
Ontology Evolution in Data Integration1

Haridimos Kondylakis, Dimitris Plexousakis, Yannis Tzitzikas

Information Systems Lab., FORTH-ICS, Computer Science Department, Univ. Of Crete

N.Plastira 100, Vassilika Vouton, GR70013, Heraklion, Crete, Greece

{kondylak, dp, tzitzik}@ics.forth.gr

Abstract. Ontologies are becoming more and more important in data

integration. An important problem when dealing with ontologies is the fact that

they are living artefacts and subject to change. When ontologies evolve, the

changes should somehow be rendered and used by the pre-existing data

integration systems. In most of these systems, when ontologies change their

relations with the data sources i.e. the mappings, are recreated manually, a

process which is known to be error-prone and time-consuming. In this paper,

we provide a solution that allows query answering under evolving ontologies

without mapping redefinition. In order to achieve that, we present a module that

enables ontology evolution over traditional ontology-based data integration

systems. This module gets as input the different ontology versions and the user

query, and answers queries over data integration systems that use different

ontology versions. We identify the problems in such a setting and we provide

efficient, intuitive solutions. We prove that our approach imposes only a small

overhead over traditional query rewriting algorithms and it is modular and

scalable. Finally, we show that it can greatly reduce human effort spent since

continuous mapping redefinition on evolving ontologies is no longer necessary.

1 Introduction

The development of new scientific techniques and the emergence of new high

throughput tools have led to a new information revolution. During this information

revolution the data gathering capabilities have greatly surpassed the data analysis

techniques, making the task to fully analyze the data at the speed at which it is

collected a challenge. The amount, diversity, and heterogeneity of that information

have led to the adoption of data integration systems in order to manage it and further

process it. However, the integration of these data sources raises several semantic

heterogeneity problems.

By accepting an ontology as a point of common reference, naming conflicts are

eliminated and semantic conflicts are reduced. During the last years, ontologies have

been used in database integration [1], obtaining promising results, for example in the

fields of biomedicine and bioinformatics. When using ontologies to integrate data,

one is required to produce mappings, to link similar concepts or relationships from the

ontology/ies to the sources (or other ontologies) by way of an equivalence - according

1 This work was partially supported by the EU project PlugIT (ICT-231430)

to some metric. This is the mapping definition process [2] and the output of this task

is the mapping, i.e., a collection of mappings rules. In practice, this process is done

manually with the help of graphical user interfaces and it is a time-consuming, labour-

intensive and error-prone activity. Defining the mappings between

schemata/ontologies is not a goal in itself. The resulting mappings are used for

various integration tasks such as data transformation and query answering.

Despite the great amount of work done in ontology-based data integration, an

important problem that most of the systems tend to ignore is that ontologies are living

artifacts and subject to change [3]. Due to the rapid development of research,

ontologies are frequently changed to depict the new knowledge that is acquired. The

problem that occurs is the following: when ontologies change, the mappings may

become invalid and should somehow be updated or adapted.

In this paper, we address the problem of data integration for evolving RDF/S

ontologies. We argue that ontology change should be considered when designing

ontology-based data integration systems. A typical solution would be to regenerate

the mappings and then regenerate the dependent artifacts each time the ontology

evolves. However, as this evolution might happen too often, the overhead of

redefining the mappings each time is significant. The approach, to recreate mappings

from scratch each time the ontology evolves, is widely recognized to be problematic

[4-6], and instead, previously captured information should be reused. However, all

current approaches that try to do that suffer from several drawbacks and are

inefficient [7] in handling ontology evolution in a state of the art ontology-based data

integration system.

The lack of an ideal approach leads us to propose a new mechanism that builds on

the latest theoretical advances on the areas of ontology change [8] and query rewriting

[1, 9] and incorporates and handles ontology evolution efficiently and effectively.

More specifically:

 We present the architecture of a data integration system, named Evolving Data

Integration (EDI) system, that allows the evolution of the ontology used as global

schema.

 We define the exact semantics of our system and we elegantly separate the

semantics of query rewriting for different ontology versions and for the sources.

Since query rewriting for the sources has been extensively studied [1, 2, 9], we

focus on a layer above and deal only with the query rewriting between ontology

versions. More specifically, we present a module that receives a user query

specified under the latest ontology version and produces rewritings that will be

answered by the underlying data integration systems - that might use different

ontology versions. The query processing in this module consists of two steps: a)

query expansion that considers constraints coming from the ontology, and b)

valid query rewriting that uses the changes between two ontology versions to

produce rewritings among them.

 In order to identify the changes between the ontology versions we adopt a high-

level language of changes which possesses salient properties such as uniqueness,

inversibility and composability. The sequence of changes between the latest and

the other ontology versions is produced automatically at setup time and then each

one of the change operations identified is translated into a logical GAV mapping.

This translation enables query rewriting by unfolding. Then, the inversibility is

exploited to rewrite queries from past ontology versions to the current, and vice

versa, and composability to avoid the reconstruction of all sequences of changes

among the latest and all previous ontology versions.

 Despite the fact that query rewriting always terminates the queries issued to other

ontology versions might fail. We show that this problem is not inhibiting in our

algorithms but a consequence of information unavailability. To tackle this

problem, we propose two solutions: either to provide more general answers, or to

provide insights for the failure, thus driving query redefinition only for a specific

portion of the affected query.

Such a mechanism, that provides rewritings among data integration systems that

use different ontology versions, is flexible, modular and scalable. It can be used on

top of any data integration system – independently of the family of the mappings they

use (GAV, LAV, GLAV, etc [2]). New mappings or ontology versions can be easily

and independently introduced without affecting other mappings or other ontology

versions. Our engine takes the responsibility of assembling a coherent view of the

world out of each specific setting.

The rest of the paper is organized as follows: Section 2 introduces the problem by

an example and presents related work. Section 3 presents the architecture of our

system and describes its components. Section 4 describes the semantics of our system

and Section 5 elaborates on the query rewriting among ontology versions. Then,

Section 6 presents the problems that may occur in such a setting and proposes elegant

solutions. Finally, Section 7 provides a summary and an outlook for further research.

2 Motivating Example & Related Work

Consider the example RDF/S ontology shown on the left of Fig. 1. This ontology is

used as a point of common reference, describing persons and their contact points. We

also have two relational databases DB1 and DB2 mapped to that version of the

ontology. Assume now that the ontology designer decides to move the domain of the

“has_cont_point” property from the class “Actor” to the class “Person”, and to delete

the literal “gender”. Moreover, the “street” and the “city” properties are merged to the

“address” property as shown on the right of Fig. 1. Then, DB3 is mapped to the new

version of the ontology leading to two data integration systems that work

independently. In such a setting we would like to issue queries formulated using any

ontology version available. Moreover, we would like to retrieve answers from all

underlying databases.

Several approaches have been proposed so far to tackle similar problems. In a data

exchange setting mapping adaptation [4] was one of the first attempts that tried to

incrementally adapt the mapping between the schema and the data sources as the

schema evolved. The idea was that schemata evolve in small primitive steps; after

each step the schema mappings can be incrementally adapted by applying local

modifications. However, several problems of the approach were early identified [5]

(such as the multiple list of changes with the same effect e.t.c), and another approach

was proposed [5]. The approach was to describe ontology evolution as mappings and

to employ mapping composition to derive the adapted mappings. However, mapping

composition proved to be a really difficult problem [10] and we have not yet seen an

elegant approach for ontology evolution.

Fig. 1. The motivating example of an evolving ontology

Furthermore, several research works tried to deal with similar problems. For XML

databases, for example, there have been several approaches that try to preserve

mapping information under changes [11] or propose guidelines for XML schema

evolution in order to maintain the mapping information [12]. Moreover, augmented

schemata were introduced in [13] to enable query answering over multiple schemata

in a data warehouse, whereas other approaches change the underlying database

systems to store versioning and temporal information such as [14-17]. However, our

system differs from all the above in terms of both goals and techniques. To the best of

our knowledge no system today is capable of retrieving information mapped with

different ontology versions.

3 Evolving Data Integration

We conceive an Evolving Data Integration (EDI) system as a collection of data

integration systems, each using a different ontology version as global schema.

Therefore, we extend the traditional formalism from [2] and define an EDI as:

Definition 3.1 (Evolving Data Integration System). An EDI system I is a tuple of the

form ((O1, S1, M1), ..., (Om, Sm, Mm)) where Oi is a version of the ontology, Si is a set

of local sources and Mi is the mapping between Si and Oi (1 i m).

Considering Oi we restrict ourselves to RDF/S knowledge bases, as most of the

Semantic Web Schemas (85,45%) are expressed in RDF/S [18]. The representation of

knowledge in RDF is based on triples of the form predicate (subject, object).

Assuming two disjoint and infinite sets U, L, denoting the URIs and literals

respectively, T = U  U  (U  L) is the set of all triples. An RDF Graph V is

defined as a set of triples, i.e., V T. RDFS [19] introduces some built-in classes

(class, property) which are used to determine the type of each resource. The typing

mechanism allows us to concentrate on nodes of RDF graphs, rather than triples,

which is closer to ontology curators’ perception and useful for defining intuitive high-

level changes. RDFS provides also inference semantics, which is of two types,

Person

Literal

Actor

Literal

Cont.
Point

Literal

Literal

name

ssn

gender has_cont_point

street

city

: subClass of : property domain/range

Person

Literal

Actor

Literal

Cont.
Point

Literal
fullname

ssn
has_cont_point

address

Ontology Version 1 Ontology Version 2

DB1 DB2 DB3

Literal

namely structural inference (provided mainly by the transitivity of subsumption

relations) and type inference (provided by the typing system, e.g., if p is a property,

the triple (p, type, property) can be inferred). The RDF Graph containing all triples

that are either explicit or can be inferred from explicit triples in an RDF Graph V

(using both types of inference), is called the closure of V and is denoted by Cl(V). An

RDF/S Knowledge Base (RDF/S KB) V is an RDF Graph which is closed with respect

to type inference, i.e., it contains all the triples that can be inferred from V using type

inference.

Moreover, we consider relational databases as source schemata. We choose to use

relational databases since the majority of information currently available is still stored

on relational databases [20].

For modelling ontology evolution we use a high-level language of changes that

describes how an ontology version was derived from another ontology version. A

high-level language is preferable than a low-level one, as it is more intuitive, concise,

closer to the intentions of the ontology editors and captures more accurately the

semantics of change [8]. As we shall see later on, a high-level language is beneficial

for our problem for two reasons: First, because the produced change log has a smaller

size and second, because such a language yields logs that contain a smaller number of

individual low-level deletions (which are non-information preserving) and this affects

the effectiveness of our rewriting. Moreover properties like composability and

inversibility can be exploited for improving efficiency as we shall see on the sequel.

In our work, a change operation is defined as follows:

Definition 3.2 (Change Operation). A change operation u over O, is any tuple (δα, δd)

where δa O = ø and δd  O. A change operation u from O1 to O2 is a change

operation over O1 such that δa  O2\O1 and δd  O1\O2.

Obviously, δα and δd are sets of triples end especially the triples in δd are triples

coming from the ontology O. For simplicity we will denote δa(u) (δd(u)) the added

(deleted) triples of a change u. From the definition, it follows that δa(u) δd(u)= ø

and δa(u) δd(u)≠ø if O1≠O2. For the change operations proposed in [8] and the

corresponding detection algorithm, it has been proved that the sequence of changes

between two ontology versions is unique. Moreover, it is shown that for any two

changes u1, u2 in such a sequence it holds that δa(u1) δa(u2)= ø and δd(u1) δd(u2)=

ø. These nice properties and their consequences are among the reasons that led us to

adopt that specific language for describing changes among ontologies. Hereafter,

whenever we refer to a change operation, we mean a change operation from those

proposed in [8]. Now we need to define their application semantics.

Definition 3.3 (Application semantics of a high-level change). The application of a

change u over O, denoted by u(O), is defined as: u(O) = (O δa(u)) \ δd(u).

Two key observations here are that the application of out change operations is not

conditioned by the current state of the ontology and that we don’t handle

inconsistency, i.e., (O δa(u)) \ δd(u) is always assumed to be consistent).In our

example the change log between O2 and O1, denoted by the , consists of the

following change operations:

u1:Rename_Property(fullname, name) u2:Split_Property(address, {street, city})

u3:Specialize_Domain(has_cont_point, Person, Actor)

u4:Add_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø, ø)

The definition of the change operations that are used in this paper can be found on

[8]. It is obvious, that applying those change operations on O2, results O1. Now it is

time to define the composition of the change operations. By proving that the change

operations are composable, we will be able to use the intermediate evolution logs

between ontology versions instead of constructing all change logs between the latest

ontology version and all past ontology versions.

Definition 3.4 (Composition of change operations). A ucomp is the composition of u1

and u2 (computed over O1 and O2), if ucomp (O1) = u2(u1(O1)) = u1(u2(O1))

Now we will show that the change operations as detected in [8] compose indeed.

Proposition 1: Let u1, u2 two change operations from O1 to O2. Then ucomp = (δa(u1)
 δa(u2), δd(u1) δd(u2))

Finally, since a change operation is actually a mapping function that maps O1 to

O2, a question is whether there exists the inverse function, the inverse change

operation that maps the O2 to the O1 ontology version. By automatically constructing

the inverse of a sequence of change operations (from O1 to O2), we will be able to

rewrite queries expressed using O2 to O1 and vice versa.

Definition 3.5 (Inverse of a change operation). Let u be a change operation from O1

to O2. A change operation uinv from O2 to O1 to is the inverse of u if: uinv(u(O1)) O1

Now we will show how to compute the inverse of a change operation.

Proposition 2: The inverse of a change operation u (denoted by inv(u)) from O1 to O2

is: inv(u)=(δd(u), δa(u))

Based on Propositions 1 and 2 we can conclude that:

Corollary 1: The inverse of a sequence of change operations = [u1, …, un]

constructed from O1 to O2, is
 =[inv(un), ..., inv(u1)].

The inverse of the sequence of change operations for our running example is:
inv(u4):Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø, ø)

inv(u3):Generalize_Domain(has_cont_point, Actor, Person)

inv(u2):Merge_Properties({street, city},address)

inv(u1):Rename_Property(name, fullname)

4 Semantics of an EDI

Now we will define semantics for an EDI system I. Fig. 2 sketches the proposed

approach. We start by considering a local database for each (Oi, Si, Mi), i.e., a

database Di that conforms to the local sources of Si. Based on Di, we shall specify

which is the information content of the global schema Oi.

Definition 4.1 (Legal global database): A global database Gi for (Oi, Si, Mi) is said

to be legal with respect to Di, if: (a) Gi is legal with respect to Oi, i.e., Gi satisfies all

the constraints of Oi. and (b) Gi satisfies the mapping Mi with respect to Di.

The notion of Gi satisfying the mapping Mi, with respect to Di, is defined as it is

commonly done in traditional data integration systems (see [2] for more details). It

depends on the different assumptions that can be adopted for interpreting the tuples

that D assigns to relations in local sources with respect to tuples that actually satisfy

(Oi, Si, Mi). Since such systems have been extensively studied in the literature we

abstract from the internal details and focus on the fact that for each (Oi, Si, Mi) of our

system we can obtain a global database Gi.

Now, we can repeat the same process, i.e., to consider the global databases as

sources and a database D which we will simply call the global database, the database

that conforms to them. Now we can define the legal total database. We use the term

“total” only to differentiate it from a global database, since we will extensively use it

from now on.

Definition 4.2 (Legal total database): A total database T for and EDI I is said to be

legal with respect to D, if: (a) T is legal with respect to Om, i.e., T satisfies all the

constraints of the latest ontology version Om. (b) T satisfies E with respect to D

(E=
).

The constraints of an RDF/S ontology are the inclusion dependencies among the

classes and the properties. Now we specify the notion of T satisfying E with respect to

D. In order to exploit the strength of the logical languages towards query

reformulation, we convert our change operations to GAV mappings. So when we

refer to the notion of T satisfying E we mean T satisfying the GAV mappings

produced from E. A GAV mapping associates to each element g in T a query qG over

G1, ..., Gm, i.e., qG g.

Definition 4.3 A database T satisfies the mappings qG g with respect to D if qG D

 g
T

where qG D is the result of evaluating the query qG over D.

…

… …

…

Mm

Local

database

Total

database
T

E

Mi

Fig. 2. The semantics of an EDI

S12 S13 Sm1 Sm2

G G

Si1

M1

G

 S11

Global

database

For example, the sequence of the GAV mappings that corresponds to our sequence

of changes is:
mu1: type(fullname, property) name, type(name , property)

mu2: address, type(address, property) street, city, type(street, property)  type(city, property)

mu3: domain(has_cont_point , Person) , domain(has_cont_point, Actor)

For u4 there is no GAV mapping constructed since we do not know where to map

the deleted element. Now it becomes obvious that the lower the level of the language

of changes used the more change operations won’t have corresponding GAV

mappings (since more low-level individual additions and deletions will appear).

By the careful separation between the legal total database T and the legal global

databases Gi we have achieved the modular design of our EDI system and the

separation between the traditional data integration semantics and the additions we

have imposed in order to enable ontology evolution. Thus, our approach can be

applied on top of any existing data integration system to enable ontology evolution.

5 Query Processing

Queries to I are posed in terms of the global schema Om. For querying, we adopt the

language SPARQL [21]. We chose SPARQL since it is currently the standard query

language for the semantic web and has become an official W3C recommendation.

Essentially, SPARQL is a graph-matching language. Given a data source, a query

consists of a pattern (the graph pattern) which is matched against, and the values

obtained from this matching are processed to give the answer. A SPARQL query

consists of three parts: The pattern matching part, which includes several features of

pattern matching of graphs, the solution modifiers, which once the output of the

pattern has been computed (in the form of a table of values of variables), allows to

modify these values applying classical operators, and the output of a SPARQL query

which can be of different types: yes/no answers, selections of values etc. In order to

avoid ambiguities in parsing, we present the syntax of SPARQL graph patterns in a

more traditional algebraic way, using the binary operators UNION (denoted by U)

AND and OPT, and FILTER according to [21]. In this paper, we do not consider OPT

and FILTER operators since we leave it for future work. The remaining SPARQL

fragment we consider here corresponds to union of conjunctive queries [21].

Moreover, the application of the solution modifiers and the output is done after the

evaluation of the query, and is not presented here.

Continuing our example, assume that we would like to know the “ssn” and

“fullname” of all persons stored on our DBs and their corresponding address. The

SPARQL query, formulated using the latter version of our example ontology is:
q1: select ?SSN ?NAME ?ADDRESS where {

?X type Person. ?X ssn ?SSN. ?X fullname ?NAME.

 ?X has_contact_point ?Y. ?Y type Cont.Point . ?Y address ?ADDRESS}

Using the semantics from [21] the algebraic representation of q1 is equivalent to:
q1: π?SSN,?NAME,?ADDRESS ((?X, type, Person) AND (?X, ssn, ?SSN) AND (?X, fullname,

?NAME) AND (?X, has_contact_point, ?Y) AND (?Y, type, Cont.Point) AND (?Y, address,

?ADDRESS))

Now we define what constitutes an answer to a query over Om. We will adopt the

notion of certain answers [2, 9].

Definition 5.1 (Certain answers): Given a global database D for I, the answer qI,D to

a query q with respect to I and D, is the set of tuples t such that t q
T

for every total

database T that is legal for I with respect to D, i.e. such that t is an answer to q over

every database T that is legal for I with respect to D. The set qI,D is called the set of

certain answers to q with respect to I and D.

Fig. 3. Query processing

Note that, from a logical point of view, finding certain answers is a logical

implication problem: check whether it logically follows from the information in the

global databases Gi that t satisfies the query. It has been shown [22], that computing

certain answers to union of conjunctive queries over a total database with constraints,

corresponds to evaluating the query over a special database called canonical which

represents all possible total databases legal for the data integration system and which

may be infinite in general. However, instead of trying to construct the canonical

database and then evaluate the query, another approach is to transform the original

query q into a new query
(q) over the Om, (which is called the expansion of q

w.r.t. Om) such that the answer to
(q) over the retrieved total database is equal

to the answer to q over the canonical database [22]. We have to note however, that

this approach holds for inclusion dependencies but not for the more general class of

FOL constraints.

Definition 5.2 (retrieved total database): If D is a global database for the EDI-system

I, then the retrieved total database ret(I, D) is the total database obtained by

computing and evaluating, for every element of Om the query associated to it by E

over the global database D.

 This is a common approach in data integration under constraints, and we also adopt

it here. This step is performed by the “Parser/Expander” component shown on Fig. 3.

Now, in order to avoid building the retrieved total database we do not evaluate

(q) on the retrieved total database. Instead, we transform

(q) to a new

query validE(
(q)) over the global relations on the basis of E and we use that

query to access the underlying data integration systems. This is performed by the

“Valid Rewriter” component which is also shown on Fig. 3. Bellow we describe the

implementation of the aforementioned steps.

5.1 Query expansion.

In this step, the query is expanded to take into account the constraints coming from

the ontology. Query expansion amounts to rewriting the query q posed to the ontology

version Om into a new query qʹ, so that all the knowledge about the constraints in

ontology has been “compiled” into qꞌ. Recall that we consider an ontology as a

schema with constraints. This is performed by constructing the perfect rewriting of q.

Definition 5.3 (Perfect Rewriting): Let I an EDI system and let q be a query over Om.

Then qp is called a perfect rewriting of q w.r.t. I if, for every global database D, qI,D

= qp
 ret(I,D).

Algorithms for computing the perfect rewriting of a query q w.r.t to a schema, have

been presented in [1, 9]. In our work, we use the QuOnto system [1] in order to

produce the perfect rewriting of our initial query. Perfect rewriting is in our case

PTIME in the size of ontology and NP in the size of query. For more genera classes of

logic it is complete for PSPACE and 2EXPTIME as proved in [9]. Continuing our

example if we expand q1 we get q2:

q2: π?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

U

π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

This is produced by considering the transitive constraint of the subClass relation

among the classes “Person” and “Actor”.

 5.2 Computing Valid Rewritings

Now instead of evaluating
(q) on the retrieved total database, we transform it to

a new query called valid rewriting, i.e. validE(
(q)). This is done as already

discussed in order to avoid the construction the retrieved total database.

Definition 5.4 (Valid Rewriting): Let I an EDI system and let q be a query over ret(I,

D) . Then qvalid is called a valid rewriting of q w.r.t. ret(I,
 D) if, for every global

database D, qret(I,D)= qvalid D.

When the retrieved total database is produced by GAV mappings as in our case,

query rewriting is simply performed using unfolding [1]. This is a standard step in

data integration [2] which trivially terminates and it is proved that it preserves

soundness and completeness [22]. Moreover, due to the disjointness of the input and

the output alphabet, each GAV mapping acts in isolation on its input to produce its

output. So we only need to scan the GAV mappings once in order to unfold the query

and the time complexity of this step O(N*M) where N is the number of change

operations in the evolution log and M is the number of sub-goals in the query.

Now, we can state the main result of this section.

Theorem 1 (Soundness and Completeness): Let I and EDI system, q a query posed to

I, D a global database for I such that I is consistent w.r.t. D, and t a tuple of constants

of the same arity as q. Then t qI,D if and only if t [validE(exp(q))]D.

Continuing our example, unfolding the query q2 using the mappings mu1, mu3 and

mu3 will result to the following query: q3: π?SSN,?NAME,?ADDRESS ((?X, type, Actor) AND (?X,

ssn, ?SSN) AND (?X, name, ?NAME) AND (?X, has_contact_point, ?Y) AND (?Y, type,

Cont.Point) AND (?Y, street, ?ADDRESS) AND (?Y, city, ?ADDRESS))

Finally, our initial query will be rewritten to the union of q3 (issued to the data

integration system that uses O1) and q2 (issued to the data integration system that uses

O2).

6 Discussion

So far we have described the scenario where we construct the change logs

 between Om and all Oi (1≤i<m) using the algorithm from [8]. Then we

formulate a query q using the ontology version Om, and we use the corresponding

GAV mappings to produce and evaluate the validE(
(q))

However, based on the composition property (proposition 1), we could avoid the

computation of all those change logs from scratch each time. Instead, of constructing

 for all i (1≤i<m) we could only construct all between

the subsequent ontology versions, thus minimizing the total construction cost2 -since

the compared ontologies now have more common elements. However, we have to

keep in mind that the time of constructing a sequence of changes is spent only once

during system setup.

Corollary 2:
 =

 Moreover, whenever a new ontology version occurs, we can construct the change

log between the new ontology version and the previous ontology version - and not all

change logs from scratch. Of course, this will lead to larger sequences of change logs,

but will allow the uninterrupted introduction of new ontology versions to the system.

Ideally, we would also like to accept queries formulated using ontology version O1

2 The complexity of the algorithm for input O1, O2 is O(max(N1, N2, N

2)).

and to rewrite it to the newer ontology versions. This would be really useful since in

many systems queries might be stored and we wouldn’t like to change them every

time the ontology evolves. However, in order to achieve this we would have to use the

inverse GAV mappings for query rewritings which are not always possible to

produce. Our approach deals with the inversibility on the level of change operations

and not at the logical level of the produced GAV mappings. So, instead of trying to

produce the inverse of the initial GAV mappings, we invert the sequence of changes

(which is always possible according to corollary 1) and then use the inverted sequence

of changes to produce the GAV mappings that will be used for query rewriting to the

current ontology version. This enhances the impact of our approach.

Actually, it now becomes obvious that it is straight forward to accept a query

formulated in any ontology version Oi (1≤i≤m) and to get the rewritings for all

ontology versions using the inverted list of changes for the Oj that j>i.

Now, despite the fact that both query expansion and unfolding always terminate in

our setting, problems may occur. Consider as an example the query q4 that asks the

“gender” and the “name” of an “Actor” using ontology version O1: q4: π ?NAME,?GENDER (

(?X, type, Actor) AND (?X, name, ?NAME) AND (?X, gender, ?GENDER))
Trying to rewrite the query q4 to the ontology version O2 our system will first

expand it. Then it will consider the GAV mappings produced from the inverted

sequence of changes (as they have been presented at the end of the sub-section 3b).

So, the following query will be produced by unfolding using the mapping

 type(, property) fullname, type(fullname, property) - produced

from inv(u1): π ?NAME,?GENDER((?X, type, Actor) AND (?X, fullname, ?NAME) AND (?X,

genter, ?GENDER))

However, it is obvious that the query produced will not provide any answers when

issued to the data integration system that uses O2 since the “gender” literal no longer

exist in O2. This happens because the inv(u4) change operation is not information

preserving change among the ontology versions. It deletes information from the

ontology version O1 without providing the knowledge that this information is

transferred on another part of the ontology. This is also the reason that low-level

change operations (simple triple addition or deletion) are not enough to dictate query

rewriting. Although, this might be considered as a problem, actually it is not, since if

we miss the literal “gender” in version O2 this would mean that we have no data in the

underlying local databases for that literal. But even then, besides providing answers to

the users for the data integration systems that can answer the corresponding

rewritings, we provide to the users two more options:

The first option is to notify the user that some underlying data integration systems

were not possible to answer their queries and present the reasons for that. For our

example, our system will report that the data integration system that uses O2 was not

able to answer the initial query since the literal “gender” does not exist in that

ontology version. To identify the change operations that lead to such a result we

define the notion of affecting change operations.

Definition 6.1 (Affecting change operation). A change operation u affects the query q

(with graph pattern G), denoted by u ◊ q, iff: 1) δd(u) ≠ø, 2) δa(u)=ø and 3) triple

pattern t in G that can be unified with a triple of δd(u).

The first condition ensures that the operation deletes information from the

ontology without replacing it with other information (condition 2), thus the specific

change operation is not information preserving. However, we are not interested in

general for the change operations that are not information preserving. We specifically

target those change operations that change the ontology part which corresponds to our

query (condition 3). In order to identify those change operations that affect user

query, we have to scan the evolution log once for each query sub-goal. So the

complexity of the corresponding algorithm is O(N*M) where N is the number of

change operations in the evolution log and M is the number of sub-goals in the query.

Users then can use that information in order to respecify only a specific set of their

mappings if desired.

The second option is to produce more general answers for the data integration

sub-systems that cannot answer input queries. Our solution here is that when a change

operation affects a query rewriting, we can check if there is another triple tꞌ (in the

previous ontology version) which is the “parent” of the deleted triple t. If such a triple

exists in the current ontology version we can ask for that triple instead, thus providing

a more general answer.

Assume for example, an alternative ontology version O1, where the

“personal_info” property is a super-property of the “gender” property. Assume also

the same sequence of changes from O1 to O2 (the list of inverted changes presented in

Section 3.2). Then, if query q4 previously described is issued, we are able to identify

that the triple “Actor, gender, xsd:String” has been deleted and to look for a more

general query. The query that our system produces, and that provides more general

answer to user query is: q5: π ?NAME,?GENDER ((?X, type, Actor) AND (?X, fullname, ?NAME)

AND (?X, personal_info, ?GENDER)

Producing more general answers requires a slight extension of the algorithm for

identifying affecting operations and is not presented due to space limitations.

7 Conclusions

In this paper, we argue that ontology evolution is a reality and data integration

systems should be aware and ready to deal with that. To that direction, we presented a

novel approach that allows query answering under evolving ontologies without

mapping redefinition.

Our architecture is based on a module that can be placed on top of any traditional

ontology-based data integration system, enabling ontology evolution. It does so by

using high-level changes to model ontology evolution and uses those changes in order

to rewrite not the mappings but the query itself among ontology versions. The process

of query rewriting proceeds in two steps, namely query expansion and valid rewriting,

and is proved to be effective, scalable and efficient. Experiments were performed, but

not reported here due to space limitations; confirm the potential impact of our

approach. To the best of our knowledge, no other system today is capable of

automatically answering queries over multiple ontology versions.

As future work, several challenging issues need to be further investigated. For

example, local schemata may evolve as well, and the structured DBMS data might be

replaced with semi-structured ones. An interesting topic would be to extend our

approach for OWL ontologies and to expand our approach to handle the full

expressiveness of the SPARQL language. It becomes obvious that ontology evolution

in data integration is an important topic and several challenging issues remain to be

investigated in near future.

References

[1] Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking
data to ontologies. Journal on data semantics X (2008) 133-173

[2] Lenzerini, M.: Data integration: a theoretical perspective. SIGMOD (2002)

[3] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowl. Eng. Rev. 23 (2008) 117-152

[4] Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema
changes. The VLDB Journal 13 (2004) 274-293

[5] Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve. VLDB
(2005)

[6] Curino, C.A., Moon, H.J., Ham, M., Zaniolo, C.: The PRISM Workwench: Database
Schema Evolution without Tears. ICDE (2009) 1523-1526

[7] Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology & Schema Evolution in Data
Integration: Review and Assessment. ODBASE, OTM Conferences, (2009) 932-947

[8] Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On Detecting
High-Level Changes in RDF/S KBs. ISWC (2009) 473 - 488

[9] Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog+-: a unified approach to ontologies and
integrity constraints. ICDT. ACM, St. Petersburg, Russia (2009) 14-30

[10] Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Composing schema mappings: Second-
order dependencies to the rescue. ACM Trans. Database Syst. 30 (2005) 994-1055

[11] Barbosa, D., Freire, J., Mendelzon, A.O.: Designing information-preserving mapping
schemes for XML. VLDB. VLDB Endowment, Trondheim, Norway (2005) 109-120

[12] Moro, M.M., Malaika, S., Lim, L.: Preserving XML queries during schema evolution.
WWW. ACM, Banff, Alberta, Canada (2007) 1341-1342

[13] Rizzi, S., Golfarelli, M.: X-Time: Schema Versioning and Cross-Version Querying in
Data Warehouses. ICDE (2007) 1471-1472

[14] Xuan, D.N., Bellatreche, L., Pierra, G.: A Versioning Management Model for Ontology-
Based Data Warehouses. DaWaK, Vol. 4081. Springer, Krakow, Poland (2006) 195-206

[15] Bounif, H.: Schema Repository for Database Schema Evolution. DEXA, (2006) 647-651

[16] Edelweiss, N., Moreira, A.F.: Temporal and versioning model for schema evolution in
object-oriented databases. Data Knowl. Eng. 53 (2005) 99-128

[17] Moon, H.J., Curino, C.A., Zaniolo, C.: Scalable architecture and query optimization for
transaction-time DBs with evolving schemas. SIGMOD 2010 ACM, USA (2010) 207-218

[18] Theoharis, Y.: On Graph Features of Semantic Web Schemas. IEEE Transactions on
Knowledge and Data Engineering 20 (2007) 692-702

[19] Brickley, D., Guha, R.: {RDF Vocabulary Description Language 1.0: RDF Schema}.
WWW (2004)

[20] Cali, A., Martinenghi, D.: Querying the deep web. EDBT. (2010) 724-727

[21] Perez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34 (2009) 1-45

[22] Calì, A., Calvanese, D., Giacomo, G.D., Lenzerini, M.: Data Integration under Integrity
Constraints. Advanced Information Systems Engineering (2006) 262-279

