
Unsupervised Conflict-Free Ontology Evolution
Without Removing Axioms

Thomas Scharrenbach1, Claudia d’Amato2, Nicola Fanizzi2, Rolf Grütter1,
Bettina Waldvogel1, and Abraham Bernstein3

1 Swiss Federal Institute for Forest, Snow and Landscape Research WSL
Birmensdorf, Switzerland

{thomas.scharrenbach, rolf.gruetter, bettina.waldvogel}@wsl.ch
2 Università degli Studi di Bari Bari, Italy {claudia.damato, fanizzi}@di.uniba.it

3 University of Zurich, Department of Informatics Zurich, Switzerland
{bernstein}@ifi.uzh.ch

Abstract. In the beginning of the Semantic Web, ontologies were usu-
ally constructed once by a single knowledge engineer and then used as a
static conceptualization of some domain. Nowadays, knowledge bases are
increasingly dynamically evolving and incorporate new knowledge from
different heterogeneous domains – some of which is even contributed
by casual users (i.e., non-knowledge engineers) or even software agents.
Given that ontologies are based on the rather strict formalism of De-
scription Logics and their inference procedures, conflicts are likely to
occur during ontology evolution. Conflicts, in turn, may cause an on-
tological knowledge base to become inconsistent and making reasoning
impossible. Hence, every formalism for ontology evolution should provide
a mechanism for resolving conflicts.

In this paper we provide a general framework for conflict-free ontology
evolution without changing the knowledge representation. Using a vari-
ant of Lehmann’s Default Logics and Probabilistic Description Logics, we
can invalidate unwanted implicit inferences without removing explicitly
stated axioms. We show that this method outperforms classical ontology
repair w.r.t. the amount of information lost while allowing for automatic
conflict-solving when evolving ontologies.

1 Introduction

Knowledge in the Semantic Web is represented by ontologies expressed in the
Web Ontology Language OWL. The current standard, OWL2 [1], defines differ-
ent profiles all of which have some Description Logics as a rough syntactic vari-
ant, allowing for different levels of expressivity. These Description Logics (DL)
are decidable fragments of first-order logics where explicit knowledge is expressed
in axioms and assertions. DL knowledge bases have well-defined model-theoretic
semantics that allows to infer new conclusions from existing knowledge.

When ontologies evolve, knowledge is removed or new knowledge is added.
By adding new axioms and/or new assertions, contradictions may be introduced

that cause the knowledge base as a whole to be inconsistent. For example, adding
disjoint-axioms may make some concepts in the ontology unsatisfiable. When
there exists an assertion of some individual to that concept, the knowledge
base is inferred to be inconsistent. Yet, for an inconsistent knowledge base any
conclusion—even meaningless ones—becomes trivially true. For ontology evolu-
tion, it is hence desirable to prevent concepts from being inferred unsatisfiable.
There indeed exist more reasons for why a knowledge base can become inconsis-
tent, but we propose to start off with conflict-free conceptualizations and present
a method that never infers any concept to be unsatisfiable.

Contradictions may be caused by agents that automatically assemble new
information from different heterogeneous sources. This is likely to happen when
combining different ontologies, modeled by different agents. But even ontologies
created by knowledge engineers may contain conflicting pieces of knowledge. As
such, any framework for ontology evolution has to provide a way for resolving
conflicts—usually referred to as ontology repair.

Agents querying (or interacting with) an ontology in the Semantic Web as-
sume that both the query and the answer are expressible in OWL2. Furthermore,
the answer should have meaningful semantics and should not contain conflicts.
We therefore propose to demand, in the context of ontology evolution, any for-
malism for ontology repair to fulfill the following properties:

1. The formalism for knowledge representation is not changed.

2. No concept is inferred unsatisfiable4.

3. The procedure shall work automatically.

4. The original information should be kept.

5. As little inferred information as possible shall be lost.

Instead of removing axioms (i.e. explicit knowledge), we propose to invali-
date those inferences (i.e. implicit knowledge) that cause concepts to be inferred
unsatisfiable. We can show that we lose fewer inferences than in the case of ax-
iom removal. To invalidate only inferences we keep the formalism for knowledge
representation. Namely, we consider DL knowledge bases so that the first desired
property is satisfied, and apply the following reasoning approach.

Based on Lehmann’s Default Logics [2] and Probabilistic Description Logics
[3] our approach separates axioms responsible for a conflict into different par-
titions and collects axioms not involved in a conflict in its separate set. Due
to the separate treatment of conflict-causing axioms, inferences for unsatisfiable
concepts are invalidated but the formalism for knowledge representation remains
unchanged. To limit the number of inferences lost when reasoning the single par-
titions are considered alongside with the set of non-conflict axioms. We call the
pair of the partition and the set of non-conflicting axioms a Default TBox which
contains all axioms that occurred in the original ontology.

4 For the current work we concentrate on resolving unsatisfiable concepts. The proce-
dure may, in principle, be extended to resolve unsatisfiable roles and—to a certain
extent—assertions.

While this method, unfortunately, cannot prevent that some potentially in-
teresting inferences are lost, it limits the loss to a minimum. It can, furthermore,
be shown that fewer inferences are lost than in the case of axiom removal—while
still working fully automatically. We indeed accept potential modeling errors in
the knowledge base, because there is no evidence that tells us how to solve them
otherwise.

This work is structured as follows: We start with an overview over OWL,
Description Logics and justifications in Section 2. In the subsequent Section 3
we introduce Default TBoxes and continue in Section 4 with the description
of our partition method for invalidating inferences. There we show that the
Default TBox resulting from the partition method is consistent and how it can
be computed efficiently. We provide experimental results in Section 5 and discuss
the findings of our work in Section 6—followed by an overview over related work
in the following Section 7. In the final Section 8 we conclude the paper and give
an outlook on future work.

2 Preliminaries

Description Logics (DL) are languages for knowledge representation with a well-
defined syntax and semantics. A DL allows to specify concepts (also known as
classes), instances thereof, also referred to as individuals and binary relations,
called roles between individuals. Operators such as negation (¬) or conjunction
(u) enable the construction of complex concepts and roles.

A DL allows to define a terminology of concepts. Such a terminology, called a
TBox, is a finite set of axioms describing a hierarchy on a set of concepts. TBox
axioms are of the form Birds v Animals and express, for example, that the
concept Birds is a specialization (or subsumed by) of the concept of Animals.
The semantics of these subclass-axioms requires each instance of the concept of
Birds also to be an instance of the concept of Animals.

Depending on its expressivity, a DL may also be used for defining a role
hierarchy, called RBox. A finite collection of assertions about individuals is called
an ABox. A DL knowledge base is defined by the triple K = (T,R,A) where T
is a TBox, R is an RBox and A is an ABox—each of which is finite and possibly
empty.

Interpretations and Satisfiability The formal semantics of a DL is given by
an interpretation I = (∆I , ·I). It consists of the interpretation domain ∆I , a
non-empty set, and the interpretation function ·I which assigns to every atomic
concept A a set AI ⊆ ∆I and to every atomic role R a set RI ⊆ ∆I ×∆I .

In order to find out whether there exist contradictions in a DL knowledge
base K, we have to find out whether there exists an interpretation that satisfies
K. An interpretation I is said to satisfy a concept A or a role R, if the result of
the interpretation function is not empty. We denote this by I |= A, if AI 6= ∅
and I |= R, if RI 6= ∅, respectively. Concepts that have an empty interpretation
are called unsatisfiable, referred to as T |= U v ⊥.

For concept subsumption and role inclusion, satisfiability is defined w.r.t. set
inclusion. An interpretation I is said to satisfy an inclusion axiom I |= B v A,
if BI ⊆ AI . A TBox T is said to be satisfiable, if there exists an interpretation
I such that I satisfies every axiom in T . In this case, we say that I is a model
of T . The same holds for RBoxes. In the following, we always assume the RBox
to be satisfiable.

2.1 Description Logics Reasoning

A DL knowledge representation system (KRS) defines algorithms to infer im-
plicit knowledge from explicitly stated knowledge. Using these algorithms, a KRS
usually supports the following four standard reasoning tasks:
Subsumption Test, Satisfiability Test, Consistency Test, and Instance Retrieval.

We say that a TBox T entails an axiom η, or T |= η, if all models of T
satisfy η. If η is a new axiom, i.e. η 6∈ T , we call η an inferred axiom. The
deductive closure (or extension) of a TBox T is the set of all non-trivial explicitly
stated as well as inferred entailments: (T)+ = {η | T |= η}. Excluding trivial
entailments, e.g. C v A u A,C v A t B, we ensure the deductive closure to
be finite. We define the deductive closure of an RBox in the same way as for
TBoxes.

2.2 Description Logics and OWL

Knowledge in the Semantic Web is represented by ontologies which are expressed
in the Web Ontology Language (OWL). The current standard OWL2 [1] was de-
signed in a way such that it has the DL SROIQ as a rough syntactic variant.
SROIQ is a very expressive language, and its reasoning procedures are of high
computational complexity. Yet, this expressiveness is not needed in every case.
As a consequence, so-called profiles were defined for OWL2, each of which corre-
spond to a unique DL. Hence, every OWL2 profile has a well-defined semantics
and a decidable reasoning procedure. The profiles were defined in a way such
that the knowledge representation is unchanged but language constructors are
restricted in a way such that the corresponding DL is less expressive.

Thanks to the general nature of the method proposed in this paper we may
consider any DL for which there exists a decidable reasoning procedure. In other
words: we are not dependent on the expressiveness of the OWL2 profile used.

2.3 Justifications

To invalidate an unwanted inference T |= η, i.e. removing η from (T)+ , we
must first find out, which axioms are responsible for this very inference. We are
hence looking for the minimal sets of axioms J ⊆ T for which J |= η holds [4].
Minimality guarantees that the entailment is invalidated when at least one of
the axioms from the corresponding minimal set is not considered alongside with
the others in the T when drawing inferences. Justifications are minimal sets of
axioms from a TBox such that an inference still holds:

Definition 1. Let T be a TBox. A justification for an entailment T |= η is a
set of axioms JT ,η ⊆ T such that JT ,η |= η and J ′ 6|= η for every J ′ ⊂ JT ,η.

In order to be able to distinguish individual justifications, we number them
by k = 0, . . . ,K where K is the number of justifications. Consequently, refer to
the k-th justification by JkT ,η.

Justifications for unsatisfiable concepts, called unsat justifications, are of the
form JT ,Uv⊥ where U is a (possibly complex) unsatisfiable concept. Unsat justi-
fications may depend completely on the satisfiability of other concepts, i.e. they
are supersets of other justifications. If an unsat justification does not depend on
another one, then we call it a root unsat justification.

Definition 2. Let T be a TBox. A justification for JT ,Uv⊥ is called a derived
unsat justification, if there exists some concept U ′ for which JT ,Uv⊥ ⊃ JT ,U ′v⊥.
Otherwise JT ,Uv⊥ is called a root unsat justification.

By invalidating some unsat justification JT ,Uv⊥, i.e. by performing some
operation such that JT ,Uv⊥ 6|= U v ⊥, all dependent unsat justifications are
invalidated as well. Hence, invalidating all root unsat justifications for unsat-
isfiable concepts will make every so far unsatisfiable concept satisfiable again.
Referring to the properties we proposed in Section 1, a framework for conflict-
free ontology evolution has to provide a method for automatically invalidating
all root unsat justifications for unsatisfiable concepts.

Example 1. Given the simple TBox T = {B v A,C v B,C v ¬ A,D v C}
it is possible to infer the concept C to be unsatisfiable. The only justification
for T |= U v ⊥ is JT ,Cv⊥ = {B v A,C v B,C v ¬ A}.
The concept D is also inferred to be unsatisfiable, but with the justification
JT ,Dv⊥ = JT ,Cv⊥ ∪ {D v C}. As such, JT ,Cv⊥ is a root unsat justification
whereas JT ,Dv⊥ is derived.

3 Invalidating Inferences

In this Section, we define a general operator for invalidating inferences. After
introducing the formal basics that underly our method for solving conflicts we
show how it can be applied to the general operator.

3.1 A General Operator for Invalidating Inferences

Let T be a TBox and η ∈ (T)+. Applying some operator ∆(·) to T , we say
the inference T |= η is invalidated, if η is not contained in the the deductive
closure of the result of ∆T , i.e. (η 6∈ (∆T)+). As stated in Section 1, we require
the knowledge representation to be unchanged, resulting the deductive closure
(∆T)+ to be a set of DL axioms as well.

There exist various ways of defining the ∆(.) operator, like para-consistent
logics [5], and removing axioms from T that justify T |= η. The latter is the cur-
rently most common way for solving conflicts and usually referred to as ontology

repair. Instead of actually removing an explicitly stated axiom, we propose to
split up the TBox such that groups of axioms causing unsatisfiability are not
used at the same time when drawing inferences. That way it is still possible to
reason, even if the KB is unsatisfiable. We keep the formalism for knowledge
representation but have to slightly change the way of inferencing. In order to do
this the notion of Default Knowledge Bases is introduced in the following.

3.2 Default Knowledge Bases

Inference services like Lehmann’s Lexicographical Entailment for Default Logics
[2] provide exactly the desired properties from Section 1. To achieve these we
split the set of axioms into a TBox T∆ and partitions such that for each partition
all concepts of all axioms in the partition together with the axioms in T∆ are
satisfiable. We achieve a family of TBoxes (T∆ ∪Un)Nn=0 which we call a Default
TBox. Inferences are invalidated by treating the partitions of axioms separately.

Definition 3. Let T∆ and U0, . . . ,UN be mutually disjoint TBoxes. A Default
TBox DT is the family of TBoxes DT = (T∆ ∪ U0, . . . , T∆ ∪ UN).

A Default TBox implies a partitioning on a TBox: T = T∆⊕U0⊕ . . .⊕UN .
According to [2] and [3], a single partition Un is defined as the set of all axioms

B v A in T \ (T∆
⋃n−1
m=0 Um) for which T∆

⋃n−1
m=0 Um |= A u B. As a result,

T∆ ∪Un does not infer any concept to be unsatisfiable. This enables us to define
a ∆-operator such that the partitioning of a TBox is transformed into a Default
TBox:

Definition 4. Let T be a TBox and U0, . . . ,UN be a family of disjoint subsets of
T . Let further be Tn = T∆∪Un, and T∆ = T \

⋃N
n=0 Un. The Default ∆-operator

transforms T and U0, . . . ,UN to a Default TBox:

∆T (U0, . . . ,UN) = DT with DT = (Tn)Nn=1

3.3 Inferences for a Default TBox

A Default TBox is a wrapper for a set of classical TBoxes. Hence, inference
services like checking axiom satisfiability and consistency can be applied by
means of the inference service defined for the original TBox. Consequently, we
introduce the following definitions:

A Default TBox DT is said to entail an axiom, DT |= η, if one of its TBoxes
entails η. As a result, the deductive closure of a Default TBox is defined by
(DT)+ =

⋃N
n=0(Tn)+. We say that DT is satisfiable if all of its TBoxes are

satisfiable.
Please note that this inference service for a Default TBox is not the same

inference service as defined by Lehmann’s Lexicographical Entailment: We bor-
rowed the method of how to separate axioms from each other into partitions but
we compute regular models instead of lex-minimal models. The actual partition-
ing process is described in Section 4.

3.4 Inferences Invalidated

As we consider axioms separately during reasoning, we will lose inferences. In
the sequel, we show which inferences are actually lost by separating axioms into
different partitions.

Compared to the original TBox, in the Default TBox all inferences whose
justifications share axioms that are contained in different partitions are invali-
dated:

(T)+ \ (DT)+ = { η | JT ,η ∩ Un 6= ∅ ∧ JT ,η ∩ Um 6= ∅ ∧ n 6= m}

In Example 1, a valid Default TBox was T∆ = {D v C} and U0 = {B v A}
and U1 = {C v B,C v ¬ A}. While the bad inferences C v ⊥ and D v ⊥
are invalidated, also C v A and D v A are not valid anymore. On the other
hand, for the Default TBox T∆ = {C v B,D v C} and U0 = {B v A} and
U1 = {C v ¬ A} these inferences are preserved.

If we applied classical ontology repair, i.e. axiom removal, not only we delete
the removed axioms from the deductive closure of the TBox, but even inferences
whose justifications contain just one of the removed axiom are invalidated—in
contrast to our method where we only invalidate justifications containing pairs of
axioms that are in different partitions. We hence claim that using our method for
defining the ∆-operator, it can be expected that fewer inferences are invalidated.

4 Partitions from Minimal Unsatisfiability Splitting

To resolve unsatisfiable concepts, we split up the sets of trouble-causing axioms,
i.e. the root justifications for unsatisfiable concepts, into different partitions.
This is achieved by applying the adapted version of the partition method from
Lehmann’s Lexicographical Entailment [2] as defined for Probabilistic Descrip-
tion Logics [3] that we introduced in [6].

In [6] we showed that under certain conditions we can compute a valid parti-
tion consisting of all the axioms of the root unsat justifications without additional
satisfiability checks. This methods indeed defines a ∆-operator for invalidating
all troublesome inferences T |= U v ⊥. We here show that we can improve this
∆-operator by putting only exactly two axioms of each root unsat justification
into the partitions whereas the remaining axioms can be put in the TBox. Fewer
axioms in the partitions, in turn, means potentially loosing fewer inferences.

We will not change the working principle of the procedure introduced in
[6]. As a result, the improved procedure will also be a valid ∆-operator. In the
following we show how the splitting can be used for computing the partitions.
We show by induction which axioms of the root justifications we have to chose
for the partitions Unof the Default TBox and which we may leave for T∆.

4.1 Unsatisfiability Splitting

We split-up any unsat justification JkT ,Uv⊥ into the splitting sets [6]:

Γ kUv⊥ = {U v A ∈ JkT ,Uv⊥} and ΘkU = JkT ,Uv⊥ \ Γ kU
We refer to axioms from the first as γ-axioms whereas we call axiom from

the latter θ-axioms.

Example 2. For the TBox T =

 (1) B v ¬A (2) ∃R.> v A (3) C v B
(4) D ≡ B u ∀R.{p} (5) E v ¬D (6) F v D
(7) H u J v ¬B u F (8) G v H u J

all justifications for all unsatisfiable concepts can be split up into Θ and Γ

as follows:
Θ︷ ︸︸ ︷ Γ︷ ︸︸ ︷ Θ︷ ︸︸ ︷ Γ︷ ︸︸ ︷

J1
T ,Dv⊥ = {(1), (2)} ∪ {(4)} J2

T ,HuJv⊥ = {(4), (6)} ∪ {(7)}
J3
T ,Fv⊥ = {(1), (2), (4)} ∪ {(6)} J4

T ,HuJv⊥ = {(1), (2), (4), (6)} ∪ {(7)}
J5
T ,Gv⊥ = {(4), (6), (7)} ∪ {(8)}

The separation of a justification into Θ and Γ provides exactly the separation
we seek for computing the partitions: for each root unsat justification exactly
one θ-axiom is placed into partition Un and exactly one γ-axiom is placed into
partition Un+1. The remaining axioms are finally added to T∆.

4.2 Improved Partitioning Algorithm

Algorithm 1 describes the improved procedure for finding partitions from the
splitting. In the sequel we will illustrate its working principles by Example 2.

Initializing T∆ For all axioms B v A that do not occur in any root justifi-
cation, the requirement A u B to be satisfiable is trivially fulfilled. Hence, we
initialize T∆ with T∆ = T \

⋃K
k J

k
T ,Uv⊥. In Example 2, the only axioms that

are not part of any root justification are (3), (5), and (8). We hence start with
T∆ = {(3), (5), (8)}.

Computing a Partition For computing a partition, we consider all those root
justifications for which neither of their Θ-axioms occurs in a Γ -set of any other
unsat justification (Line 15).

In Example 2, axioms (4), (6) and (7) are in some Γ -set and are therefore
not candidates for the first partition U0. We may only choose one axiom from
{(1), (2)} ⊂ Θ1

Dv⊥. Assume we choose axiom (2) for U0 and add axiom (1) to
T∆.

We resolved Θ1
Dv⊥, and remove it from the splitting sets (Line 18). We take

exactly one axiom from its Γ -set and add it to partition U1 (Line 6). In this
case, Γ 1

Dv⊥ = {(4)}, so the only choice is axiom (4). We resolved the root unsat

Algorithm 1 The partitioning algorithm.

Input:
1. TBox T ,
2. Split-up unsat justifications J = {JkT ,Uv⊥} for k = 0, . . . ,K

Output:
Default TBox DT = (T∆ ∪ U0, . . . , T∆ ∪ UN)

1: // Initialization
2: T∆ ← T \

⋃K
k=0 J

k
T ,Uv⊥, Θ ← {ΘkUv⊥}Kk=1, Γ ← {Γ kUv⊥}Kk=1, n← 0

3: while Θ,Γ 6= ∅ do
4: Un ← ∅
5: // Solve conflicts for all Γ-sets whose Θ-set was removed
6: for all Γ kUv⊥ with ΘkUv⊥ 6∈ Θ do

7: Un ← Un ∪ {γ} for exactly one γ ∈ Γ kUv⊥
8: T∆ ← T∆ ∪

(
Γ kUv⊥ \ Un

)
9: // Delete all resolved Γ-sets.

10: Γ ← Γ \ Γ kUv⊥ ∪ {Γ k
′

U′ v ⊥|Jk
′

T ,U′ v ⊥ ⊃ JkT ,Uv⊥}
11: // Delete all resolved Θ-sets.
12: Θ ← Θ \ {Θk

′

U′ v ⊥|Jk
′

T ,U′ v ⊥ ⊃ JkT ,Uv⊥}
13: end for
14: // Resolve Θ-sets having axioms not contained in any Γ-set
15: for all ΘkUv⊥ with ΘkUv⊥ \

⋃K
k′=0 Γ

k′

U′v⊥ 6= ∅ do
16: Un ← Un ∪ {θ} for exactly one θ ∈ ΘkUv⊥ \

⋃K
k′=0 Γ

k′

U′v⊥

17: T∆ ← T∆ ∪
(
ΘkUv⊥ \ (Un ∪

⋃K
k′=0 Γ

k′

U′v⊥)
)

18: Θ ← Θ \ΘkUv⊥ // remove solved Θ-sets.
19: end for
20: n← n+ 1
21: end while

justification J1
T ,Dv⊥, as well as the dependent unsat justifications J3

T ,Fv⊥ and

J4
T ,HuJv⊥, all of whose splitting sets we remove (Lines 10, 12).

Axiom (4) was also part of Θ2
HuJv⊥. Hence we resolved Θ2

HuJv⊥ which
means that we may add its remaining axioms, i.e. axiom (6) to T∆. Finally, we
remove this splitting set (Line 18).

We again resolve its corresponding Γ -set which contains only axiom (7). Since
we now resolved all root justifications, also the remaining depending justifica-
tion J5

T ,Gv⊥ is resolved. Hence, there are no more Θ-sets to process, and the
procedure terminates.

4.3 Consistency of the Default TBox

When the procedure terminates, all dependent unsat justifications have been
resolved, i.e. the Default TBox DT = ∆T (U0, . . . ,UN) does not infer any of its
concepts to be unsatisfiable. Since the partitions Un were constructed according
to [3], for any choice of the θ-axioms, DT is consistent. Note that the actual

number of partitions and their axioms depend on the choice of θ-axioms, but are
unique for each choice. This also means that each choice may invalidate different
sets of inferred entailments and, as a result, the impact of the Default ∆-operator
depends on the actual choice made.

In Example 2, the Default TBox is determined by T∆ = {(1), (3), (5), (6), (8)}
with the partitions U0 = {(2)}, U1 = {(4)}, and U2 = {(7)}.

4.4 Complexity

The complexity of the whole procedure is dominated by finding all unsat justi-
fications which is NEXPTIME-complete in the size of the TBox. Finding parti-
tions does not require any reasoning but only set operations which is worst-case
quadratic in the number of axioms in the unsat justifications. Hence, our ap-
proach has the same worst-case time complexity as ontology repair, which also
relies upon finding all unsat justifications.

5 Experimental Results

To evaluate the presented approach, we performed experiments on three ontolo-
gies that are known to contain unsatisfiable concepts. We compared the deduc-
tive closure of the original TBox with (1) all possible repair solutions, (2) the
approach where all axioms of all root unsat justifications are put into partitions
and (3) the presented approach. Since the number of possible repair solutions
grows exponentially with the number of axioms in the root unsat justifications
we restricted the experiments to rather small ontologies.

5.1 Experiment Layout

If an ontology contains an unsatisfiable concept, depending on the reasoner, the
concept hierarchy for unsatisfiable concepts might be undefined. Hence, we com-
pute an approximation of the deductive closure of the original TBox (containing
unsatisfiable concepts) as the union of the deductive closures of all TBoxes Tr
that result from all possible repair solutions. For comparison, we took the repair
solution where the minimal number of inferences is lost.

We computed the deductive closure for each of the possible Default TBoxes
that can be obtained using the presented approach. For comparison with de-
ductive closure of the original TBox and the best repair solution, we took that
Default TBox solution DT sgl where the minimal number of inferences is lost.

Furthermore, we computed the deductive closure for the Default TBox DT all
where we put all axioms from all root unsat justifications into partitions. Since
its solution is unique, we can use it directly for comparison with the deductive
closure of the original TBox and the best repair solution.

For computing justifications we used the black-box approach described in
[7]. All experiments were performed using the Pellet OWL2 reasoner [8], version
2.2.0, and the Manchester OWL API [9], version 3.0.

|(T)+| |(Tr)+| |(DT)+| |(Tr)+ \ (DT)+| |(DT)+ \ (Tr)+|
all sgl all sgl all sgl

Koala 68 68 68 86 1 0 1 18

Chemical 293 261 233 293 61 0 33 33

Pizza 1151 1151 1150 1152 1 0 2 1

Table 1. Comparison of the deductive closure of the original TBox (T) with the best
solution of all possible repair solutions (Tr), the TBox of the approach of putting all
axioms of all root unsat justifications into partitions (DT sgl) and the best solution of
all possible Default TBoxes of the approach presented (DT all).

5.2 Results

As can be seen from Table 1, the deductive closure of the best solution of our
approach DT sgl (column 4) is, for all ontologies we tested, larger than the de-
ductive closure of the best solution for axiom removal Tr (column 2). This, in
turn, means that the number of entailments invalidated is always lower compar-
ing the best solution of our approach with the best solution of removing axioms.
Furthermore, we outperform axiom removal in the sense that the best solution
of axiom removal does not preserve any inference different from our approach
(column 6).

However, this is not true for the original version of our approach. If we put
all axioms of all root unsat justifications into the partitions of the Default TBox
DT all (column 3), we invalidate more inferences than than both the improved
version and even the best solution of axiom removal do. However, the actual
inferences invalidated differ for the original approach and the best removal solu-
tion (column 5). For the Koala and the Pizza ontology the difference is caused by
the fact that, w.r.t. the original TBox T , axioms were actually removed from Tr
but not from DT all. In contrast to that, the set of inferences invalidated differs
in more than the removed axioms for the more complex Chemical ontology.

6 Discussion

The experimental results support our claim that using our approach we can find a
solution which invalidates fewer inferences than using classical axiom removal for
ontology repair. We, furthermore, showed that the presented more fine-grained
approach indeed improves its original version.

Neither axiom removal nor our approach make a deterministic choice w.r.t.
any performance measure that takes into account the number of inferences a
choice invalidates. On the one hand, computing all possible solutions is not
feasible for large ontologies, on the other hand, the computation of a single valid
solution is cheap. Hence, optimization strategies like a stochastic search seem
promising for finding optimal solutions.

Our approach is restricted to solving conflicts for unsatisfiable concepts. In
an OWL2 knowledge base, however, roles may become unsatisfiable and incon-
sistencies (i.e. assertions that cause the ABox not to be a model of the TBox)

may occur. Since OWL2, the treatment of roles has become similar to the treat-
ment of concepts. Hence, the approach of splitting sets of axioms that support a
role conflict in the TBox may also be applied to unsatisfiable roles. To address
inconsistencies we may use abduction to add a new concept for assertions caus-
ing an inconsistency. Alternatively, we could treat instances like concepts and
apply our approach directly.

We only tested our approach on a few rather small knowledge bases. The
complexity of the whole procedure we presented is dominated by the compu-
tation of all root justifications for all unsatisfiable concepts. However, when we
evolve a knowledge base, incremental reasoning [10] may significantly reduce the
computation time. If there was a way how to maintain the root unsat justifica-
tions for a TBox, our procedure, and ontology-repair in general, computing all
root unsat justifications becomes feasible even for large Semantic Web knowledge
bases.

7 Related Work

In recent years, much progress has been made in the task to explain why a
conclusion can be drawn from a DL knowledge base by solely using axioms
from the knowledge base itself. Schlobach and Cornet [4] came up with minimal
unsatisfiable preserving sub-TBoxes (MUPS) which can explain the reason for
unsatisfiability of concepts. Kalyanpur et al. [11] introduced justification as a
form of minimal explanation for any arbitrary entailment. It could be shown that
computing all justifications for an entailment is feasible in the tableaux calculus
[11]. Recent approaches try to compute fine-grained [12] or laconic justifications
[13] to consider only the conflict causing sub-parts of an axiom.

In the area of conflict-free ontology evolution, the main focus usually lies
on resolving inconsistencies and hence changes mainly occur on instance level
or rather restricted TBoxes [14]. Repair can also be done using higher-order
logics like in the Ontology Repair System [15]. This, however, makes changes
to the knowledge representation and cannot be applied to OWL ontologies in a
straightforward way.

Alternatives to do reasoning with incoherent DL knowledge bases are, for
example, para-consistent logics [5]. However, these change the notion of inference
and hence their semantics much more than default logic does.

Default Logics were first introduced by Reiter [16]. Because of undecidability
issues Lehmann provided a simpler perspective on Default Logics [2] introduc-
ing the concept of partitions. Lukasiewicz extended this approach by a separate
TBox that contains all the axioms which still model crisp and not default knowl-
edge [3]. He also enriched defaults by belief intervals resulting in a probabilistic
variant of the DL SHOIN (D) referred to as P − SHOIN (D) or Probabilistic
Description Logics. While in this paper we make use of the partition approach
enriched by a TBox, we do not consider the possibility of assigning the axioms
belief intervals—although this should, in principle, be possible.

There have been made propositions of how to incorporate default knowl-
edge in OWL-DL knowledge bases in [17] [18], and [19]. While the first two
deal with applications of Reiter’s interpretation of defaults, to our knowledge,
P-SHOIN (D) [3] is currently the only formalism providing default reasoning
services w.r.t. Lehmann’s lexicographical entailment for OWL DL knowledge
bases for which an implementation is available [20].

8 Conclusion and Outlook

In this paper, we presented an approach for automatic conflict-free ontology
evolution. We defined a general framework and proposed a variant of Lehmann’s
Default Logics and Probabilistic Description Logics that relies upon the idea
of considering conflict-causing axioms separately when drawing inferences. In
contrast to classical ontology repair, we proposed to keep the explicitly stated
axioms but remove only implicit inferences for solving conflicts. This separation
can be achieved by applying a splitting scheme to the root justifications for
conflicts, which are, in our case, unsatisfiable concepts. The partition and the
remaining axioms form a Default TBox, which slightly changes the inferencing
procedure but leaves the knowledge representation untouched. The deductive
closure of the automatically constructed Default TBox was shown to be free
of conflicts. Experimental results confirmed that applying our method fewer
inferences were lost than in the case of classical automatic ontology repair.

However, we restricted our experiments to rather small knowledge bases com-
pared to what is currently considered as a large knowledge base. The main reason
for this limitation is the computational complexity of the generation of justifi-
cations for all unsatisfiable concepts. If it were possible to efficiently maintain
justifications for evolving knowledge bases, the approach could also be applied
to large scale knowledge bases.

The choice of the actual partition for the Default TBox is non-deterministic.
For large scale knowledge bases, computing solutions is likely to become unfea-
sible. Hence, optimization strategies, like a stochastic search process, may be
applied to look for an optimal solution. Such optimization strategies may also
take into account more sophisticated performance measures like the impact of
invalidated inferences instead of just counting their total number.

Since current approaches to the computation of fine-grained justifications
increasingly aim to only address sub-parts of the axioms, future work will inves-
tigate how parts of axioms may be used for a Default TBox. Last, we restricted
conflicts to unsatisfiable concepts. Since the presented approach is rather generic,
it should, in general, be applicable to unsatisfiable roles and inconsistencies as
well.

As sketched above, all these limitations do not invalidate the general ap-
proach but are the subject of future work. Indeed we believe that ontology repair
using the presented approach has the potential to enable automatic conflict-free
ontology evolution in practice—a central need for long living ontologies and,
hence, for the Semantic Web.

References

1. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL
2 Web Ontology Language Primer. W3C Recommendation, World Wide Web
Consortium (October 2009)

2. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell
15 (1995) 61–82

3. Lukasiewicz, T.: Expressive probabilistic description logics. Art. Intell. 172(6-7)
(April 2008) 852–883

4. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI. (2003) 355–362

5. Ma, Y., Lin, Z., Lin, Z.: Inferring with inconsistent owl dl ontology: A multi-valued
logic approach. In: EDBT Workshops. Volume 4254 of LNCS. (March 2006) 535–
553

6. Scharrenbach, T., Grütter, R., Waldvogel, B., Bernstein, A.: Structure Preserving
TBox Repair using Defaults. In: Proc. of the 23rd International Workshop on
Description Logics (DL 2010). CEUR-ws (2010)

7. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes
in owl ontologies. Journal of Web Semantics 3(4) (December 2005) 268–293

8. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web
5(2) (June 2007) 51–53

9. Horridge, M., Bechhofer, S.: The owl api: A java api for working with owl 2
ontologies. In: OWLED. Volume 529. (2008)

10. Parsia, B., Halaschek-wiener, C., Sirin, E.: Towards incremental reasoning through
updates in owl dl. In: WWW ’05: Proc. of the 15th international conference on
World Wide Web. (2006)

11. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, University
of Maryland, Department of Computer Science (2006)

12. Lam, J.S.C., Sleeman, D., Pan, J.Z., Vasconcelos, W.: A fine-grained approach to
resolving unsatisfiable ontologies. (2008) 62–95

13. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In:
The Semantic Web - ISWC 2008. Volume 5318 of LNCS. (October 2008) 323–338

14. Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty
and inconsistency. In: Uncertainty Reasoning for the Semantic Web 1: ISWC
International Workshop, URSW 2005-2007, Revised Selected and Invited Papers:
Pt. 1. Volume 5327 of LNCS. (January 2009) 45–55

15. Bundy, A.: Where’s my stuff? an ontology repair plan. In: Workshop on DIS-
PROVING - Non-Theorems, Non-Validity, Non-Provability. Volume 4. (July 2007)
2–11

16. Reiter, R.: A logic for default reasoning. Art. Intell. 13(1-2) (1980) 81–132
17. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-

resentation formalisms. In: Journal of Automated Reasoning. (1995) 306–317
18. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing default logic over description

logic knowledge bases. In: ECSQARU 2009. 602–613
19. Navarro, J.L., Sanchez, J.M., Zurita, J.M.: Default reasoning in web ontology

language. In: Proc. IADIS Multi Conf. on Computer Science and Information
Systems 2007. (July 2007) 35–42

20. Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In:
ESWC. Volume 5021 of Lecture Notes in Computer Science. (2008) 822–826

