a subclass

of the TestSuite class. DiscoveryTestSuite can be described by properties of TestSuite,

such as the hasTestSuiteVersion, modelled here using the DiscoveryTestSuiteVersion

DiscoveryTestSuiteVersion

tso:TestSuiteVersion

rdfs:subClassOf

DiscoveryTest

tso:Test

rdfs:subClassOf

rdfs:domain

rdfs:range

belongsToDiscoveryTSV

rdfs:range

usesServiceDocument

ServiceDocument

rdfs:domain
isLocatedAt

hasServiceName

hasRepresentationLanguage

tso:TestSuite

rdfs:subClassOf

DiscoveryTestSuite

MatchTest

rdfs:range

usesGoalDocument

GoalDocument

isLocatedAt

hasGoalName

hasRepresentationLanguage

rdfs:domain rdfs:domain

xsd:string

rdfs:domain

rdfs:range

rdfs:range

belongsToDiscoveryTest

rdfs:range

rdfs:domain

class. The DiscoveryTest class represents a discovery test and is a subclass of the Test

class. The property belongsToDiscoveryTSV indicates the discovery test suite version

to which the discovery test belongs. The MatchTest class provides the goals and

services for a match test using the properties usesGoalDocument and usesService

Document. A discovery test includes a set of match tests. The property belongsTo

DiscoveryTest indicates the discovery test suite to which the match test belongs. The

ServiceDocument class represents a service description document, described by the

properties hasServiceName (name of the service), hasRepresentationLanguage

(language in which the service description is represented) and isLocatedAt (URI of

the document). The GoalDocument class represents a goal document, which can be

described by similar properties.

Figure 1 Graphical Representation of the Discovery TestSuite ontology

To describe a reference test suite we defined the DiscoveryReferenceTestSuite

ontology (not shown here), which corresponds and extends the ontology in Figure 1

by adding the property hasRelevance Value to the ServiceDocument class.

In SEALS, the evaluation of SWS tools produces two types of results: raw results,

which are generated by running a tool with specific testdata; and interpretations,

which are the results obtained after the evaluation measures are applied over the raw

results. In particular, for the evaluation of SWS discovery, raw results are represented

according to the DiscoveryResults ontology as shown in Figure 2. A discovery result

contains data produced by checking which services match a goal. The main class

DiscoveryResult is a subclass of TestRawResult and together they specify to which

discovery test suite and tool the match result belongs. In addition, they indicate

whether any problems occurred. The DiscoveryResultData class is a subclass of

TestRawResultData and represents the match result data that is described by the

properties hasGoalDescriptionURI, hasServiceDescription URI, hasMatchDegree

(the match degree, e.g. None, Plugin, Exact, Subsumption) and hasConfidence.

Figure 2 Graphical representation of Discovery Results ontology

Interpretations that are produced by interpreting the raw results produced by

Semantic Web Services discovery tools are represented according to Discovery

Interpretation ontology, as shown in Figure 3.

Figure 3 Graphical representation of the Discovery Interpretation ontology

This ontology has a format very similar to the Discovery Result ontology. The

important difference is that the DiscoveryInterpretation class refers to the

DiscoveryResult that generated this interpretation results. The Discovery

InterpretationData class represents the discovery measurements from given a goal

and a set of service descriptions. Currently, it is described by the properties

hasPrecisionValue and hasRecallValue, which are decimal values representing the

result of the respective measurements.

4 SWS Evaluation Services

In this section we will describe some of the services available from the SEALS

platform for the evaluation of SWS tools. Currently, these services have been

implemented as Java APIs, but in the future they will be available as Web Services.

These services will be made publicly available at http://www.seals-

project.eu/services/.

First, in SEALS we use repositories to store and retrieve test data, tools and results

of an evaluation, namely the Test Data Repository, the Tools Repository and the

Results Repository. Dedicated services called repository managers handle the

interaction with the repositories and process metadata and data defined for SWS tool

evaluation. More generic services (e.g. retrieveTestDataSet, registerRawResult,

registerInterpretation) are used to access or store files (RDF or ZIP files) using REST

clients; and more specific services (e.g. extractGoals, extractServiceDescriptons) are

used to extract metadata content.

Second, we have developed a number of services in order to compute

measurements for SWS discovery. Evaluation measures for SWS discovery will

follow in general on the same principles and techniques from the more established

Information Retrieval (IR) evaluation research area. Therefore we will use some

common terminology and refer to common measures (as a reference see [4]). In the

Java API, DiscoveryMeasurement is the main class, which returns metrics results for

a given Discovery Result and Reference Set corresponding to the same goal. This

class also returns overall measures for a list of goals. The class Discovery Result is

part of the SWS plugin API (Section 5). The class DiscoveryReferenceSet contains the

list of service judgments (class DiscoveryJudgement) for a specific goal, which

includes the service description URI, and the relevance value. The relevance value is

measured against the match degree returned by a tool. The class MetricsResult will

contain a list of computed measure values such as precision and recall and also some

intermediate results such as the as number of returned relevant services for a goal.

5 SWS Plugin API

In SEALS we provide the SWS plugin API, which must be implemented by tool

providers participating in the SWS tool evaluation. As mentioned in Section 2, the

SWS Plugin API (available from the campaign website) has been derived from the

SEE API (see also [1] [2]) and works as a wrapper for SWS tools, providing a

common interface for evaluation.

The Discovery Interface has 3 methods (init(), loadServices(), discover()) and

defines a class for returning discovery results. The methods are called in different

steps of the evaluation workflow (Section 6.1). The method init() is called once after

the tool is deployed so that the tool can be initialized. The method loadServices() is

called once for every dataset during the evaluation (loop) so that the list of services

given as arguments can be loaded. The method discover() is called once for every

goal in the dataset during the evaluation (loop) so that the tool can find the set of

services that match the goal given as argument. The return type is defined by the class

DiscoveryResult. The class DiscoveryResult contains the goal and the list of service

matches (class Match). The class Match contains the service description URI, the

order (rank), the match degree ('NONE', 'EXACT', 'PLUGIN', 'SUBSUMPTION') and

the confidence value. It is expected that the services that do not match are returned

with match degree 'NONE' (assumed value is 0). 'EXACT' assumed value is 1.0.

'PLUGIN' and 'SUBSUMPTION' assumed value is 0.25.

6 SWS Discovery Evaluation Scenario

In the first SEALS evaluation campaign we will run the SWS discovery evaluation

scenario12. Basically, a participant will register a tool via the Web interface provided

in the SEALS website13 and then he will be able to upload and edit his tool as part of

an evaluation campaign scenario. Participants are also required to implement the SWS

Tool plugin API as presented in Section 5. The organizers will make available

instructions for the participants about the scenario and will perform the evaluation

automatically by executing the workflow provided in the next section. The results will

be available in the Results repository.

6.1 SWS Discovery Evaluation Workflow

In this section we describe the evaluation workflow for SWS discovery. The

workflow performs access to the SEALS repositories in order to obtain the

appropriate artifacts as well as access to available services for testing tools and

applying measures. Also, the artifacts retrieved from the repositories can be metadata

from which we extract the appropriate information.

The overall basic steps in the workflow are: find the evaluation description of a

specific campaign scenario; extract the information about the tools and datasets from

this description; then in a loop, execute each tool with the provided dataset; compute

metrics (e.g. precision and recall) based on the provided reference set and raw results

obtained, and finally the store both raw results and interpretations. In the following

we describe in more details the service operations in the workflow. The high-level

fragment of the actual java code implementation can be found in [2].

The retrieveEvaluationDescription operation accesses the Evaluation Repository

and retrieves the discovery evaluation description corresponding to a given SWS

Discovery evaluation campaign scenario. The extractTools operation extracts from

the evaluation description metadata, the list of tools (ids) to be evaluated. We iterate

over this list of tools, first checking whether the tool is deployed. The

extractTestDatasets operation extracts from the evaluation description metadata, the

list of datasets (ids) to be used in the evaluation. We iterate over this list of URIs, first

retrieving each dataset from the testdata repository in operation retrieveTestDataSet.

The extractServices operation extracts from the retrieved dataset, the list of service

descriptions (URIs) to be used in the evaluation; and the extractGoals operation

12 http://www.seals-project.eu/seals-evaluation-campaigns/semantic-web-services
13 http://www.seals-project.eu/registertool

extracts the list of goals (URIs). The runTool operation runs the current tool with the

current goal and services from the retrieved dataset. This operation will invoke the

operations loadServices and discover from the SWS plugin implemented by the tool.

The content of DiscoveryResult is serialized into the raw result for the current goal.

This raw result is added to the list of raw results for the current dataset of the current

tool in operation addItemToRawResult. The extractReferenceSet operation extracts

from the retrieved dataset, the reference set to be used in the evaluation. The

computeMeasurements operation computes all measurements (e.g. precision, recall)

for the current goal using the current raw result and reference set. The content of

MetricsResult is serialized into the interpretation for the current raw result. This

interpretation is added to the list of interpretations for the current dataset of the

current tool in operation addItemToInterpretation. The registerRawResult operation

registers the accumulated list of raw results for the current dataset and tool into the

results. The registerInterpretation operation registers the accumulated list of

interpretations for the current dataset and tool into the results repository.

6.2 Tools and Test datasets

In Table 1 we list a number of tools that are publicly available and are candidates for

evaluation using the SEALS platform under a SWS Discovery evaluation campaign.

Table 1 Candidate tools for SEALS SWS Discovery evaluation campaign

Tool Name Provider Webpage

OWLS-MX

(with variants)

DFKI, Germany http://projects.semwebcentral.org/projects

/owls-mx/

SAWSDL-MX

(with variants)

DFKI, Germany http://projects.semwebcentral.org/projects

/sawsdl-mx/

Glue2 CEFRIEL, Italy http://sourceforge.net/projects/ glue2

IRS-III

(Discovery)

KMI, The Open

University, UK

http://kmi.open.ac.uk/ technologies/irs

WSMX

(Discovery)

STI Innsbruck,

Austria

http://www.wsmx.org/

We have registered two test suites to the Test Data Repository14. The latest collections

corresponding to OWLS-TC and SAWSDL-TC are accessible at http://

seals.sti2.at/tdrs-web/testdata/persistent/OWLS-TC/4.0 and http://seals.sti2.at/tdrs-

web/testdata/persistent/SAWSDL-TC/3.0 respectively. Depending on the value of the

HTTP Accept for the two URLs above, either the metadata or the data is retrieved. To

retrieve the metadata of the test suite version, set the HTTP Accept value to

"application/rdf+xml". To retrieve the actual data as a ZIP file, set the HTTP Header

value to "application/zip".

14 http://seals.sti2.at/tdrs-web/

7 Conclusions

In this paper we have described the ongoing approach and services for SWS tools

evaluation using the SEALS platform. We have described the implementation of the

SWS Discovery Evaluation Workflow. As part of the workflow, we have

implemented services (java code) for accessing the testdata and result repositories as

well as services (java API) for performing measures for SWS Discovery evaluation.

We have created metadata definitions (RDF/OWL) for testdata and results (raw

results and interpretations) and corresponding services (generating and adding

ontology instances to repositories). The SWS plugin API is currently very similar to

SME’s matchmaker plugin in what concerns discovery (matchmaking). However, the

former will be extended in order to account for other activities such as composition,

mediation and invocation. There are also many similarities in purpose between our

approach and existing initiatives in that they all intend to provide evaluation services

and promote discussion on SWS technologies within the SWS community. In this

case, the main difference is that SEALS is investigating the creation of common and

sharable metadata specifications for testdata, tools and evaluation descriptions as well

as respective public repositories.

The work presented in this paper will be used during the SWS Tools Evaluation

Campaign 2010, available at http://www.seals-project.eu/seals-evaluation-

campaigns/semantic-web-services. This campaign will run the SEALS Semantic Web

Service Discovery Evaluation scenario. Instructions for participants will be made

available. In addition, we will release the SWS plugin API, which must be

implemented for the participating tools. Currently, the last versions of the existing

data collections OWL-S TC and SAWSDL-TC have been stored in the dataset

repository. For future campaigns we plan to release datasets described using other

languages such as WSMO-Lite as well as datasets for other problem scenarios such as

the ones in the SWS Challenge. For the first campaign, the uploading of participant

tools will be manual and there will be no access to the evaluation repository. The

SWS evaluation workflow mentioned before will be performed by the organizers over

the participating tools. Future work includes developing the APIs as Web Services

and implementing the evaluation workflow as a BPEL process.

Acknowledgments This work has been partially funded by the European

Commission under the SEALS project (FP7-238975).

References

1. Cabral, L., Kerrigan, M. and Norton, B.: D14.1. Evaluation Design and Collection of Test

Data for Semantic Web Service Tools. Technical report, SEALS Project, March 2010.

2. Cabral, L., Toma, I., Marte, A.: D14.2. Services for the automatic evaluation of Semantic

Web Service Tools v1. Technical report, SEALS Project, July 2010.

3. Garcia-Castro, R., Esteban-Gutierrez, M., Nixon, L., Kerrigan, M. and Grimm, S.: D4.2.

SEALS Metadata. Technical report, SEALS Project, Feb 2010.

4. Küster, U., Koenig-Ries, B.: Measures for Benchmarking Semantic Web Service

Matchmaking Correctness. In Proceedings of ESWC 2010. LNCS 6089. June, 2010.

