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Abstract. Ontologies are becoming more and more important in data 

integration. An important problem when dealing with ontologies is the fact that 

they are living artefacts and subject to change. When ontologies evolve, the 

changes should somehow be rendered and used by the pre-existing data 

integration systems. In most of these systems, when ontologies change their 

relations with the data sources i.e. the mappings, are recreated manually, a 

process which is known to be error-prone and time-consuming. In this paper, 

we provide a solution that allows query answering under evolving ontologies 

without mapping redefinition. In order to achieve that, we present a module that 

enables ontology evolution over traditional ontology-based data integration 

systems. This module gets as input the different ontology versions and the user 

query, and answers queries over data integration systems that use different 

ontology versions. We identify the problems in such a setting and we provide 

efficient, intuitive solutions. We prove that our approach imposes only a small 

overhead over traditional query rewriting algorithms and it is modular and 

scalable. Finally, we show that it can greatly reduce human effort spent since 

continuous mapping redefinition on evolving ontologies is no longer necessary. 

1   Introduction 

The development of new scientific techniques and the emergence of new high 

throughput tools have led to a new information revolution. During this information 

revolution the data gathering capabilities have greatly surpassed the data analysis 

techniques, making the task to fully analyze the data at the speed at which it is 

collected a challenge. The amount, diversity, and heterogeneity of that information 

have led to the adoption of data integration systems in order to manage it and further 

process it. However, the integration of these data sources raises several semantic 

heterogeneity problems.  

By accepting an ontology as a point of common reference, naming conflicts are 

eliminated and semantic conflicts are reduced. During the last years, ontologies have 

been used in database integration [1], obtaining promising results, for example in the 

fields of biomedicine and bioinformatics. When using ontologies to integrate data, 

one is required to produce mappings, to link similar concepts or relationships from the 

ontology/ies to the sources (or other ontologies) by way of an equivalence - according 
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to some metric. This is the mapping definition process [2] and the output of this task 

is the mapping, i.e., a collection of mappings rules. In practice, this process is done 

manually with the help of graphical user interfaces and it is a time-consuming, labour-

intensive and error-prone activity. Defining the mappings between 

schemata/ontologies is not a goal in itself. The resulting mappings are used for 

various integration tasks such as data transformation and query answering. 

Despite the great amount of work done in ontology-based data integration, an 

important problem that most of the systems tend to ignore is that ontologies are living 

artifacts and subject to change [3]. Due to the rapid development of research, 

ontologies are frequently changed to depict the new knowledge that is acquired. The 

problem that occurs is the following: when ontologies change, the mappings may 

become invalid and should somehow be updated or adapted. 

In this paper, we address the problem of data integration for evolving RDF/S 

ontologies. We argue that ontology change should be considered when designing 

ontology-based data integration systems. A typical solution would be to regenerate 

the mappings and then regenerate the dependent artifacts each time the ontology 

evolves. However, as this evolution might happen too often, the overhead of 

redefining the mappings each time is significant. The approach, to recreate mappings 

from scratch each time the ontology evolves, is widely recognized to be problematic 

[4-6], and instead, previously captured information should be reused. However, all 

current approaches that try to do that suffer from several drawbacks and are 

inefficient [7] in handling ontology evolution in a state of the art ontology-based data 

integration system. 

The lack of an ideal approach leads us to propose a new mechanism that builds on 

the latest theoretical advances on the areas of ontology change [8] and query rewriting 

[1, 9] and incorporates and handles ontology evolution efficiently and effectively. 

More specifically: 

 We present the architecture of a data integration system, named Evolving Data 

Integration (EDI) system, that allows the evolution of the ontology used as global 

schema.  

 We define the exact semantics of our system and we elegantly separate the 

semantics of query rewriting for different ontology versions and for the sources. 

Since query rewriting for the sources has been extensively studied [1, 2, 9], we 

focus on a layer above and deal only with the query rewriting between ontology 

versions. More specifically, we present a module that receives a user query 

specified under the latest ontology version and produces rewritings that will be 

answered by the underlying data integration systems - that might use different 

ontology versions. The query processing in this module consists of two steps: a) 

query expansion that considers constraints coming from the ontology, and b) 

valid query rewriting that uses the changes between two ontology versions to 

produce rewritings among them.  

 In order to identify the changes between the ontology versions we adopt a high-

level language of changes which possesses salient properties such as uniqueness, 

inversibility and composability. The sequence of changes between the latest and 

the other ontology versions is produced automatically at setup time and then each 

one of the change operations identified is translated into a logical GAV mapping. 

This translation enables query rewriting by unfolding.  Then, the inversibility is 



exploited to rewrite queries from past ontology versions to the current, and vice 

versa, and composability to avoid the reconstruction of all sequences of changes 

among the latest and all previous ontology versions.  

 Despite the fact that query rewriting always terminates the queries issued to other 

ontology versions might fail. We show that this problem is not inhibiting in our 

algorithms but a consequence of information unavailability. To tackle this 

problem, we propose two solutions: either to provide more general answers, or to 

provide insights for the failure, thus driving query redefinition only for a specific 

portion of the affected query. 

Such a mechanism, that provides rewritings among data integration systems that 

use different ontology versions, is flexible, modular and scalable. It can be used on 

top of any data integration system – independently of the family of the mappings they 

use (GAV, LAV, GLAV, etc [2]). New mappings or ontology versions can be easily 

and independently introduced without affecting other mappings or other ontology 

versions. Our engine takes the responsibility of assembling a coherent view of the 

world out of each specific setting. 

The rest of the paper is organized as follows: Section 2 introduces the problem by 

an example and presents related work. Section 3 presents the architecture of our 

system and describes its components. Section 4 describes the semantics of our system 

and Section 5 elaborates on the query rewriting among ontology versions. Then, 

Section 6 presents the problems that may occur in such a setting and proposes elegant 

solutions. Finally, Section 7 provides a summary and an outlook for further research. 

2   Motivating Example & Related Work 

Consider the example RDF/S ontology shown on the left of Fig. 1. This ontology is 

used as a point of common reference, describing persons and their contact points. We 

also have two relational databases DB1 and DB2 mapped to that version of the 

ontology. Assume now that the ontology designer decides to move the domain of the 

“has_cont_point” property from the class “Actor” to the class “Person”, and to delete 

the literal “gender”. Moreover, the “street” and the “city” properties are merged to the 

“address” property as shown on the right of Fig. 1. Then, DB3 is mapped to the new 

version of the ontology leading to two data integration systems that work 

independently. In such a setting we would like to issue queries formulated using any 

ontology version available. Moreover, we would like to retrieve answers from all 

underlying databases.  

Several approaches have been proposed so far to tackle similar problems. In a data 

exchange setting mapping adaptation [4] was one of the first attempts that tried to 

incrementally adapt the mapping between the schema and the data sources as the 

schema evolved. The idea was that schemata evolve in small primitive steps; after 

each step the schema mappings can be incrementally adapted by applying local 

modifications. However, several problems of the approach were early identified [5] 

(such as the multiple list of changes with the same effect e.t.c), and another approach 

was proposed [5]. The approach was to describe ontology evolution as mappings and 

to employ mapping composition to derive the adapted mappings. However, mapping 



composition proved to be a really difficult problem [10] and we have not yet seen an 

elegant approach for ontology evolution. 

 

Fig. 1. The motivating example of an evolving ontology 

Furthermore, several research works tried to deal with similar problems. For XML 

databases, for example, there have been several approaches that try to preserve 

mapping information under changes [11] or propose guidelines for XML schema 

evolution in order to maintain the mapping information [12]. Moreover, augmented 

schemata were introduced in [13] to enable query answering over multiple schemata 

in a data warehouse, whereas other approaches change the underlying database 

systems to store versioning and temporal information such as [14-17].  However, our 

system differs from all the above in terms of both goals and techniques. To the best of 

our knowledge no system today is capable of retrieving information mapped with 

different ontology versions.  

3   Evolving Data Integration 

We conceive an Evolving Data Integration (EDI) system as a collection of data 

integration systems, each using a different ontology version as global schema. 

Therefore, we extend the traditional formalism from [2] and define an EDI as: 

 

Definition 3.1 (Evolving Data Integration System). An EDI system I is a tuple of the 

form ((O1, S1, M1), ..., (Om,  Sm, Mm)) where Oi is a version of the ontology, Si is a set 

of local sources and  Mi  is the mapping between Si and Oi (1 i m). 

 

Considering Oi we restrict ourselves to RDF/S knowledge bases, as most of the 

Semantic Web Schemas (85,45%) are expressed in RDF/S [18]. The representation of 

knowledge in RDF is based on triples of the form predicate (subject, object). 

Assuming two disjoint and infinite sets U, L, denoting the URIs and literals 

respectively, T = U   U   (U  L) is the set of all triples. An RDF Graph V is 

defined as a set of triples, i.e., V T. RDFS [19] introduces some built-in classes 

(class, property) which are used to determine the type of each resource. The typing 

mechanism allows us to concentrate on nodes of RDF graphs, rather than triples, 

which is closer to ontology curators’ perception and useful for defining intuitive high-

level changes. RDFS provides also inference semantics, which is of two types, 

Person

Literal

Actor

Literal

Cont. 
Point

Literal

Literal

name

ssn

gender has_cont_point

street

city

: subClass of : property domain/range

Person

Literal

Actor

Literal

Cont. 
Point

Literal
fullname

ssn
has_cont_point

address

Ontology Version 1 Ontology Version 2

DB1 DB2 DB3

Literal



namely structural inference (provided mainly by the transitivity of subsumption 

relations) and type inference (provided by the typing system, e.g., if p is a property, 

the triple (p, type, property) can be inferred). The RDF Graph containing all triples 

that are either explicit or can be inferred from explicit triples in an RDF Graph V 

(using both types of inference), is called the closure of V and is denoted by Cl(V). An 

RDF/S Knowledge Base (RDF/S KB) V is an RDF Graph which is closed with respect 

to type inference, i.e., it contains all the triples that can be inferred from V using type 

inference. 

Moreover, we consider relational databases as source schemata. We choose to use 

relational databases since the majority of information currently available is still stored 

on relational databases [20]. 

For modelling ontology evolution we use a high-level language of changes that 

describes how an ontology version was derived from another ontology version. A 

high-level language is preferable than a low-level one, as it is more intuitive, concise, 

closer to the intentions of the ontology editors and captures more accurately the 

semantics of change [8]. As we shall see later on, a high-level language is beneficial 

for our problem for two reasons: First, because the produced change log has a smaller 

size and second, because such a language yields logs that contain a smaller number of 

individual low-level deletions (which are non-information preserving) and this affects 

the effectiveness of our rewriting. Moreover properties like composability and 

inversibility can be exploited for improving efficiency as we shall see on the sequel. 

In our work, a change operation is defined as follows:  

 

Definition 3.2 (Change Operation). A change operation u over O, is any tuple (δα, δd ) 

where δa  O = ø and δd  O. A change operation u from O1 to O2 is a change 

operation over O1 such that δa   O2\O1 and δd  O1\O2. 

 

Obviously, δα and δd are sets of triples end especially the triples in δd are triples 

coming from the ontology O. For simplicity we will denote δa(u) (δd(u)) the added 

(deleted) triples of a change u. From the definition, it follows that δa(u)   δd(u)= ø  

and δa(u)   δd(u)≠ø if O1≠O2. For the change operations proposed in [8] and the 

corresponding detection algorithm, it has been proved that the sequence of changes 

between two ontology versions is unique. Moreover, it is shown that for any two 

changes u1, u2 in such a sequence it holds that δa(u1)   δa(u2)= ø and δd(u1)   δd(u2)= 

ø. These nice properties and their consequences are among the reasons that led us to 

adopt that specific language for describing changes among ontologies. Hereafter, 

whenever we refer to a change operation, we mean a change operation from those 

proposed in [8]. Now we need to define their application semantics. 

 

Definition 3.3 (Application semantics of a high-level change). The application of a 

change u over O, denoted by u(O), is defined as: u(O) = (O   δa(u)) \ δd(u). 

 

Two key observations here are that the application of out change operations is not 

conditioned by the current state of the ontology and that we don’t handle 

inconsistency, i.e., (O   δa(u)) \ δd(u) is always assumed to be consistent).In our 

example the change log between O2 and O1, denoted by the        , consists of the 

following change operations: 



u1:Rename_Property(fullname, name) u2:Split_Property(address, {street, city}) 

u3:Specialize_Domain(has_cont_point, Person, Actor)  

u4:Add_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø,  ø) 

The definition of  the change operations that are used in this paper can be found on 

[8]. It is obvious, that applying those change operations on O2, results O1. Now it is 

time to define the composition of the change operations. By proving that the change 

operations are composable, we will be able to use the intermediate evolution logs 

between ontology versions instead of constructing all change logs between the latest 

ontology version and all past ontology versions. 

 

Definition 3.4 (Composition of change operations). A ucomp is the composition of u1 

and u2 (computed over O1 and O2 ), if ucomp (O1) = u2(u1(O1)) = u1(u2(O1)) 

 

Now we will show that the change operations as detected in [8] compose indeed. 

Proposition 1: Let u1, u2 two change operations from O1 to O2. Then ucomp = ( δa(u1) 
 δa(u2), δd(u1)  δd(u2)) 

 

Finally, since a change operation is actually a mapping function that maps O1 to 

O2, a question is whether there exists the inverse function, the inverse change 

operation that maps the O2 to the O1 ontology version. By automatically constructing 

the inverse of a sequence of change operations (from O1 to O2), we will be able to 

rewrite queries expressed using O2 to O1 and vice versa.  

 

Definition 3.5 (Inverse of a change operation). Let u be a change operation from O1 

to O2. A change operation uinv  from O2 to O1 to is the inverse of u if: uinv(u(O1))  O1 

 

Now we will show how to compute the inverse of a change operation.  

 

Proposition 2: The inverse of a change operation u (denoted by inv(u)) from O1 to O2 

is: inv(u)=( δd(u), δa(u)) 

 

Based on Propositions 1 and 2 we can conclude that: 

 

Corollary 1: The inverse of a sequence of change operations         = [u1, …, un] 

constructed from O1 to O2, is     
      =[ inv(un), ..., inv(u1)]. 

 

The inverse of the sequence of change operations for our running example is: 
inv(u4):Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø,  ø) 

inv(u3):Generalize_Domain(has_cont_point, Actor, Person)  

inv(u2):Merge_Properties({street, city},address) 

inv(u1):Rename_Property(name, fullname) 

4   Semantics of an EDI 

Now we will define semantics for an EDI system I. Fig. 2 sketches the proposed 

approach. We start by considering a local database for each (Oi, Si, Mi), i.e., a 



database Di that conforms to the local sources of Si. Based on Di, we shall specify 

which is the information content of the global schema Oi.  

 

 

 

 

 

 

 

 

 

 

Definition 4.1 (Legal global database): A global database Gi for (Oi,  Si, Mi)  is said 

to be legal with respect to Di, if: (a) Gi is legal with respect to Oi, i.e., Gi satisfies all 

the constraints of Oi. and (b) Gi satisfies the mapping Mi with respect to Di. 

 

The notion of Gi satisfying the mapping Mi, with respect to Di, is defined as it is 

commonly done in traditional data integration systems (see [2] for more details). It 

depends on the different assumptions that can be adopted for interpreting the tuples 

that D assigns to relations in local sources with respect to tuples that actually satisfy 

(Oi,  Si, Mi).  Since such systems have been extensively studied in the literature we 

abstract from the internal details and focus on the fact that for each (Oi, Si, Mi) of our 

system we can obtain a global database Gi. 

Now, we can repeat the same process, i.e., to consider the global databases as 

sources and a database D which we will simply call the global database, the database 

that conforms to them. Now we can define the legal total database. We use the term 

“total” only to differentiate it from a global database, since we will extensively use it 

from now on. 

 

Definition 4.2 (Legal total database): A total database T for and EDI I is said to be 

legal with respect to D, if: (a) T is legal with respect to Om, i.e., T satisfies all the 

constraints of the latest ontology version Om. (b) T satisfies E with respect to D 

(E=            
 ). 

 

The constraints of an RDF/S ontology are the inclusion dependencies among the 

classes and the properties. Now we specify the notion of T satisfying E with respect to 

D. In order to exploit the strength of the logical languages towards query 

reformulation, we convert our change operations to GAV mappings. So when we 

refer to the notion of T satisfying E we mean T satisfying the GAV mappings 

produced from E. A GAV mapping associates to each element g in T a query qG over 

G1, ..., Gm, i.e.,   qG   g. 

 

Definition 4.3 A database T satisfies the mappings qG   g with respect to D if  qG D
 

  g 
T 

where qG D is the result of evaluating the query qG over D. 
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Fig. 2. The semantics of an EDI 
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For example, the sequence of the GAV mappings that corresponds to our sequence 

of changes is: 
mu1:           type(fullname, property)   name, type(name , property) 

mu2:    address, type(address, property)  street, city, type(street, property)   type(city, property) 

mu3:         domain(has_cont_point , Person)               , domain(has_cont_point, Actor) 

For u4 there is no GAV mapping constructed since we do not know where to map 

the deleted element. Now it becomes obvious that the lower the level of the language 

of changes used the more change operations won’t have corresponding GAV 

mappings (since more low-level individual additions and deletions will appear). 

By the careful separation between the legal total database T and the legal global 

databases Gi we have achieved the modular design of our EDI system and the 

separation between the traditional data integration semantics and the additions we 

have imposed in order to enable ontology evolution. Thus, our approach can be 

applied on top of any existing data integration system to enable ontology evolution. 

5   Query Processing 

Queries to I are posed in terms of the global schema Om. For querying, we adopt the 

language SPARQL [21]. We chose SPARQL since it is currently the standard query 

language for the semantic web and has become an official W3C recommendation. 

Essentially, SPARQL is a graph-matching language. Given a data source, a query 

consists of a pattern (the graph pattern) which is matched against, and the values 

obtained from this matching are processed to give the answer. A SPARQL query 

consists of three parts: The pattern matching part, which includes several features of 

pattern matching of graphs, the solution modifiers, which once the output of the 

pattern has been computed (in the form of a table of values of variables), allows to 

modify these values applying classical operators, and the output of a SPARQL query 

which can be of different types: yes/no answers, selections of values etc. In order to 

avoid ambiguities in parsing, we present the syntax of SPARQL graph patterns in a 

more traditional algebraic way, using the binary operators UNION (denoted by U) 

AND and OPT, and FILTER according to [21]. In this paper, we do not consider OPT 

and FILTER operators since we leave it for future work. The remaining SPARQL 

fragment we consider here corresponds to union of conjunctive queries [21]. 

Moreover, the application of the solution modifiers and the output is done after the 

evaluation of the query, and is not presented here. 

Continuing our example, assume that we would like to know the “ssn” and 

“fullname” of all persons stored on our DBs and their corresponding address. The 

SPARQL query, formulated using the latter version of our example ontology is: 
q1: select ?SSN ?NAME ?ADDRESS where { 

?X type Person.   ?X ssn ?SSN.  ?X  fullname ?NAME.     

     ?X has_contact_point ?Y.   ?Y type Cont.Point . ?Y address ?ADDRESS}  

 

Using the semantics from [21] the algebraic representation of q1 is equivalent to: 
q1: π?SSN,?NAME,?ADDRESS ( (?X, type, Person) AND (?X, ssn, ?SSN) AND (?X,  fullname, 

?NAME) AND      (?X, has_contact_point, ?Y) AND (?Y, type, Cont.Point) AND (?Y, address, 

?ADDRESS)) 



Now we define what constitutes an answer to a query over Om. We will adopt the 

notion of certain answers [2, 9]. 

 

Definition 5.1 (Certain answers): Given a global database D for I, the answer qI,D to 

a query q with respect to I and D, is the set of tuples t such that t   q
T 

for every total 

database T that is legal for I with respect to D, i.e. such that t is an answer to q over 

every database T that is legal for I with respect to D. The set qI,D is called the set of 

certain answers to q with respect to I and D.  

 

Fig. 3. Query processing 

Note that, from a logical point of view, finding certain answers is a logical 

implication problem: check whether it logically follows from the information in the 

global databases Gi that t satisfies the query. It has been shown [22], that computing 

certain answers to union of conjunctive queries over a total database with constraints, 

corresponds to evaluating the query over a special database called canonical which 

represents all possible total databases legal for the data integration system and which 

may be infinite in general. However, instead of trying to construct the canonical 

database and then evaluate the query, another approach is to transform the original 

query q into a new query      
(q) over the Om, (which is called the expansion of q 

w.r.t.  Om) such that the answer to      
(q) over the retrieved total database is equal 

to the answer to q over the canonical database [22]. We have to note however, that 

this approach holds for inclusion dependencies but not for the more general class of 

FOL constraints. 

 

Definition 5.2 (retrieved total database): If D is a global database for the EDI-system 

I, then the retrieved total database ret(I, D) is the total database obtained by 

computing and evaluating, for every element of Om the query associated to it by E 

over the global database D. 

 

    This is a common approach in data integration under constraints, and we also adopt 



it here. This step is performed by the “Parser/Expander” component shown on Fig. 3. 

Now, in order to avoid building the retrieved total database we do not evaluate 

     
(q) on the retrieved total database. Instead, we transform      

(q) to a new 

query validE(     
(q)) over the global relations on the basis of E and we use that 

query to access the underlying data integration systems. This is performed by the 

“Valid Rewriter” component which is also shown on Fig. 3. Bellow we describe the 

implementation of the aforementioned steps. 

5.1 Query expansion. 

In this step, the query is expanded to take into account the constraints coming from 

the ontology. Query expansion amounts to rewriting the query q posed to the ontology 

version Om into a new query qʹ, so that all the knowledge about the constraints in 

ontology has been “compiled” into qꞌ. Recall that we consider an ontology as a 

schema with constraints. This is performed by constructing the perfect rewriting of q.  

 

Definition 5.3 (Perfect Rewriting): Let I an EDI system and let q be a query over Om. 

Then qp is called a perfect rewriting of q w.r.t. I if, for every global database D, qI,D 

= qp
 ret(I,D). 

 

Algorithms for computing the perfect rewriting of a query q w.r.t to a schema, have 

been presented in [1, 9]. In our work, we use the QuOnto system [1] in order to 

produce the perfect rewriting of our initial query. Perfect rewriting is in our case 

PTIME in the size of ontology and NP in the size of query. For more genera classes of 

logic it is complete for PSPACE and 2EXPTIME as proved in [9]. Continuing our 

example if we expand q1 we get q2: 

q2: π?SSN,?NAME,?ADDRESS (  

(?X, type, Person) AND 

(?X, ssn, ?SSN) AND  

(?X,  fullname, ?NAME) AND  

(?X, has_contact_point, ?Y) AND  

(?Y, type, Cont.Point) AND 

(?Y, address, ?ADDRESS)) 

 
 

 

 

U 

π?SSN,?NAME,?ADDRESS (  

(?X, type, Actor) AND 

(?X, ssn, ?SSN) AND  

(?X,  fullname, ?NAME) AND  

(?X, has_contact_point, ?Y) AND  

(?Y, type, Cont.Point) AND 

(?Y, address, ?ADDRESS)) 

This is produced by considering the transitive constraint of the subClass relation 

among the classes “Person” and “Actor”. 

 5.2   Computing Valid Rewritings 

Now instead of evaluating      
(q) on the retrieved total database, we transform it to 

a new query called valid rewriting, i.e. validE(     
(q)).  This is done as already 

discussed in order to avoid the construction the retrieved total database. 

Definition 5.4 (Valid Rewriting): Let I an EDI system and let q be a query over ret(I,
 

D) . Then qvalid is called a valid rewriting of q w.r.t. ret(I,
 D)  if, for every global 

database D, qret(I,D)= qvalid D. 

 



When the retrieved total database is produced by GAV mappings as in our case, 

query rewriting is simply performed using unfolding [1]. This is a standard step in 

data integration [2] which trivially terminates and it is proved that it preserves 

soundness and completeness [22]. Moreover, due to the disjointness of the input and 

the output alphabet, each GAV mapping acts in isolation on its input to produce its 

output. So we only need to scan the GAV mappings once in order to unfold the query 

and the time complexity of this step O(N*M) where N is the number of change 

operations in the evolution log and M is the number of sub-goals in the query. 

Now, we can state the main result of this section. 

 

Theorem 1 (Soundness and Completeness): Let I and EDI system, q a query posed to 

I, D a global database for I such that I is consistent w.r.t. D, and t a tuple of constants 

of the same arity as q. Then t   qI,D if and only if t   [validE(exp(q))]D. 

 

Continuing our example,  unfolding the query q2 using the mappings mu1, mu3 and 

mu3 will result to the following query: q3: π?SSN,?NAME,?ADDRESS (  (?X, type, Actor) AND (?X, 

ssn, ?SSN) AND  (?X,  name, ?NAME) AND  (?X, has_contact_point, ?Y) AND (?Y, type, 

Cont.Point) AND (?Y, street, ?ADDRESS) AND (?Y, city, ?ADDRESS)) 

Finally, our initial query will be rewritten to the union of q3 (issued to the data 

integration system that uses O1) and q2 (issued to the data integration system that uses 

O2).  

6   Discussion 

So far we have described the scenario where we construct the change logs 

        between Om and all Oi (1≤i<m) using the algorithm from [8]. Then we 

formulate a query q using the ontology version Om, and we use the corresponding 

GAV mappings to produce and evaluate the validE(     
(q)) 

However, based on the composition property (proposition 1), we could avoid the 

computation of all those change logs from scratch each time. Instead, of constructing 

        for all i (1≤i<m) we could only construct all                    between 

the subsequent ontology versions, thus minimizing the total construction cost2 -since 

the compared ontologies now have more common elements. However, we have to 

keep in mind that the time of constructing a sequence of changes is spent only once 

during system setup. 

 

Corollary 2:         
 =                

   

 

    Moreover, whenever a new ontology version occurs, we can construct the change 

log between the new ontology version and the previous ontology version - and not all 

change logs from scratch. Of course, this will lead to larger sequences of change logs, 

but will allow the uninterrupted introduction of new ontology versions to the system. 

Ideally, we would also like to accept queries formulated using ontology version O1 

                                                           
2 The complexity of the algorithm for input O1, O2 is O(max(N1, N2, N

2)). 



and to rewrite it to the newer ontology versions. This would be really useful since in 

many systems queries might be stored and we wouldn’t like to change them every 

time the ontology evolves. However, in order to achieve this we would have to use the 

inverse GAV mappings for query rewritings which are not always possible to 

produce. Our approach deals with the inversibility on the level of change operations 

and not at the logical level of the produced GAV mappings. So, instead of trying to 

produce the inverse of the initial GAV mappings, we invert the sequence of changes 

(which is always possible according to corollary 1) and then use the inverted sequence 

of changes to produce the GAV mappings that will be used for query rewriting to the 

current ontology version. This enhances the impact of our approach. 

Actually, it now becomes obvious that it is straight forward to accept a query 

formulated in any ontology version Oi (1≤i≤m) and to get the rewritings for all 

ontology versions using the inverted list of changes for the Oj that j>i. 

Now, despite the fact that both query expansion and unfolding always terminate in 

our setting, problems may occur. Consider as an example the query q4 that asks the 

“gender” and the “name” of an “Actor” using ontology version O1: q4: π ?NAME,?GENDER ( 

(?X, type, Actor) AND (?X,  name, ?NAME) AND (?X, gender, ?GENDER)) 
Trying to rewrite the query q4 to the ontology version O2 our system will first 

expand it. Then it will consider the GAV mappings produced from the inverted 

sequence of changes (as they have been presented at the end of the sub-section 3b). 

So, the following query will be produced by unfolding using the mapping 

        type(    , property)   fullname, type(fullname, property) - produced 

from inv(u1): π ?NAME,?GENDER( (?X, type, Actor) AND (?X,  fullname, ?NAME) AND (?X, 

genter, ?GENDER)) 

However, it is obvious that the query produced will not provide any answers when 

issued to the data integration system that uses O2 since the “gender” literal no longer 

exist in O2. This happens because the inv(u4) change operation is not information 

preserving change among the ontology versions. It deletes information from the 

ontology version O1 without providing the knowledge that this information is 

transferred on another part of the ontology. This is also the reason that low-level 

change operations (simple triple addition or deletion) are not enough to dictate query 

rewriting. Although, this might be considered as a problem, actually it is not, since if 

we miss the literal “gender” in version O2 this would mean that we have no data in the 

underlying local databases for that literal. But even then, besides providing answers to 

the users for the data integration systems that can answer the corresponding 

rewritings, we provide to the users two more options: 

The first option is to notify the user that some underlying data integration systems 

were not possible to answer their queries and present the reasons for that. For our 

example, our system will report that the data integration system that uses O2 was not 

able to answer the initial query since the literal “gender” does not exist in that 

ontology version. To identify the change operations that lead to such a result we 

define the notion of affecting change operations. 

 

Definition 6.1 (Affecting change operation). A change operation u affects the query q 

(with graph pattern G), denoted by u ◊ q, iff: 1) δd(u) ≠ø, 2) δa(u)=ø  and 3) triple 

pattern t in G that can be unified with a triple of δd(u). 



The first condition ensures that the operation deletes information from the 

ontology without replacing it with other information (condition 2), thus the specific 

change operation is not information preserving. However, we are not interested in 

general for the change operations that are not information preserving. We specifically 

target those change operations that change the ontology part which corresponds to our 

query (condition 3). In order to identify those change operations that affect user 

query, we have to scan the evolution log once for each query sub-goal. So the 

complexity of the corresponding algorithm is O(N*M) where N is the number of 

change operations in the evolution log and M is the number of sub-goals in the query. 

Users then can use that information in order to respecify only a specific set of their 

mappings if desired. 

The second option is to produce more general answers for the data integration 

sub-systems that cannot answer input queries. Our solution here is that when a change 

operation affects a query rewriting, we can check if there is another triple tꞌ (in the 

previous ontology version) which is the “parent” of the deleted triple t. If such a triple 

exists in the current ontology version we can ask for that triple instead, thus providing 

a more general answer.  

Assume for example, an alternative ontology version O1, where the 

“personal_info” property is a super-property of the “gender” property. Assume also 

the same sequence of changes from O1 to O2 (the list of inverted changes presented in 

Section 3.2). Then, if query q4 previously described is issued, we are able to identify 

that the triple “Actor, gender, xsd:String” has been deleted and to look for a more 

general query. The query that our system produces, and that provides more general 

answer to user query is:  q5: π ?NAME,?GENDER ( (?X, type, Actor) AND (?X,  fullname, ?NAME) 

AND  (?X, personal_info, ?GENDER)  

Producing more general answers requires a slight extension of the algorithm for 

identifying affecting operations and is not presented due to space limitations. 

7   Conclusions 

In this paper, we argue that ontology evolution is a reality and data integration 

systems should be aware and ready to deal with that. To that direction, we presented a 

novel approach that allows query answering under evolving ontologies without 

mapping redefinition. 

Our architecture is based on a module that can be placed on top of any traditional 

ontology-based data integration system, enabling ontology evolution. It does so by 

using high-level changes to model ontology evolution and uses those changes in order 

to rewrite not the mappings but the query itself among ontology versions. The process 

of query rewriting proceeds in two steps, namely query expansion and valid rewriting, 

and is proved to be effective, scalable and efficient.  Experiments were performed, but 

not reported here due to space limitations; confirm the potential impact of our 

approach. To the best of our knowledge, no other system today is capable of 

automatically answering queries over multiple ontology versions. 

As future work, several challenging issues need to be further investigated. For 

example, local schemata may evolve as well, and the structured DBMS data might be 

replaced with semi-structured ones. An interesting topic would be to extend our 



approach for OWL ontologies and to expand our approach to handle the full 

expressiveness of the SPARQL language. It becomes obvious that ontology evolution 

in data integration is an important topic and several challenging issues remain to be 

investigated in near future. 
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