
Preface

This volume contains the papers presented at SMR2 2010: Service Matchmaking
and Resource Retrieval in the Semantic Web

The goal of SMR2 is to provide a forum for promoting, presenting, and dis-
cussing the latest scientific advances and industry best practices on Semantic
Web service matchmaking and resource retrieval. Furthermore, through its asso-
ciation with S3: The Semantic Service Selection Contest, SMR2 acts as a yearly
reality check of available tools for semantic (Web) service and resource retrieval,
and the experimental evaluation of their performance in practice by means of an
open contest. Thus, SMR2 aims at establishing and fostering cross-disciplinary
relations between interested parties in research and/or industry, for the purpose
of joint work on solutions to relevant problems in the domain. This year, we
particularly emphasize the scientific relation of semantic service matchmaking
to model-driven service engineering and discovery

October 2010 Abraham Bernstein,
Paul Grace,

Matthias Klusch,
Massimo Paolucci

Workshop Organization

Programme Chairs

Abraham Bernstein, Paul Grace, Matthias Klusch, Massimo Paolucci

Programme Committee

Liliana Cabral, Tommaso Di Noia, Eugenio Di Sciascio, Takahiro Kawamura,
Freddy Lecue, Alain Leger, Tiziana Margaria, David Martin, Nils Masuch, Oliver
Mueller, Pierluigi Plebani, Axel Polleres, Marco Sbodio, Stefan Schulte, Eran
Toch, Roman Vaculin,

Table of Contents

Probabilistic Methods for Service Clustering . 4
Gilbert Cassar, Payam Barnaghi, Klaus Moessner

Personalization of Semantic Web Services . 21
Freddy Lecue

A purely logic-based approach to approximate matching of semantic
web services . 37

JÃrg SchÃnfisch, Willy Chen, Heiner Stuckenschmidt

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms . 53
Ruben Verborgh, Davy Van Deursen, Jos De Roo, Erik Mannens, Rik
Van de Walle

Integrating Semantic Web Services and Matchmaking in ebXML Registry 69
Stefan Schulte, Melanie Siebenhaar, Ralf Steinmetz

Comprehensive service semantics and light-weight Linked Services:
towards an integrated approach . 84

Stefan Dietze, Neil Benn, Hong Qing Yu, Carlos Pedrinaci, Bassem
Makni, Dong Liu, Dave Lambert, John Domingue

An Interest-based Offer Evaluation System for Semantic Matchmakers . . . 99
Samira Sadaoui, Wei Jiang

Anatomy of a Semantic Web-enabled Knowledge-based Recommender
System . 115

Daniele Dell’aglio, Irene Celino, Dario Cerizza

Behavioral Matchmaking of Semantic Web Services . 131
Zijie Cong, Alberto Fernandez Gil

Probabilistic Methods for Service Clustering

Gilbert Cassar, Payam Barnaghi, and Klaus Moessner

Centre for Communication Systems Research
University of Surrey

Guildford, GU2 7XH, UK
{g.cassar, p.barnaghi, k.moessner}@surrey.ac.uk

Abstract. This paper focuses on service clustering and uses service de-
scriptions to construct probabilistic models for service clustering. We dis-
cuss how service descriptions can be enriched with machine-interpretable
semantics and then we investigate how these service descriptions can be
grouped in clusters in order to make discovery, ranking, and recommen-
dation faster and more effective. We propose using Probabilistic Latent
Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) (i.e.
two machine learning techniques used in Information Retrieval) to learn
latent factors from the corpus of service descriptions and group services
according to their latent factors. By creating an intermediate layer of
latent factors between the services and their descriptions, the dimen-
sionality of the model is reduced and services can be searched and linked
together based on probabilistic methods in latent space. The model can
cluster any newly added service with a direct calculation without requir-
ing to re-calculate the latent variables or re-train the model.

1 Introduction

The Service Oriented Architecture (SOA) is a model currently used to pro-
vide services on the Internet. SOA typically consists of three entities: a service
provider, a client, and a broker. A service provider offers the service and adver-
tises it by publishing a service description. A client looks for a service to fulfill a
certain task or to consume service data. The service broker accepts queries from
the client, refers to service descriptions supplied by the provider and returns Web
Service Description Language (WSDL)1 documents describing the best matches
to the query. However the common technologies used to describe, publish, and
discover services offer very limited freedom of expressiveness to the service de-
signers. Service description frameworks such as WSDL provide descriptions of
what a service is and what it can do; however with these kinds of descriptions
machines still cannot easily interprete different concepts described in the ser-
vice description. If more expressive technologies are used to describe a service,
machines will be able to use semantics, reasoning, and linked data2 to process
the service descriptions and generate new knowledge from what is supplied in

1 http://www.w3.org/TR/wsdl20/
2 http://linkeddata.org/

the service description; so this knowledge can be refered to by software agents
or search clients to offer better service search results and recommendations in
different applications.

The service repositories on the Internet are being increasingly over-populated
with more services created and published by users. Retrieving services which can
match to a user query is becoming a challenging task. By organising the service
data into clusters, services become easier and thus faster to be discovered and
recommended [11]. Clustering is an approach that transforms a complex problem
into a series of simpler sets which are easier to handle. Service Clustering aims to
group together those services which are similar to each other. Service Clustering
can be very helpful in terms of service recommendation and ranking since services
that are similar to the one chosen by the user will be grouped in the close
neighbourhood of that service. Methods for Service Composition can also benefit
from clustering of services because compatible services can be found more easily
if the services are clustered based on their functional attributes.

In this paper we investigate using probabilistic machine-learning methods to
extract latent factors zf εZ = {z1, z2, ..., zk} from semantically enriched service
descriptions. By describing the services in terms of latent factors, the dimension-
ality of the system is reduced considerably. The latent factors can then also be
used to efficiently cluster the services in a repository, making the model more
scalable and also more efficient in terms of publishing new service descriptions
to the repository. Figure 1 shows an example of assigning services to latent vari-
ables rather than conceptual words. In this work we elaborate the concept of
latent variables and describe how those variables can be calculated for service
descriptions.

Fig. 1. Describing services in terms of latent factors zf εZ = {z1, z2, ..., zk} rather than
conceptual words

The rest of this paper is organised as follows. Section 2 provides an overview
of related work. In Section 3 we propose a clustering mechanism based on
Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation
(LDA). Section 4 explains how we evaluate our clusters. Section 5 presents the
results obtained in our experiments and discusses the experimental data. Section
6 concludes the paper and discusses the future work.

2 Related Work

In this section we briefly discuss some service description models and then dis-
cuss related concepts to service clustering. First we discuss the Onthology Web
Language for Services (OWL-S)3 as it is the fundamental building block of our
approach and then we describe the clustering technologies related to our work.

2.1 Service Description Models

A detailed and machine-readable service description is the fundamental building
block for providing an architecture in which advanced service discovery mech-
anisms can be performed [2]. Service descriptions are defined using a service
description model. A service description model becomes a template that service
providers will use in order to publish and advertise the services that they of-
fer. Various approaches for creating service description models exist, including:
WSDL, USDL4, Web Service Modelling Language (WSML)5 and Web Service
Modelling Ontology (WSMO)6, and OWL-S.

OWL-S is a Service Description Framework that provides both rich expres-
sive descriptions and well-defined semantics. OWL-S describes the characteristics
of a service by using three top-level concepts, namely ServiceProfile, Service-
Grounding, and ServiceModel. ServiceProfile provides the information needed
to discover services. ServiceGrounding and ServiceModel provide information to
deploy and use the service.

The Service Profile provides a concise but meaningful description of the ser-
vice capabilities in order to advertise the service in a registry. However, once
the service has been selected from the registry, the Profile is no more of use and
the information contained in the ServiceModel is then used to interact with the
service.

The ServiceGrounding describes how to access the services. In OWL-S, Ser-
viceProfile and ServiceModel are abstract representations of a service and only
the ServiceGrounding contains information about protocol and message formats,
serialisation, transport, and addressing.

3 http://www.w3.org/Submission/OWL-S/
4 http://www.internet-of-services.com/index.php?id=24
5 http://www.wsmo.org/wsml/
6 http://www.wsmo.org/

Fig. 2. The structure of OWL-S

The concepts of Input, Output, Preconditions, and Effects are all defined in
OWL-S both in the ServiceProfile and in the ServiceModel. OWL-S provides the
main attributes to describe services and their functional attributes.

Another effective aspect of OWL-S is that it still relies on existing standards
for service invocation and discovery. Service invocations are still carried out using
WSDL definitions and OWL-S is designed so that it can extend UDDI for service
discovery making it easily integrable with the current SOA.

In this paper, we describe constructing a vector space model using OWL-S
descriptions and in Section 3 we discuss how the vector space model is used for
training probabilistic models. The probabilistic models are then used to cluster
the services.

2.2 Vector Space Modelling and Feature Extraction

Vector Space Modelling (VSM) is a technique used to convert data to vector
form in order to facilitate computational analysis of the data. In information
retreival, a widely used method for converting a text document to Vector Space
form is to use the Text Frequency and Inverse Text Frequency (TF/IDF) algo-
rithm [13]. Ma et al. use this technique in [8] to represent a dataset of WSDL
service descriptions in the form of a Service Transaction Matrix as shown in Ta-
ble 1. In Ma et al.’s work each row represents a WSDL service description, each
column represents a word from the whole text corpus, and each entry represents
the TF/IDF weighting of that word in the respective WSDL document.

TF/IDF weight wij for a word j in service i is calculated as follows:

wij = tfij · log
(
n

nj

)
(1)

where tfij is the word frequency of word j in service description i, n is the
total number of service descriptions, and nj is the number of services that con-

tain word j.

A variation of TF/IDF is proposed in [14] where a higher weight is given to
the IDF value. The reason behind this approach is to normalise the bias of TF
measure in short documents. The frequency of words in very short documents
such as service descriptions tends to be incidental. Thus the proposed TF/IDF 2

equation in [14] is described as the following:

wij = tfij · log
(
n

nj

)2

(2)

Wang et al. [16] prepare textual data for analysis using Part-of-Speech tag-
ging to identify and remove stop words from the word corpus. The Stanford
Log-Linear POS-tagger7 is used in their work to POS-tag the text and only the
nouns, verbs, and adjectives were kept for further analysis. The remaining words
are then used to describe each document as a vector of text frequencies.Using
vector space model, the proximity between two vectors will then also correspond
to similarity of their data characteristics. The vectors which are very similar can
be clustered together using clustering techniques.

Table 1. A simplified TF/IDF matrix.

w1 w2 w3 w4 w5 w6 w7 w8

S1 0 0 1 0.0458 0 0 1 0
S2 0 0 0 0.0458 0.2218 0 0 0.3979
S3 0.0458 0 0.3979 0 1 0 0 0
S4 0 0.6990 0.5229 0 0 1 0 0
S5 0.3010 0 0 1 0.2218 0 0 1

When describing data in vector space, we represent different features of our
data as different dimensions in a multi-dimensional form. The extraction of fea-
tures to vector space is also called Indexing. Approaches like TF-IDF which parse
the text in every document and then treat every word as a seperate dimension
are referred to as Syntactic Indexes [11]. Syntactic Indexes have the advantage of
being able to parse any textual document and convert it to a vector format which
complies with the rest of the documents; however it results in a large number
of dimensions in vector space that becomes very computationally expensive. In
the context of service descriptions, it does not have the ability to focus on just
some selected characteristics of a service. Rich Indexes [11] on the other hand
consider only certain aspects of the information contained in the original data.

The service descriptions include different features of services as discussed in
the following:

7 http://nlp.stanford.edu/software/tagger.shtml

– Domain Information: Information about the service registration and other
attributes such as domain, cluster group, back-links, and listings.

– Semantic Descriptions: Where service descriptions are enriched with seman-
tic content such as those in WSMO and OWL-S.

– Functional Descriptions: Include interface information such as input and
output parameters, preconditions and effects [7].

– QoS Descriptions: Include information about the performance of a service,
specifying requirements such as bandwidth, response time and delay.

We propose using multiple indexes based on different features of a service
description (i.e. profile, functional descriptions, etc.). This approach enables us
to compare services over different domains; however in the context of service
clustering Platzer et al. [11] recommend not to merge information from two
seperate indexing strategies into one vector. In this case the components of
the vector are likely to move apart from each other and result in reducing the
effectiveness of the clustering algorithm.

Vector Space Modelling is a very useful method for analysing service descrip-
tions. Once service descriptions are represented in vectors, vector algebra [11]
and probabilistic methods [8] can be used to measure similarities between ser-
vices and group them into clusters.

2.3 Proximity Measure

Measuring the proximity between a service and other services in a dataset is
the basic step of most clustering techniques. If two vectors are close to each
other in vector space, then they have similar service descriptions or functional
attributes depending on characteristics used for constructing the model. Various
techniques exist to measure the proximity of two vectors. The most commonly
used proximity measures are described in the following.

Euclidean Distance The Euclidean Distance of two n-dimensional vectors
corresponds to the actual distance between the absolute position of the two
points in vector space described by the two vectors. The Euclidean distance can
be calculated using the following formula.

dis(p, q) = ‖p− q‖
2

=

√√√√
n∑

i=1

(pi − qi)2 (3)

where p and q are the two vectors and dis(p, q) is the Euclidean distance
between them.

Jaccard Coefficient The Jaccard coefficient is a similarity measure that skips
the components which give no information. Nayak and Lee [10] use the Jaccard
coefficient to measure the similarity between two Web services based on the

terms that are present in both service descriptions. The Jaccard coefficient of
two vectors p and q is given by the equation 4.

J(p, q) =
Tpq

Tp + Tq + Tpq
(4)

where Tpq is the number of common terms used in describing p and q, Tp
and Tq are the number of terms used in p only and q only respectively.

Multidimensional Angle Multidimensional Angle is an efficient measure of
the proximity of two vectors. It is used in various clustering approaches [11,
8]. This proximity measure applies cosine of the angle between two vectors. It
reaches from the origin rather than the distance between the absolute position
of the two points in vector space. This method is more efficient because if a
dimension is not present in both vectors it will automatically drop out of the
equation. Thus it provides dimensional reduction and reduces required compu-
tations. The multidimensional angle between vectors p and q can be calculated
using equation 5.

cos(p, q) =
p · q

‖p‖ · ‖q‖ =

∑n
i=1 piqi√∑n

i=1 p
2
i

∑n
i=1 q

2
i

(5)

where n is the number of dimensions.

Weighted Similarity Measures This method is used by Nayak and Lee in [10]
where the similarity of two services is based on different parts of their service
descriptions. Each service description is enhanced with semantic components:
OWL-S Profile, Model, and Grounding, and a WSDL document. The Weighted
Similarity of two services is then calculated by summing together the Jaccard
coefficient of each component where every Jaccard coefficient of the summation
is multiplied by a weight which reflects how significant that component is. This
proximity measure is given by:

Sim(p, q) = w1 · JDes(p, q) + w2 · JSerP (p, q) + w3 · JWSDL(p, q)

+w4 · JPModel(p, q) + w5 · JGround(p, q)
(6)

where w1 to w5 are the assigned weights and JDes(p, q), JSerP (p, q), JWSDL(p, q),
JPModel(p, q), and JGround(p, q) are the Jaccard coeffiecient of the service de-
scription, service profile, WSDL, service model, and service grounding respec-
tively.

2.4 Clustering Algorithms

Clustering algorithms generally deal with data described in vector space by us-
ing some form of vector algebra to measure the similarity between vectors and
grouping together the vectors which are most similar to each other. The following
describes some of the common approaches for clustering.

K-Means Algorithm The K-Means algorithm is a well know clustering al-
gorithm based on Squared Error criterion [12]. Squared Error algorithms keep
converging until a convergence criterion is reached. The steps for implementing
the K-Means algorithm as given in [6] are:

1. Randomly generate K cluster centres within the vector space used.
2. Compute the proximity of each vector to each cluster centre and assign each

vector to the nearest cluster centre.
3. Recompute the cluster centres by taking the mean of the member vectors in

each cluster.
4. If the convergence criterion is not met, go back to step 2.

A typical convergence criterion would be a treshold value of a squared error
equation [12] or converging until there is no or minimal change in cluster centres
after each iteration [6].

Agglomerative Algorithm The Agglomerative algorithm is a bottom-up hi-
erarchical clustering method. The algorithm starts by assigning each vector to
its own cluster; then it starts merging together the most similar clusters at every
iteration until a stopping criterion is met [6]. The steps for implementing the
Agglomerative algorithm are:

1. Treat each vector as a cluster.
2. Compute a matrix with the proximity of each cluster to every other cluster.
3. Find the most two similar cluster in the matrix and merge these two clusters

into one cluster.
4. Update the proximity matrix with the mean of the two merged clusters as

the centre of the new cluster.
5. Stop if the proximity treshold is reached or if all the vectors are converged

into one cluster. Otherwise go back to step 2.

A Web Service clustering approach based on this algorithm is proposed
in [11]. This work uses a repository of 275 WSDL service descriptions. Each
WSDL document is treated as a text document and the whole text is converted
into vector space then clustered using the Agglomerative algorithm. The per-
formance evaluation provided is based on data extrapolation to evaluate scala-
bility of the method in larger repositories. The algorithm discusses efficiency of
matching a client’s query compared to a simple key word matching. However,
the WSDL documents include serveral repetitive phrases and also specific ter-
minology to describe technical aspects of services. Analysing WSDL as a text
document and constructing the model based on the whole concept set extracted
from the WSDL description could suffer from biasing and overfitting the results.

2.5 Probabilistic Latent Semantic Analysis (PLSA)

Probabilistic Latent Semantic Analysis is an unsupervised machine-learning tech-
nique used to map high-dimensional count vectors (such as the ones yielded by
TF/IDF in vector space model) to a lower dimensional representation in Latent
Semantic Space [4]. PLSA is based on the Aspect Model; a latent variable model
which associates an unobserved class variable zf εZ = {z1, z2, ..., zk} with each
observation [5].

PLSA discovers the semantics behind the words in a text corpus, i.e. the
topics which the words in the document belong to. Words are observable variables
wjεW = {w1, w2, ..., wv} which can be observed through the text corpus that
consists of documents, topics on the other hand are latent variable which are
not directly observable through the text.

In service descriptions, we use words taken from service descriptions and cre-
ate a PLSA model. Once the latent variables zf εZ = {z1, z2, ..., zk} are identi-
fied, services can be described as a multinomial probability distribution P (zf |di)
where di is the service description (or document) describing service i. The repre-
sentation of a service with these latent variables reflects the likelihood that the
service belongs to certain concept groups [8].

To construct a PLSA model we first require to look at the joint proability
of an observed pair. The joint probability of an observed pair P (di, wj) is given
by:

P (di, wj) = P (di)P (wj |di) (7)

where:

P (wj |di) = P (di)P (wj |di)
k∑

f=1

P (zf |di)P (wj |zf) (8)

assuming that a document and a word are conditionally independent given
the latent factor.

This model indirectly associates the words wjεW = {w1, w2, ..., wv} to their
corresponding documents by introducing an intermediate layer of latent factors
zf εZ = {z1, z2, ..., zk}. Thus we are getting dimensionality reduction by mapping
a high word-document matrix P (d,w) into a lower k-dimension latent semantic
space [8]. By substituting equation 8 in equation 7, we obtain:

P (d,w) =
k∑

f=1

P (zf)P (d|zf)P (w|zf) (9)

The parameters P (z), P (d|z), and P (w|z) can be found using a model fitting
technique such as the Expectation Maximization (EM) algorithm as described
in [4]. Once the algorithm is trained and the parameters are found, any new
document can be folded into the model [8] using:

P (zf |dnew) =
P (dnew|zf) · P (zf)
∑k
j=1 P (dnew|zj)

(10)

In our work, service descriptions are treated as documents and these textual
and functional descriptions are used to construct the PLSA model. The details
of the approach is discussed in Section 3.

2.6 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is another machine-learning technique which uses
a generative probabilistic model for collections of discrete data [1]. LDA intro-
duces a Dirichlet prior on the document-topic distribution in order to simplify
the problem of statistical inference [16]. The principal of LDA is the same as
that of PLSA: mapping high-dimensional count vectors to a lower dimensional
representation in latent semantic space.

Using the same notation described in PLSA, with LDA the probability of the
ith word occuring in a given document is:

P (wi) =

k∑

f=1

P (wi|zi = f)P (zi = f) (11)

where zi is a latent factor (or topic) from which the ith word was drawn,
P (zi = f) is the probability of topic f being the topic from which wi was drawn,
and P (wi|zi = f) is the probability of having word wi given the fth topic.

The generative model of LDA is obtained by letting:

Φ(j) = P (w|z = f) (12)

and

Θ(d) = P (z) (13)

Instead of estimating P (d|z) and P (w|z) as in PLSA, the LDA generative
model estimates Φ, Θ, and z. Different methods can be used to train the algo-
rithm and estimate these parameters Blei et al. [1] use variational inference with
EM algorithm. Wang et al. [16] use a method based on Gibbs Sampling which
was proposed in [3] and [15].

3 A Probabilistic Approach for Service Clustering

Classical service clustering algorithms use proximity measures to calculate the
similarity between services and group similar services together. Our approach
applies probabilistic machine-learning techniques to extract latent-factors from
service descriptions and then uses the latent-factors to group the services into
clusters. This approach gives us a number of advantages over classical clustering

algorithms. First, the dimensionality of the model is reduced as every service
can be described in terms of a small number of latent factors rather than a
large number of concepts. Consequently, searching for a service inside a cluster
can be performed by searching for matching latent factors rather than matching
the text describing the service to a set of key words extracted from the user
query. Second, the algorithm is scalable and can be applied to large repositories
because only a small portion of the data set is required to train the algorithm.
The rest of the service descriptions and any other new service published to the
repository can be folded-in and assigned to a cluster very easily without high
computational requirements.

We use OWL-S as the basis of our model and all the service descriptions pub-
lished to the repository are in OWL-S format. OWL-S provides rich machine-
readable semantics which make it easier to define the different components of a
service that facilitate the feature extraction stage for vector space modelling. The
rich semantics of OWL-S make it also possible to implement logic based tech-
niques for service matching and ranking; however the use of such techniques is
beyond the scope of the current paper. In the current work, we focus on the tex-
tual descriptions and the functional descriptions contained in an OWL-S service
representations. The two categories of features (i.e. service profile and service
model) are extracted separately and stored in separate vector space models.

The OWL-S service profile contains a textual description of service opera-
tions. These textual descriptions together with the title of the service are ex-
tracted and used to build the vector space model. All punctuation marks are
removed from the text and words merged together with a capital letter in be-
tween such as “TaxCalculator“ are separated back to two different words. For
example, “TaxCalculator“ becomes “‘tax calculator“. The Stanford POS Tagger
is then used to eliminate all the stop-words and only words tagged as nouns,
verbs, and adjectives are retained. Once the text is processed, the vector space
model describing each service as a vector of word frequencies is calculated using
the TF/IDF give in equation 1.

The funtional descriptions in OWL-S consist of the properties hasInput, ha-
sOutput, hasParameter, hasPrecondition, and hasResult found in the service
model. The service model points to a process which in turn defines the WSDL
message-map types needed to interact with the service. All these features are ex-
tracted from the OWL-S descriptions using a reasoner. In order to make the fea-
tures fit in the vector space model, the property name and the type are appended
together to produce a new term that is used as a ’word’ in constructing the vec-
tor space model. For example “hasInput Book“ becomes “hasInput Book“. This
way, a service in which Book is defined as input will be distinguished from a
service in which Book is defined as output. TF/IDF is then used to analyse
constructed ’words’ to create the vector space model for functional attributes.

PLSA is implemented using the PennAspect8 model which uses maximum
likelihood to compute the three parameters: P (w|z), P (d|z), and P (z). Half of
the the dataset is used to train the algorithm and the other half is used for val-

8 http://www.cis.upenn.edu/ ungar/Datamining/software dist/PennAspect/index.html

idation in order to prevent overfitting [16]. Once the parameters are calculated,
new services published to the repository can be folded-in as proposed in [8] by
using the following.

P (zf |dnew) =
P (dnew|zf) · P (z)
∑k
j=1 P (dnew|zj)

=
P (dnew|w) · P (w|zf) · P (z)

∑k
j=1 P (dnew|zj)

(14)

This equation can be computed for each latent factor zf εZ = {z1, z2, ..., zk}
with respect to every new service dnew thus obtaining the probability of dnew
being described by each of the latent variables P (z|dnew). The service dnew can
be assigned to latent factor zf having the highest probability given a service
dnew [8] thus efficiently clustering each service.

We have implemented the LDA model using LingPipe9 toolkit for processing
text. This toolkit uses Gibbs sampling to train the algorithm and to obtain the
parameter P (d|z). After training the algorithm, new services can be folded in
by using Gibbs sampling with fixed topic-word probabilities and sampling the
assignments of words to topics in the new service [16].

4 Evaluation of Clusters

The Purity of clusters is used as a measure of evaluating the accuracy of a clus-
tering technique [9], [8]. If the pool of services used to evaluate the algorithm
were originally organised in a set of classes c = {c1, c2, ..., im}, then for clus-
ters generated by the algorithm z = {z1, z2, ..., zk} the purity of a clustering
algorithm can be computed as:

Purity =
1

n

k∑

f=1

maxc
{
ncf

}
(15)

where n is the total number of services and ncf is the number of services in
cluster zf belonging to class c while c varies from 1 to m.

It is easy to obtain a high value of cluster purity if the data set is clustered
into a large number of clusters. If each cluster is very small, the likelihood of
having a high percentage of the cluster belonging to one known class could be
very high (especially in very short documents like service descriptions). Therefore
in order for the purity measurement to give a more accurate result, the number
of clusters generated should not be very big compared to the size of the dataset.

5 Results

In our experiment, we compared the accuracy of two probabilistic clustering
algorithms (PLSA and LDA) to that of two proximity measure based algorithms.

9 http://alias-i.com/lingpipe/

The dataset of service descriptions used in this experiment was obtained from
the OWL-S service retrieval test collection, OWLS-TC10. This dataset consists
of 1007 service descriptions defined in OWL-S form. Each service belongs to one
out of seven service categories named as: communication, economy, education,
food, medical, travel, and military. These categories are used as the base classes
to evaluate Purity of clusters after the clustering algorithms are tested.

Two experiments were conducted: one using only the OWL-S attributes con-
taining textual descriptions of the services, and another using only the OWL-S
attributes describing functional attributes. Agglomerative and a K-Means clus-
tering algorithm were also used to compare the performance of PLSA and LDA
to proximity based clustering. The dataset was clustered with each algorithm
starting with five clusters and increasing in steps of five up to fifty clusters. The
Purity of clusters was computed for each algorithm at every step and the results
were compared. The purity of the individual clusters for clustering the data set
in seven clusters (same as the number of known classes) are shown in Table 2
and Table 3.

The results show that overall purity varies against number of clusters while
using textual descriptions from service profile. The results of clustering based on
profile descriptions are shown in Figure 3. The results for clustering based on
functional attributes are also shown in Figure 4. The Agglomerative algorithm
could not be used to cluster functional attributes because the dimensions of the
vectors describing functional attributes are smaller than those describing textual
data and consequently the algorithm could not converge to less than 65 clusters.

Table 2. Purity of clusters for 7 clusters based on Profile Descriptions.

Agglomerative K-Means PLSA LDA

Cluster 1 1.0000 0.8020 1.0000 0.8978
Cluster 2 1.0000 0.6585 0.5862 0.7574
Cluster 3 1.0000 0.6111 0.5556 0.6203
Cluster 4 0.7119 0.4324 0.5000 0.5971
Cluster 5 0.3974 0.3591 0.5000 0.5789
Cluster 6 0.3939 0.3509 0.3669 0.5244
Cluster 7 0.3600 0.3220 0.3385 0.4000

5.1 Discussion

The results show that LDA performs significantly better than PLSA. LDA also
takes relatively less time than all the other algorithms to train and create the
clusters. The Agglomerative and K-Means algorithm both perform better than
PLSA. The K-means algorithm depends on the random factor of where the
initial cluster centroids are generated and does not always converge in an optimal

10 http://www.semwebcentral.org/projects/owls-tc/

5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

No. of Clusters

P
ur

ity

LDA
K−Means
Agglomerative
PLSA

Fig. 3. Purity of clusters for clustering based on Profile Descriptions of the Services.

5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

No. of Clusters

P
ur

ity

LDA
K−Means
PLSA

Fig. 4. Purity of clusters for clustering based on the Functional Attributes of the
Services.

Table 3. Purity of clusters for 7 clusters based on Functional Attributes.

K-Means PLSA LDA

Cluster 1 0.8883 1.0000 0.8397
Cluster 2 0.6299 0.6243 0.6552
Cluster 3 0.6051 0.5000 0.5677
Cluster 4 0.5455 0.4441 0.5603
Cluster 5 0.4321 0.4000 0.4804
Cluster 6 0.4108 0.3333 0.4237
Cluster 7 0.2976 0.2488 0.3624

way. K-means algorithm is also very slow and computationally expensive; this
makes it unsuitable for large repositories. As it can be seen from Figure3 and
Figure 4, LDA performs better than the other algorithms. This makes it an ideal
solution for clustering services in large repositories. The low purity results for
PLSA are due to limited number of concepts used for training the model. Service
description are similar to short documents in this context. Thus PLSA is not able
to converge to a high accuracy using these limited concepts. Extracting latent
factors from a corpus of service descriptions also gives us the basis to construct
more efficient service discovery and ranking mechanisms.

An important aspect of this work, also based on OWL-S design, are the
semantics. Although in the current work we treat all the descriptions and at-
tributes as text, semantic relations can be exploited to enhance the discovery
and recommendation result based on the constructed clusters. Some of these
aspects are described in future work in Section 6.

6 Conclusions and Future Work

This paper proposes a probabilistic method to create two seperate clustering
schemes; one based on profile descriptions of the services and the other based on
the functional attributes. This enables to search services based on classic text
queries and/or using more specific functional queries. The latter can be very
useful for service personalisation and service composition where the functional
attributes of the services are of great importance.

Future work will focus on developing a query mechanism based on latent
factors rather than matching key words in a query to the service descriptions’
text. This kind of service clustering also makes it easier to recommend services
since similar services are grouped in the same cluster. It is important to note that
although this work was focused on OWL-S service descriptions, our approach can
be applied to other service description models such as WSMO and this will also
be investigated in future work. The probabilistic methods used in this paper (i.e.
LDA and PLSA) can be trained using a small percentage of the whole dataset,
the rest of the service descriptions can be folded into the model as described in
Section 3. This makes both algorithms very scalable to large service repositories.
The semantics of service descriptions will be also used for further enhancement

of clustering results. The reasoning mechanisms will be also incorporated in
the recommendation and discovery methods to provide more relevant results to
service consumers.

Acknowledgment

This paper describes work undertaken in the context of the m:Ciudad project,
m:Ciudad - A metropolis of ubiquitous services (http://www.mciudad-fp7.org/).
m:Ciudad is a medium-scale focused research project supported by the European
7th Framework Programme, contract number: 215007. The authors would like
to thank Dr. Wei Wang from the University of Nottingham Malaysia Campus
for his comments and sugesstions regarding probablistic models.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Charlton, P., Ribiere, M.: Rich service description for a smarter lifestyle. In: AA-
MAS ’03: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 512–519. ACM, New York, NY, USA (2003)

3. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl. 1), 5228–5235 (April 2004)

4. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in
Artificial Intelligence, UAI99. pp. 289–296 (1999)

5. Hofmann, T., Puzicha, J., Jordan, M.I.: Learning from dyadic data. In: Proceedings
of the 1998 conference on Advances in neural information processing systems II.
pp. 466–472. MIT Press, Cambridge, MA, USA (1999)

6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Liu, C., Peng, Y., Chen, J.: Web services description ontology-based service dis-
covery model. In: WI ’06: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence. pp. 633–636. IEEE Computer Society, Washing-
ton, DC, USA (2006)

8. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering seman-
tic approach. In: CSSSIA ’08: Proceedings of the 2008 international workshop on
Context enabled source and service selection, integration and adaptation. pp. 1–8.
ACM, New York, NY, USA (2008)

9. Mandhani, B., Joshi, S., Kummamuru, K.: A matrix density based algorithm to
hierarchically co-cluster documents and words. In: WWW ’03: Proceedings of the
12th international conference on World Wide Web. pp. 511–518. ACM, New York,
NY, USA (2003)

10. Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering.
In: WI ’07: Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence. pp. 555–558. IEEE Computer Society, Washington, DC, USA (2007)

11. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimen-
sional angles as proximity measures. ACM Trans. Internet Technol. 9(3), 1–26
(2009)

12. Rui, X., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural
Networks 16(3), 645–678 (2005)

13. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (1989)

14. Segev, A., Toch, E.: Context-based matching and ranking of web services for com-
position. IEEE Transactions on Services Computing 99(PrePrints), 210–222 (2009)

15. Steyvers, M., Griffiths, T.: Latent Semantic Analysis: A Road to Meaning, chap.
Probabilistic topic models. Laurence Erlbaum (2007)

16. Wei, W., Barnaghi, P., Bargiela, A.: Probabilistic topic models for learning termi-
nological ontologies. IEEE Transactions on Knowledge and Data Engineering 22,
1028–1040 (2010)

Personalization of Semantic Web Services?

Freddy Lécué

The University of Manchester
Booth Street East, Manchester, UK

{(firstname.lastname)@manchester.ac.uk}

Abstract. Nowadays web users have clearly expressed their wishes to receive
and interact with personalized services directly. However, existing approaches,
largely syntactic content-based, fail to provide robust, accurate and useful per-
sonalized services to its users. Towards such an issue, the semantic web provides
enabling technologies to annotate and match services’ descriptions with a users’
features, interests and preferences, thus allowing for more efficient access to ser-
vices and then information. The aim of our work, part of service personalization,
is on automated instantiation of services which is crucial for advanced usabil-
ity i.e., how to prepare and present services ready to be executed while limiting
useless interactions with users? To this end, we exploit Description Logics rea-
soning through semantic matching to i) identify useful parts of a user profile that
satisfy services requirements (i.e., input parameters) and ii) compute the descrip-
tion required by a service to be executed but not provided by the profile. Finally,
the scalability of our approach has been evaluated through its integration in the
service consumption of the EC-funded project SOA4All.

Key words: Semantic web, web service, Personalization, Automated reasoning.

1 Introduction

Personalization in web-based applications [1], as a global tendency nowadays, aims at
alleviating the burden of information overload by tailoring the information presented
based on an individual and immediate user’s needs. Between the numerous examples
that can be found all across the web, we can highlight the proliferation of personalized
home sites, such as iGoogle (http://www.google.com/ig) or netvibes (http://www.netvi-
bes.com), but also the fact that many other web applications of different kinds treat user
configuration as one of their most prominent characteristics. From collaborative [2]
and content [3] to hybrid-based [4], various personalization techniques have been intro-
duced, depending on the data they manipulate and personalization levels they achieve.
In most of these approaches, the user profile, as a collection of data modelling the user
extended with its interests, its preferences and context, is a prominent element to ensure
accurate and efficient personalized access to information.

In recent years, web service [5], as an emergent technology to consume information
on the web, has benefited from research progress in web personalization. Indeed, many
approaches addressing user-centric and preference-based consumption of services and
? Foundation Project: Supported by European Commission VII Framework IP Project Soa4All.

more specially their publication [6], discovery [7], selection [8] and execution [9] have
emerged. The possibility to customize their results [10] even goes further by giving
the users the chance to experience those services in a personalized fashion, which is
prominent in order to permit the users to fulfil their desires more suitably.

However most of these approaches ensure personalization by collecting and analiz-
ing syntactic content of user profile and services description e.g., [11]. This under spec-
ification limits the accuracy of personalization and their automation. Towards this issue,
the semantic web [12], where the semantic content of the information is tagged using
machine-processable languages, provides many advantages over the current ”formatting
only” version of the web, its services and users. OWL [13], as one of its Web Ontol-
ogy Language which is based on Description Logics (DLs) [14], aims at modelling
knowledge on the web through ontologies i.e., formal conceptualization of a particular
domain. Therefore, services with their functionalities (i.e., input and output parameters,
preconditions, effects and invariants) and user profile with their interests, preferences
can be both annotated and then enhanced using semantic descriptions. Such annotations
are one important features to enable reasoning on services and user profile descriptions,
hence automation of personalized tasks such as the consumption of services.

In this work, we address automated instantiation of services, part of personalization
in service consumption, which is crucial for advanced usability. Service instantiation,
which is between in selection and execution, aims at preparing and presenting pre-
selected services ready to be executed while limiting useless interactions with users.
To this end, execution-time constraints attached to services descriptions are required
to be satisfy before their execution. Most of existing approaches [10] undervalue this
issue by rarely considering suitable and efficient methods for such a personalization
level. Contrary to the latter that consider several levels of interaction to manually collect
information (from the users) required by input parameters of services to be executed,
we consider automation of this process through semantic instantiation of services.

By addressing the latter, we thus aim at i) improving and easing the user interaction
with services, beneficial for both parties and ii) better supporting the user by anticipat-
ing her needs. To reach the goal of automated and personalized consumption of services
and more specially to suggest accurate and personalized presentations of services to
users, we benefit from the semantic augmentation of service and user profile descrip-
tions. In this direction, we define a framework, where potential matching between both
descriptions is defined as a reasoning task to be solved for service instantiation (in the
rest of the paper we refer to it as service personalization and adaptation). The semantic
matching, core of our approach, exploits standard DL reasoning [15, 16] and abduction
[17] to i) adapt services to the user by identifying useful parts of its profile that sat-
isfy the service requirements (i.e., input parameters) and ii) compute the descriptions
required by a service to be executed but not provided by the user profile.

The remainder of this paper is organised as follows. Section 2 briefly reviews i) DL
reasoning and abduction, both required for automated personalization, ii) semantic web
services and iii) semantic user profiles. Section 3 presents our approach to personalize
semantic web services. Section 4 presents details about the prototype implementation
and reports some experiment results. Section 5 briefly comments on related work. Fi-
nally Section 6 draws some conclusions and talks about possible future directions.

2 Background

In this section we review i) DL as a semantic language and abduction reasoning to
perform personalization. Then we remain the definitions of ii) semantic web service
and iii) semantic user profile, as core elements in our approach.

2.1 Description Logic and Abduction Reasoning

The model we considered to represent semantics of services and user profiles is pro-
vided by an ontology. In more detail, we focused on DL as a formal knowledge repre-
sentation language to define ontologies since the latter offers good reasoning support for
most of its expressive families and compatibility to current W3C standards e.g., OWL.
Terminological Box T (or TBox i.e., intentional knowledge) and Assertional Box A
(or ABox i.e., extensional knowledge) are core elements to represent knowledge in DL
systems. In the following, we will focus on the TBox T (see Fig. 1 as an example) that
supports different level of inference by means of DL reasoning. As a trade-off between
expressivity and complexity, we use the expressiveness of the DLALC [14] to perform
service personalization, which is the standard DL AL (Attributive Language) extended
with full existential qualification E and concept union U .

British ≡ Person u ∃hasSpokenLanguage.English
Name ≡ ∃hasFN.F irstName u ∃hasLN.LastName
BusinessAccount ≡ Account u ∃hasID.OpenID u

∃hasSocialNetwork.SocialNetworkAccount
PersonalAccount ≡ Account u ∃hasID.ElectronicID u

∃hasSocialNetwork.LinkedIn
SkypeAccount v Account APIKey v >, BankID v >, P erson v >
LinkedIn v SocialNetworkAccount Latitude v >, Longitude v >, ID v >
SocialNetworkAccount v Account BankAccount v Account, English v >
OpenID v ElectronicID v Account GMail vMaillingAddress v OpenID
FirstName v >, LastName v >, British v >

Fig. 1. Sample of an ALC Terminological Box T .

Besides standard DL reasoning approaches such as satisfiability or subsumption
to guarantee consistency of DL knowledge bases or build concepts hierarchy, authors
of [17] suggest computing the Abduction (Definition 1) between concepts C and D,
representing what is underspecified in D in order to completely satisfy C taking into
account the information modelled in a ALN (so compliant with ALC) TBox T .

Definition 1 (Concept Abduction Problem)
Let L be a DL, C, D be two concepts in L, T be a set of axioms in L and A be a set of
assertions. A Concept Abduction Problem (CAP), denoted as 〈L, D,C, T 〉 (or shortly
C\D) consists in finding a concept B ∈ L such that T |= D uB v C.

Example 1 (Concept Abduction)
Let C and D be two ALC descriptions respectively defined by BusinessAccount u

∃hasSkype.SkypeAccount and PersonalAccount (Fig.1). According to Definition
1, the description B required by D to satisfy (or more precisely to be subsumed by) C
is denoted by C\D i.e.,

C\D .
= ∃hasID.OpenID u ∃hasSkype.SkypeAccount (1)

In other words, D needs an OpenID and a SkypeAccount to satisfy C.

2.2 Semantic Web Services

Semantics of web services can be expressed by means of different descriptions, from
their process levels [18] (i.e., internal and complex behaviours) and causal levels [19]
(i.e., preconditions and effects on the world) to their functional levels (i.e., simple inter-
face). In this work we will focus on the latter and more generally their functional input
and output parameters, which are prominent to personalize and execute any service. In
the semantic web, these functional parameters are enhanced with DL concepts that de-
termine the semantics of the operations they achieve. Therefore, semantic web services
can be expressed as DL concepts in (2).

Service
.
= ∃requires.Input u ∃returns.Output (2)

This definition confines a semantic web service to being anything that requires
input parameters Input to be processed and returns some output parameters Output.
Both latter parameters are defined in T such that T |= Input v > and T |= Output v
>. According to this model, the OWL-S profile [20], WSMO capability [21] or SA-
WSDL [22] can be used to describe the functional level of semantic web services.

Example 2 (Semantic Web Service)
Suppose a semantic web service S1 locating friends and professional colleagues of a
specific person, as its main functionality. This service, starting from a FirstName,
LastName, BusinessAccount, SkypeAccount and a GMail address of this
person, returns the list of her nearby ContactPersons according to her Location.
According to (2), the semantic description of S1 is defined by (3).

S1
.
= ∃requires.C1

S1
u ∃requires.C2

S1
u ∃requires.C3

S1
u ∃requires.C4

S1
u

∃returns.ContactPerson (3)

where conjuncts Ci,1≤i≤4
S1

, described by means of TBox T in Fig.1, are defined by:

C1
S1

.
= ∃hasFN.F irstName u ∃hasLN.LastName (4)

C2
S1

.
= BusinessAccount u ∃hasSkype.SkypeAccount (5)

C3
S1

.
=MaillingAddress u ∃hasMail.GMail (6)

C4
S1

.
= Location u ∃hasLat.Latitude u ∃hasLong.Longitude (7)

2.3 Semantic User Profile

Semantics of user profile can be expressed on different dimensions, mainly on infor-
mation related to her i) identity and possessions, but could be also extended with her
ii) long-term interests in topics [23] and preferences, iii) skills [24], iv) behaviour [25]
and v) knowledge or beliefs in certain domains. Since the description of semantic user
profiles are tailored, in this work, to access services in a personalized way trough their
instantiation, we will focus solely on the former descriptions. Indeed, descriptions from
(ii) to (v) such as the user’s interests and preferences are mainly relevant information for
prioritizing services in a discovery process rather than making services and their (input)
parameters adapted to the user. Therefore, a DL expression of semantic user profiles is
defined by the conjunction of different parts as expressed in (8).

Profile
.
=

l

i

∃hasInfo.Infoi
l

j

∀hasInfo.(¬NonInfoj) (8)

This definition is based on a single role or property called hasInfo, which describes
the user. While descriptions Infoi cover a collection of data identifying users, descrip-
tions expressed by NonInfoj refer to information users are not inclined to provide.
The latter could be sensitive data such as medical record data. All initial information in
(8) is collected from a short questionnaire [26] and could be also updated. Alternatively,
the profile can be automatically generated from [27].

Example 3 (Semantic User Profile)
Suppose a British lady identified by her Name, ElectronicID and connected to
the LinkedIn social network (http://www.linkedin.com/), but without any authorized
access to her Bank Account from third parties. Its semantic profile P1 is defined by:

P1
.
= Female u ∃hasInfo.C1

P1
u ∃hasInfo.C2

P1
u ∀hasInfo.C3

P1
(9)

where conjuncts Ci,1≤i≤3
P1

, described by means of TBox T in Fig.1, are defined by:

C1
P1

.
= Person u (∃hasName.Name) u (∃hasNationality.British) (10)

C2
P1

.
= Account u (∃hasID.ElectronicID) u (∃hasSocialNetwork.LinkedIn) (11)

C3
P1

.
= ¬BankAccount t ¬(∃hasBank.BankID) (12)

The model (8) we suggest for semantic user profile can be adapted with straightfor-
ward modifications and extensions (e.g., roles) depending on the application [24].

3 Semantic Web Service Personalization

The formalization of services (2) and user profiles (8) in DLs is required to compare
their descriptions at a semantic level. The comparison is proceeded through a process of
DL expressions matching, based on [15, 16] and [17]. This section, illustrated with ex-
amples, describes the personalization approach in details. First of all, matching through
standard DL reasoning is employed to adapt services by means of user profiles. Then,
we suggest an approach to compute relevant information which is missing in the user
profile to improve personalization. Finally, we present two ways to extend the user pro-
file with the latter information.

3.1 Personalized Adaptation of Services with Semantic User Profiles

Our approach, based on semantic matching, aims at discovering relevant information in
the semantic user profile that could fit (i.e., be used by) the service (i.e., its functional
input parameters) to be executed. By considering such a personalization, we suggest an
approach which adapts any service to the user. To support this adaptation, the matching
is performed over a service S and a user profileP with respect to a TBox T . Therefore, a
role hierarchy (13) between requires and hasInfo roles of S (2) and P (8) is required
in T , at least for satisfiable compatibility reasons [15] between S and P .

T |= hasInfo v requires (13)

According to (13), some information (hasInfo) from the user profile could be used
by services to adapt and then personalized its input parameters (requires).

In detail, our approach achieves such an personalized adaptation by following steps
in Algorithm 1. From a logical point of view, this algorithm evaluates potential match-
ing between conjuncts CS and CP of respectively S and P . By emphasizing only ro-
bust matching [28] i.e., Exact in line 7 and PlugIn in line 10, this algorithm focuses on
the description required by S and provided by P . Therefore, other matching such as
T |= CP w CS (Subsume) or T 6|= CP u CS v ⊥ (Intersection) are not valued since
they do not fit our service adaptation purpose.

Algorithm 1: Matching-based Personalized Adaptation: adapt(S, P, T).
Input: A user Service S, a Profile P , a Terminological Box T .1
Result: match: a set of matching triples (CS , CP , type) if CS could be adapted by CP2

with a matching type, Incompatibility otherwise.
begin3

match← ∅;4
foreach ∃requires.CS ∈ Input(S) do5

// Exact: The descriptions of user profile and service match perfectly.6
if there exists ∃hasInfo.CP ∈ Info(P) such that T |= CP ≡ CS then7

match← match ∪set (CS , CP ,
′′≡′′′′);8

// PlugIn: The user profile description is more specific than service description.9
if there exists ∃hasInfo.CP ∈ Info(P) such that T |= CP v CS then10

match← match ∪set (CS , CP ,
′′v′′);11

// Incompatible: The User profile and service descriptions are incompatible.12
if there exists ∀hasInfo.(¬CP) ∈ NonInfo(P) such that T |= CP v CS13
then

return Incompatibility;14

return match;15

end16

In Algorithm 1 Exact matching are tested before the PlugIn matching, mainly be-
cause of the logical implication relation between these matching. Indeed, if T |= CP ≡
CS (Exact), then T |= CP v CS (PlugIn). The algorithm is then based on structural
algorithms for satisfiability and subsumption [29]. Since it is reasonable to assume that

users and service providers do not enter contradicting information, we assume that the
services S and users profiles P descriptions are consistent in T .

The result of this personalized adaptation step is a set of matching triples (CS , CP , type)
(referring to match) wherein the description CP in P could be used to adapt the ser-
vice parameter CS in S. The latter descriptions are completed with their matching type,
emphasizing the accuracy of the personalized adaptation step (from CP to CS). In case
S violates some descriptions in P , S and P are returned as incompatible.

Example 4 (Semantic and Personalized Adaptation of Services)
Suppose the service S1 and user profile P1 in Examples 2 and 3. According to Algorithm
1, the triple (C1

S1
, C1

P1
, P lugIn) is returned. Indeed, according to the TBox T in Fig.

1, it seems possible to personalized S1 by adapting the FirstName and LastName
input parameters of S1 with information of C1

P1
in the user profile, and more specially

with its Name.

Even if our approach is able to personalize services with user profile descriptions
using subsumption-based DL reasoning, the latter profile maybe not always as accurate
as it should be hence limiting its benefits. Indeed, in some cases parts of services could
only partially match or even mismatch the profile.

Example 5 (Limitation of Semantic and Personalized Adaptation of Services)
Even if C2

S1
and C2

P1
in Examples 2 and 3 are both related to Account description in

T ,C2
P1

cannot be used to personalize S1 and more speciallyC2
S1

because of missing de-
scription (1) in its profile P1 i.e., neither BusinessAccount, nor SkypeAccount.

3.2 Towards Incomplete Semantic User Profile

Since the personalization process may fail because of under specification or missing
description in the user profile (e.g., Example 5), we suggest to extend Algorithm 1 with
Algorithm 2 by exploiting results from non robust matching cases between conjuncts
CS and CP i.e., Intersection and Subsume. Therefore, we aim at i) inferring further
matching triples from the latter matching cases, and ii) discovering descriptions which
are required by services but not provided by the user profile by applying abduction.

Further Matching Triples for Personalized Adaptation of Services: In both Inter-
section and Subsume matching cases, simple matching triple (CS , CP , type) cannot
be returned as in Algorithm 1 mainly because only a part of CP is required to adapt
(again) a part of CS . Towards this issue, we identify descriptions B and A that need to
be removed respectively from CS and CP to obtain a PlugIn matching between CP and
CS i.e., CP∆CS (Definition 2, adapted from [30]).

Definition 2 (Symmetric Difference)
Let L be a DL, C, D be two concepts in L, T be a set of axioms in L and A be a set
of assertions. The symmetric difference between C, D, denoted as C∆D consists in
finding two concepts A,B ∈ L such that

T |= C\A v D\B (14)

C∗∆D and C∗∆D refer respectively to A and B in (14).

Example 6 (Symmetric Difference)
Let C2

P1
and C2

S1
be two ALC descriptions respectively defined in Examples 2, 3 with

respect to T in Figure 1. According to Definition 2, C∆D is defined by A and B i.e.,

A
.
= ∃hasID.ElectronicID (15)

B
.
= ∃hasID.OpenID u ∃hasSkype.SkypeAccount (16)

Algorithm 2: (Refined) Personalized Adaptation: refinedAdapt(S, P, T).
Input: A Service S, a user Profile P , a Terminological Box T .1
Result: A pair (match,miss) where match is set of matching Triples (CS , CP , type) if2

CS could be adapted by CP with a matching type, and miss refers to the set of
missing description in P in order to adapt S.

begin3
i← 0; miss← ∅; match← ∅;4
foreach ∃requires.CS ∈ Input(S) do5

// Non Robust: Profile description partially covers service description.6
if there exists ∃hasInfo.CP ∈ Info(P) such that T 6|= CP u CS v ⊥ and7
T 6|= CP v CS then

A← C∗P∆CS ; // Descriptions A in CP and B in CS ...8
B ← CP∆C

∗
S ; // ...that make T 6|= CP @ CS .9

X ← CS\B; // Descriptions X in CS and Y in CP ...10
Y ← CP \A; // ...such that T |= Y v X .11
match← match ∪set (X,Y,

′′ u′′);12
missi ← CS\CP ;13
i← i+ 1;14

miss← infv{missj |0 ≤ j ≤ i}\set {>};15
return (match,miss);16

end17

According to Definitions 1 and 2, it is straightforward to identify the parts X ∈
P(CS) and Y ∈ P(CP) respectively from CS and CP (where P(S) refers to power set
of S) which are required to ensure that X can be adapted by Y (in the sense of Algo-
rithm 1 i.e., T |= CP v CS). Both descriptions X and Y , parts of the new matching
triples, are defined as CS\(CP∆C

∗
S) and CP \(C∗

P∆CS). Algorithm 2 elaborates these
further matching triples (line 12) from respectively lines 9, 10 and lines 8, 11. The first
element of the matching triples represents the description in CS which subsumes CP ,
whereas the second element represents the part in CP which is subsumed by CS . In
other words, these triples present the descriptions in CP which will be used to further
adapt the descriptions in CS . Finally, as Algorithm 1, results are aggregated in match.

Example 7 (Matching Profile to Service with an Intersection Match)
According to Example 2, 3 and T in Figure 1, T 6|= C2

P1
u C2

S1
v ⊥. Therefore, only

some parts Y of C2
P1

can be used to adapt some parts X of C2
S1

. Applying Algorithm 2
(lines from 8 to 12) and using results from Example 6, Y and X are defined as:

Y ≡ Account u (∃hasSocialNetwork.LinkedIn) (17)

X ≡ Account u (∃hasSocialNetwork.SocialNetworkAccount) (18)

This simply means that the SocialNetworkAccount ofC2
P1

(i.e., LinkedIn) can
be used to instantiate the SocialNetworkAccount requirement (i.e., input param-
eter) of C2

S1
.

Computing Missing Description in a User Profile: In addition, Algorithm 2 (lines 13
and 15) computes descriptions which are required by CS and not (or partially) provided
by CP . To this end, abduction is applied between the latter conjuncts (Definition 1) and
then the result is aggregated in a set of missing description miss (Definition 3).

Definition 3 (Set of Missing Description)
The set of missing description miss of a service personalization problem (S, P, T) is
defined by:

miss(S, P, T) .
= inf
v
{CS\CP |T 6|= CP u CS v ⊥}\set {>} (19)

where CS and CP are respectively conjuncts of ∃hasInfo.CP and ∃requires.CS .

According to Definition 3, miss gathers the most specific descriptions of the set
{Ci

S\Cj
P }. Therefore a same description (i.e., the most specific in the service require-

ments) can be used to satisfy different abduction problems Ci
S\Cj

P and then could be
exposed as a description not provided by P but required by some conjuncts (related by
subsumption) of S. miss does not only explain why services have not been adapted
and personalized (regarding a user profile) but also suggest a solution to extend the
personalization of semantic web services.

Property 1 (Empty Set of Missing Description)
The set of missing descriptionmiss of a web service personalization problem (S, P, T)
with either i) T |= CP ≡ CS; or ii) T |= CP v CS is the empty set.

Proof. By Definition 1, CS\CP is defined by T |= CP u (CS\CP) v CS . Therefore,
we obtain in both cases that CS\CP ≡ > is a solution i.e., miss is defined by the
empty set according to Definition 3.

The property 1 justifies our choice of not computing missing descriptions in Algo-
rithm 1. Indeed, such a computation would reach to the empty set.

Example 8 (Set of Missing Description)
Since the description in P1 is not enough to totally adapt and personalize S1 (Example
5), Algorithm 2 and Definition 3 are required to discover the missing description miss
in P1. According to the latter definition, miss is constituted by the union of results of
the abduction problems C2

S1
\C2

P1
(Example 1), C4

S1
\> and C3

S1
\C2

P1
:

C2
S1
\C2

P1
≡ Account u ∃hasID.OpenID u ∃hasSkype.SkypeAccount (20)

C4
S1
\> ≡ Location u ∃hasLat.Latitude u ∃hasLong.Longitude (21)

C3
S1
\C2

P1
≡MaillingAddress u ∃hasMail.GMail (22)

SinceGMail v OpenID, hasMail v hasID andmiss only considers most specific
description (whether subsumption-based comparable), miss is {A,C4

S1
} where:

A ≡ Account u ∃hasMail.GMail u ∃hasSkype.SkypeAccount (23)

According to Property 1, conjuncts Ci,1≤i≤4
S1

and Cj,1≤j≤2
P1

such that T |= Cj
P1
v Ci

S1

are not considered by Algorithm 2.

3.3 Extending Semantic User Profile with Further (Missing) Descriptions

Once the set of missing descriptions is retrieved through miss, two approaches are
considered. First of all, an intuitive method consists in discovering [31] which new
and appropriate services Si,1≤i≤n

would be able to return the missing description. Fol-
lowing this approach, this description miss could be identified and satisfied by the
conjunction of some output parameters Out Si,1≤i≤n

of these services Si,1≤i≤n
. There-

fore, depending on the available description in the user profile P and the description
of output parameters of Si,1≤i≤n

, we could proceed to the service S personalization.
Indeed, the conjunction C of the output parameters Out Si,1≤i≤n

and the user profile
P i.e.,

dn
i=1Out Si u P can be used to adapt and personalize the service S by apply-

ing Algorithm 1 as following: adapt(S,C, T). However, each input parameter of these
discovered services Si has to be known at run time. To this end, we can imagine use the
description available in P to adapt this new discovered services. In this direction, Algo-
rithm 1 is applied on the n relevant services as following: adapti,1≤i≤n

(Si, P, T). One
constraint of this method is related to the number of services (and their input parameters
to be satisfied by P) which are required to satisfy miss.

In the second approach, the set of missing description is simply suggested to the
user. The user is then responsible of providing the description that the system needed
to adapt and personalize the service. The requested information is also used to populate
the semantic user profile, hence available for further personalization purposes.

4 Validation

In this section, we discuss the prototype tool that we developed to provide personalized
adaptation of semantic web services. Moreover we give a preliminary evaluation of the
suggested approach by analyzing some results obtained with the prototype.

4.1 Architecture and Implementation

Figure 2 shows the high level prototype architecture wherein we implemented and tested
our personalization approach. In detail, our approach, part of the core architecture of the
EU project SOA4All1 (Service Oriented Architectures for All), has been integrated with
three main state-of-the-art modules, namely a DL Reasoning, a Service Discovery and
a SPARQL Query Engine module. The main function of the former module is to check
satisfiability, subsumption and infer on-line matching between user profile and service

1 http://www.soa4all.eu/

description. The MAMAS-tng2 reasoner has been used to compute standard reasoning
and evaluate abduction. This reasoner has been extended to compute symmetric dif-
ference (Definition 2). The SPARQL3 Query Engine module RDF2GO4, is required to
manipulate matching triples i.e., RDF-based CP , CS and miss data returned by Al-
gorithms 1 and 2. For instance, this module transforms RDF-based CP in CS using a
CONSTRUCT query form of SPARQL in order to adapt CS with CP .

___|

reason on

OpenID Access

Description Logic

Reasoning

Personalization Approach

are described by

SPARQL Query

Engine
Personalize
Service to

Annotations

ServicesUpgraded

Profiles

User Profile Upgrade with

Semantic Annotations of Services

(LinkedData Principle)

Ontologies

a
re

 d
es

cr
ib

ed
 b

y

Semantic−based Services Description

Service Discovery

___|___|

___|
___|

Update of
Profiles

Personalized

Service

Caption

End Point

Starting Point

(Mamas−tng)

Profiles

Users

(RDF2GO)

([31])

(RDF Repository [32])

State−Of−The−Art Tools

(Impl) := Implementation used

Processing

Fig. 2. Core Architecture for Service Personalization.

In addition, a pool of (SA-WSDL) semantic-based services (formalized in (2)),
and semantic user profile (formalized in (8) and identified by OpenID5 are stored in
two different RDF6 repositories, e.g., [32] for services and a Sesame-based7 for pro-
files. Their descriptions are based on different ALC TBoxes, depending on ontolo-
gies used to annotate services. Therefore, the semantic descriptions used to annotate
a service and a profile may differ, even if the annotated element is the same. Towards
this issue of ontology matching [33], we integrated a simple component (User Profile
Upgrade Component) which aims at semi-manually linking profiles and services de-
scriptions, following the Linked Data principles [34] e.g., by further annotating profiles
with relevant owl:sameAs, rdfs:subClassOf, owl:equivalentProperty
or rdfs:subPropertyOf constructs. To this end, the SPARQL Query Engine mod-
ule is used. Finally, once the service personalization process is achieved, the service is
ready to be executed by any execution engine. Moreover, the semantic user profile is
updated in case of missing description (Definition 3). To this end, either the user is able
to provide it, or a service discovery process is performed (Section 3.3).

2 http://dee227.poliba.it:8080/MAMAS-tng/DIG
3 http://www.w3.org/TR/rdf-sparql-query/
4 http://semanticweb.org/wiki/RDF2Go
5 http://openid.net/
6 http://www.w3.org/RDF/
7 http://coconut.tie.nl:8080/storage/repositories/profiles

4.2 Experimental Results

Evaluation of personalization systems remains a challenge due to the lack of under-
standing of what factors affect user satisfaction with a personalization system [35].
Personalization systems are in general evaluated and compared on the accuracy of pre-
dictions. However, a comparison based on the accuracy of our approach and existing
personalization methods is not appropriate. Indeed, our work i) features different ex-
pressivity (compared to syntactic-based approaches), and ii) does not only evaluate if a
user profile and a service match but also explains how they could match and why they
could not (compared to semantic-based approaches).

Therefore we analyze the performances of our approach by i) comparing abduction-
with difference-based [36, 37] personalization using different expressivities of DL, and
ii) studying the impact of the User Profile Upgrade component (Fig.2) on the person-
alization process. The experiments have been conducted on Intel(R) Core(TM)2 CPU,
2.4GHz and 2GB RAM.

Comparing Abduction- and Difference-based Service Personalization: Since other
approaches based on DL difference operator such as [36] or [37] can be used to compute
from a given description all the information different in another description, we suggest
to compare them with abduction to achieve service personalization (Fig.3). The com-
parison is driven on three set of ontologies with different DLs used to annotate services
and profiles i.e.,ALC,ALN andALE , from the most to the least expressive. In partic-
ular, the two former ontologies are based on the ALE TBox (formally defined by 1100
concepts and 390 properties) wherein only DL operators changed in descriptions. Per-
sonalization of up to 100 services have been considered in this experiment, especially
for obtaining convincing results towards their applicability in real (industrial) scenarios.

 0
 20
 40
 60
 80

 100
 120
 140
 160

[17] [36] [37] [17] [36] [37] [17] [36] [37]

C
om

pu
ta

tio
n

C
os

t (
s)

 to
 P

er
so

na
liz

e
10

0
se

rv
ic

es

ALEALNALC

Fig. 3. Abduction vs. Difference.

The [37]’s difference consider a semantic maximum (ordering according to the sub-
sumption operator) between (only) subsumption-based comparable descriptions. Even
if they provides sufficient condition (i.e., structural subsumption relation) to character-
ize the uniqueness of difference, some TBoxes cannot be considered such as ALN . In
addition, this is the most time consuming approach regarding the three set of experimen-
tation, mainly because they perform an equivalence between two concept descriptions
(T |= D u B ≡ C) whereas abduction computes (only) a subsumption of concept
descriptions (T |= D u B v C). The difference operator of [36] is a refinement of

[37]’s difference that considers the syntactic minimum (�d) between incomparable de-
scriptions. Such a consideration, limiting the relevance of its results using expressive
DLs, explains its very good performance.

Even if deciding subsumption, computing abduction and difference in ALE is NP-
complete, Figure 3 reports the feasibility and the scalability of the personalization pro-
cess. However these results depend on size and structure of the used ontologies, size and
complexity of user profile and service descriptions. The choice of abduction to person-
alize services is justified by its performance in the three different DLs studied. Indeed,
our process of personalizing services with an expressive DL ALC over performs the
time consuming [37]’s difference-based personalization using ALN or ALE DLs.

Impact of the User Profile Upgrade Component: Since our personalization approach
aims at matching services to user profiles, it is required that their descriptions can be
semantically compared, either using a same ontology, or by establishing subsumption-
based relationships between some of them. This experiment studies the qualitative im-
pact of the latter (i.e., User Profile Upgrade component in Fig.2) on personalization.

To this end, 55 different initial ALN TBoxes (i.e., average of 103 concepts and 61
properties) have been used to annotate 100 services Si,1≤i≤100 and one profile P . Then,
progressively, some inter-connections have been established between them, favouring
the matching hence the personalization. Roughly speaking, the progression of connec-
tions grows exponentially along 10 rounds Ri,1≤i≤10 i.e., from adding 21 to 210 con-
nections. After each round, we run our personalization approach on these 100 services
and evaluate the rate of i) input parameters qS that can be adapted given P and ii)
missing description qmiss, both regarding the number of description in Si.

 0

 10

 20

 30

 40

 50

 60

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

q
S

q
m

iss

D
es

cr
ip

tio
ns

 R
at

e
(%

)

R10R9R8R7R6R5R4R3R2R1

Fig. 4. Impact of the User Profile Upgrade Component on Service Personalization.

As shown in Fig.4, the more interconnections between ontologies, the better per-
sonalization (i.e., qS). In the same way, the rate of description to be updated in the
user profile (i.e., qmiss) is also improving. Both improvements follow a linear evolution
even if an exponential generation of interconnections is applied. In more detail, 37%
and 98% of service descriptions can be semantically compared (not matched) to profile
description respectively in the first and last round of interconnections generation. The
transition between round 5 and 6 (with 64 new connections) is the most significant with
respectively 53% and 72% of comparable descriptions in services and profile. While our
approach is able to adapt and personalize 44% of services in the last two rounds, the

personalization only reaches 15% of services in the first three rounds. This confirms the
high impact of the user profile upgrade component in our personalization framework.

qmiss is in general higher than qr since some input parameters of services cannot be
captured by personalization e.g., variables such as flight destination, or sensitive data.

5 Related Work

Based on [38], [10] present Personal Reader Framework, an approach for RDF-based
data extraction, combination, visualization and personalization. In particular, they gen-
erate personalized view of data by applying standard subsumption-based matching be-
tween data description, user profile and contextual information. To this end they adopt
TRIPLE [39], a rule language which is designed for querying and transforming RDF
models. Even if their approach is augmented with contextual information, their matching-
based personalization approach do not consider automated update of user profile.

Contrary to our approach, [8, 23, 27] perform personalization to obtain more rel-
evant services during the discovery process. Therefore they do not address services
instantiation (through their personalized adaptation) but rather service selection. The
selection process is based on the compatibility of users’ interests, disinterests and ser-
vice descriptions. Services that do not match a certain profile are discarded on the fly.
Since the matching process between the latter descriptions is handled on mobile device,
both approaches [23] sacrifice expressivity of DL and use standard DL inferences [15,
16]. Even more (semantically) limited, [27] consider only one-to-one syntactic match-
ing of service and profile descriptions for personalization. [8] consider non-functional
parameters, preferences and knowledge that is implicitly given by previous service to
personalize the selection of services.

[24] present an approach for matching user profiles for applications such as job
recruitment or dating system. The matching, which is performed on a demand profile
Pd and a supply profile PS , aims at evaluating their semantic similarity. In the same
way as our work, abduction is used, but only for weighting, ranking purposes and not
for extracting and reusing relevant parts of Pd and PS . In addition they apply the non-
standard inference contraction [40] to evaluate the effort (i.e., description) required to
make Pd uPs satisfiable inH. On the contrary, we assume the latter conjunct to be sat-
isfiable inH since one goal of our personalization approach is to suggest more specific
descriptions (and so satisfiable) to the user profile regarding the service descriptions.

6 Conclusion

In this work we studied service personalization or the way to tailor services to a partic-
ular user. In particular, we addressed automated instantiation of services (through per-
sonalized adaptation) which is crucial for advanced usability i.e., how to prepare and
present services ready to be executed while limiting useless interactions with users? To-
wards this issue, we considered a semantic augmentation of services and extensible user
profiles to infer potential matching between both descriptions. The semantic matching,
core of our approach, exploits standard DL reasoning and abduction to i) identify useful
parts of a user profile that satisfy the service requirements (i.e., input parameters) and

ii) compute the descriptions required by a service to be consumed but not provided by
the user profile. Our approach, integrated in the service consumption of the EC-funded
project SOA4All, has been augmented with a process of user profile upgrade in case
heterogeneous ontologies are used to describe services. Such an augmentation, aiming
at linking data description of services and user profile, has been validated by experimen-
tal results. In the same way, the latter results confirm our choice of preferring abduction
rather than other difference operators for scalability and expressivity reasons.

In future work we will consider a more precise abduction operator, which is also
easy-to-compute in expressive DLs in order to address more complex cases of per-
sonalization and user profile update. We will also focus on the context dimension for
personalization. Another area of investigation is the policy-based control access [41] of
the user profile by third parties during its update. Finally, as reported by experimental
results, automating ontologies alignments is a key issue that need to be address.

References

1. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage
mining. Commun. ACM 43(8) (2000) 142–151

2. Goldberg, D., Nichols, D.A., Oki, B.M., Terry, D.B.: Using collaborative filtering to weave
an information tapestry. Commun. ACM 35(12) (1992) 61–70

3. Lieberman, H.: Letizia: An agent that assists web browsing. In: IJCAI (1). (1995) 924–929
4. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Ar-

tif. Intell. Rev. 13(5-6) (1999) 393–408
5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and

Applictions. Springer-Verlag (2004)
6. Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A.: Adding semantics to web services

standards. In: ICWS. (2003) 395–401
7. Garcı́a, J.M., Ruiz, D., Cortés, A.R.: A model of user preferences for semantic services

discovery and ranking. In: ESWC (2). (2010) 1–14
8. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In: WWW (Al-

ternate Paper Tracks). (2003)
9. Mandell, D.J., McIlraith, S.A.: Adapting bpel4ws for the semantic web: The bottom-up

approach to web service interoperation. In: ISWC. (2003) 227–241
10. Baumgartner, R., Henze, N., Herzog, M.: The personal publication reader: Illustrating web

data extraction, personalization and reasoning for the semantic web. In: ESWC. (2005) 515–
530

11. Blake, M.B., Nowlan, M.F.: A web service recommender system using enhanced syntactical
matching. In: ICWS. (2007) 575–582

12. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5)
(2001) 34–43

13. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. W3c recom-
mendation, W3C (2004)

14. Baader, F., Nutt, W. In: The Description Logic Handbook: Theory, Implementation, and
Applications. (2003)

15. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: WWW. (2003) 331–339

16. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services
capabilities. In: ISWC. (2002) 333–347

17. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Abductive matchmaking using
description logics. In: IJCAI. (2003) 337–342

18. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services
by planning at the knowledge level. In: IJCAI. (2005) 1252–1259

19. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
KR. (2002) 482–496

20. Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The owl-s coalition, owl-s 1.1.
Technical report (2004)

21. Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology submis-
sion, w3c submission. (2005)

22. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for wsdl and
xml schema. IEEE Internet Computing 11(6) (2007) 60–67

23. Kleemann, T., Sinner, A.: User profiles and matchmaking on mobile phones. In: INAP.
(2005) 135–147

24. Calı̀, A., Calvanese, D., Colucci, S., Noia, T.D., Donini, F.M.: A description logic based
approach for matching user profiles. In: Description Logics. (2004)

25. Berendt, B., Spiliopoulou, M.: Analysis of navigation behaviour in web sites integrating
multiple information systems. VLDB J. 9(1) (2000) 56–75

26. Ghosh, R., Dekhil, M.: Discovering user profiles. In: WWW. (2009) 1233–1234
27. Weiß, D., Scheuerer, J., Wenleder, M., Erk, A., Gülbahar, M., Linnhoff-Popien, C.: A user

profile-based personalization system for digital multimedia content. In: DIMEA. (2008)
281–288

28. Lécué, F., Delteil, A.: Making the difference in semantic web service composition. In:
AAAI. (2007) 1383–1388

29. Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for subsumption in
the classic description logic. J. Artif. Intell. Res. (JAIR) 1 (1994) 277–308

30. Herzig, A.: The pma revisited. In: KR. (1996) 40–50
31. Benatallah, B., Hacid, M.S., Léger, A., Rey, C., Toumani, F.: On automating web services

discovery. VLDB J. 14(1) (2005) 84–96
32. Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J., Krummenacher, R.:

Service Engineering: European Research Results. In: Adaptive Service Binding with
Lightweight Semantic Web Services. (2010)

33. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (DE) (2007)
34. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf.

Syst. 5(3) (2009) 1–22
35. Anand, S.S., Mobasher, B.: Introduction to intelligent techniques for web personalization.

ACM Trans. Internet Technol. 7(4) (2007) 18
36. Brandt, S., Kusters, R., Turhan, A.: Approximation and difference in description logics. In:

KR. (2002) 203–214
37. Teege, G.: Making the difference: A subtraction operation for description logics. In: KR.

(1994) 540–550
38. Antoniou, G., Baldoni, M., Baroglio, C., Baumgartner, R., Bry, F., Eiter, T., Henze, N., Her-

zog, M., May, W., Patti, V., Schaffert, S., Schindlauer, R., Tompits, H.: Reasoning methods
for personalization on the semantic web. Annals of Mathematics, Computing & Telefinfor-
matics 2(1) (2004) 1–24

39. Sintek, M., Decker, S.: Triple - a query, inference, and transformation language for the
semantic web. In: International Semantic Web Conference. (2002) 364–378

40. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept abduction and
contraction in description logics. In: DL. (2003)

41. Abel, F., Henze, N., Krause, D.: Context-aware ranking algorithms in folksonomies. In:
WEBIST. (2009) 167–174

A purely logic-based approach to approximate
matching of Semantic Web Services

Jörg Schönfisch12, Willy Chen12, and Heiner Stuckenschmidt2

1 SysTec-CAx GmbH, München, Germany
{joerg.schoenfisch,willy.chen}@systec-cax.de

http://www.systec-cax.de
2 KR & KM Research Group, University of Mannheim, Germany

heiner@informatik.uni-mannheim.de

http://ki.informatik.uni-mannheim.de

Abstract. Most current approaches to matchmaking of semantic Web
services utilize hybrid strategies consisting of logic- and non-logic-based
similarity measures (or even no logic-based similarity at all). This is
mainly due to pure logic-based matchers achieving a good precision, but
very low recall values. We present a purely logic-based matcher imple-
mentation based on approximate subsumption and extend this approach
to take additional information about the taxonomy of the background
ontology into account. Our aim is to provide a purely logic-based match-
maker implementation, which also achieves reasonable recall levels with-
out large impact on precision.

Keywords: semantic web services, approximate matching, approximate
subsumption, logic-based

1 Motivation

Web service discovery and matchmaking is a field of ongoing research. For se-
mantic web services, logic-based reasoning offers the possibility of high precision.
However, in general it achieves only poor recall levels. Due to this, most current
matcher implementations utilize a combination of logic- and non-logic-based, or
even only non-logic-based similarity measures.

The best performing matcher during 2009’s Semantic Service Selection con-
test3 S3, URBE [15], uses only non-logic-based matching. Most of the other
matchers we found so far (SAWSDL-MX2 [8], DAML-S Matcher [14], COCOON
Glue [1], SAWSDL-iMatcher3/13) utilize a hybrid strategy, merging the results
of a logic and non-logic matching step. However, they only support coarse de-
grees of a logic match, i.e., exact, plug in, subsumes, subsumed-by, intersection
and fail [22].

LOG4SWS.KOM [18] improves this approach by defining adaptive degrees
of match and assigning numerical values to them, which can easily be combined

3 http://www-ags.dfki.uni-sb.de/~klusch/s3/s3-2009-summary.pdf

2 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

with other numerical similarity values. These numerical values are determined
through the taxonomic distance of the concepts used to annotate the service offer
and request. As a fallback strategy, LOG4SWS uses WordNet4 to determine the
similarity of interface, operation or parameter names, if no concepts are available
or an error occurs during processing. It toop part non-competitively in 2009’s
S3 as a beta version and outperformed URBE and SAWSDL-MX2 on average
precision [18].

iSeM [7] is based on concept abduction [2], which is a similar notion of ap-
proximate subsumption to the one we use in our implementation. Consequently,
it also supports approximate and more fine-grained degrees of match. Through
concept abduction iSeM determines which properties of a request or an offer pre-
vent the subsumption from succeeding and ranks request-offer pairs according to
the loss of information by omitting those properties. Additionally it implements
non-logic-based similarity measures to further improve the ranking.

Another service matcher which directly takes the structure of the taxon-
omy into account when computing matches is F-Match [21]. Yau et al. compute
semantic similarity of concepts by their distance and relationship in the taxon-
omy as proposed in a graph matching approach by Zhong et al. [23] and use
this value, together with some others, for ranking the services. Their evaluation
based on randomly generated service offers and requests shows a surprisingly
high precision and recall of 100%.

Our matcher is based on the notion of approximate subsumption as proposed
in [19]. We extend this approach in three ways: our first addition utilizes infor-
mation about the taxonomy of the background ontologies to achieve a more fine
grained ranking. The other two extensions are aimed at lowering query response
times through a slight change in the definition of approximate subsumption and
optimized query execution order. Our goal is to improve recall through approx-
imation, but keeping high precision and a fast query response time. For our
matcher we assume web services to be annotated with semantic information
according to the SAWSDL standard [9].

This paper is structured as follows: In section 2 we define approximate sub-
sumption and give an example of its usage. The concept of approximate sub-
sumption as we applied it to semantic web services and our implementation is
described in section 3. We evaluate our implementation in section 4 and conclude
in section 5.

2 Approximate Subsumption

In this section we briefly describe approximate subsumption. In [19] S-Interpre-
tations [16] are applied to description logic, assigning each concept not in the set
S the top > or bottom ⊥ concept, depending on which interpretation is used.
Consequentially, concepts not in S will be ignored by a subsumption test or cause
it to fail. The interpretation which maps concepts to the top concept is called

4 http://wordnet.princeton.edu/

Purely logic-based Semantic Web Service matching 3

upper approximation I+
S and the interpretation mapping concepts to the bottom

concept is called lower approximation I−S . By applying these approximations to
the definition of standard subsumption ∀I : I |= C v D ⇔ (Cu¬D)I = ∅ (with
C and D being concept expressions), an approximate subsumption operator is
defined: v

S
:

∀I : I |= C v
S
D ⇔ (C u ¬D)I

−
S = ∅

It is shown that this approach has the property of generalized monotonicity,
making it possible to generate weaker version of the subsumption operator with
every approximation step by decreasing the size of S. This allows to rank a
result list based on the degree the operator had to be weakened to receive a
specific result. Possible strategies for altering S include contraction by removing
concepts sequentially or permutation by creating every possible combination of
concepts in S.

A great advantage of this approach is, that it can be implemented by syn-
tactic modifications of concept expressions and then be evaluated by standard
description logic reasoners [20]. The definition of the rewriting rules for theses
modifications for the lower approximation (.)− are as follows (with A being an
atomic concept):

(A)− →⊥ if A ∈ S (1)

(¬A)− →⊥ if A ∈ S (2)

(¬C)− → ¬(C)+ (3)

(C uD)− → (C)− u (D)− (4)

(C tD)− → (C)− t (D)− (5)

The definition of the upper approximation (.)+ is analogous, only equations
1 and 2 are adapted:

(A)+ → > if A ∈ S (6)

(¬A)+ → > if A ∈ S (7)

Applying these rewriting rules to the approximate subsumption operator we
get the following alternative definition:

∀I : I |= C v
S
D ⇔ (C)− ∩ ¬(D)+ = ∅

So to check for approximate subsumption we have to create the lower approxi-
mation of a service offer and the upper approximation of the service request and
test whether the intersection is equal to the empty set.

In our implementation we call this original definition of approximate sub-
sumption Simple strategy. The following gives an example of how this strategy

4 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

is carried out5: Lets consider a search application for pizza delivery services. The
user may specify different toppings he likes to have on his pizza, and the search
then returns a number of delivery services offering pizzas with these ingredi-
ents. For example a user wants a vegetarian pizza with Broccoli and Artichoke.
Unfortunately no delivery can satisfy this wish. Subsequently, the system ap-
proximates the request by creating two new request with Broccoli and Artichoke
replaced with > respectively. Executing these two new requests, the system
discovers pizza delivery services which offer Broccoli and Mandarine pizzas or
Artichoke and Mushroom pizzas, which both might be relevant to the user. The
next approximation step would approximate both Broccoli and Artichoke to >
and subsequently return every pizza with two vegetarian toppings.

3 Applying Approximate Matching to Semantic Web
Services

This chapter explains in more detail how we applied approximate subsumption to
semantic web services and how we implemented partial matchmaking for service
discovery and which extensions we made.

The implementation consists of two parts: The first part defines the web
service ontology, processes the service offers and creates requests represented as
concepts of the ontology. The second part, a generalized matchmaker, reasons
on this ontology and computes matches to the request based on its subsumption
relation to service offers.

The typical usage of our matchmaker is divided into an offline initialization
and classification of service offers, and the online processing of requests. During
the initialization semantic annotations are extracted from SAWSDL services and
added to a service ontology. This ontology is then classified with the help of a
description logic reasoner. After the initialization any number of request can be
issued to the matchmaker without further reclassification.

3.1 Extracting Semantic Annotations

In order to build an ontology of all known web services the semantic annotations
have to be extracted from the web service descriptions. A simplified version of
a web service with SAWSDL annotation is shown in Fig. 1.

The concepts, which are extracted from the web service annotations, are
added to a service ontology. This is a minimal ontology for describing a service,
modelled in OWL [5]. It is quite similar to other upper ontologies for Web ser-
vices, like OWL-S [12] or WSMO [10], but its only classes are Service, Operation,
Input and Output and the object properties hasOperation, hasInput and hasOut-
put connecting them. Other aspects of a service, like how to connect to it, or

5 To simplify this example we do not create the lower approximation of all offered
pizzas, but only the upper approximation of the request. Nonetheless, the general
procedure stays the same.

Purely logic-based Semantic Web Service matching 5

Fig. 1. Simplified excerpt from a SAWSDL-annotated Web service

information about availability or reliability, which are present in more complex
ontologies, e.g. OWL-S or WSMO, are not modelled in our prototype. Figure 2
shows how this looks like for the Web service example from above.

pizzaDeliveryServiceSearch SubclassOf

(hasOperation some opSearchByTopping)

opSearchByTopping SubclassOf

(hasInput only Topping) and

(hasOutput only Address) and

(hasInput some Topping or hasOutput some

Address)

Fig. 2. Excerpt from the service ontology showing a web service instance

While loading a service, the approximator also counts the occurrences of each
concept used to annotate its parameters, which is important when determining
the order in which they should be approximated (cf. approximation strategies).
Furthermore, it maintains a list of cumulated occurrences, which are the sum
of a concept’s and all of its sub concepts’ occurrences throughout the whole
service ontology. This number is a better indicator for how restricting a specific
constraint of the request is than the number of occurrences of a concept alone.
For example, OWLThing (the super concept of all concepts) and OWLNothing
(the sub concept of all concepts) will most likely never be used to annotate a Web
Service, so they both have a number of occurrence of 0. However, the cumulated
occurrence of OWLThing is the sum of all other concepts’ occurrences, whereas
the cumulated occurrence of OWLNothing is still 0. This means if a service
parameter is enforced to be of type OWLNothing, this is much more restricting,
than enforcing it to be of type OWLThing6.

6 Actually, a constraint for a parameter to be of type OWLNothing is unsatisfiable
and a constraint for a parameter to be of type OWLThing is always fulfilled

6 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

3.2 Creating and Approximating Queries

Query Creation A request is represented in the same way as a normal service
offer (cf. section 3.1). There are two possibilities of creating a new request:

– A Query-by-Example approach, by which an existing annotated service is
used to create a request from it. This can be useful, if someone wants to
find a replacement for an existing service, or services with duplicate abilities
should be found.

– Input and Output parameters are specified directly and a request is built
using these, for example when a user searches a service to fulfill a specific
task.

Query Approximation The Web Service Approximator creates queries using
permutations to change the S set. Two strategies define the approximation of
concept expressions: The first strategy determines the order in which concepts
are approximated, depending on their cumulated number of occurrences. This
strategy supports three different variants, influencing the ranking of the results
(cf. [17]):

– LESS: concepts are approximated in ascending order of their cumulated num-
ber of occurrences

– MORE: concepts are approximated in descending order of their cumulated
number of occurrences

– RANDOM: concepts are approximated in a random order

The second strategy defines how fine grained the approximation should be.
The Simple variant approximates each concept of the request by replacing it
with OWLThing, which is the approach in [19] described earlier. We extended
this strategy with a variant that takes the taxonomy of the domain ontology
into account:

Taxonomy Approach Instead of replacing a concept to be approximated with
OWLThing, we use its direct super concept according to the taxonomy. We call
this strategy Taxonomy. Our definitions of lower and upper approximation for
the Taxonomy approach are the following:

(A)− → directsub(A) if A ∈ S (8)

(¬A)− → directsub(A) if A ∈ S (9)

(A)+ → directsuper(A) if A ∈ S (10)

(¬A)+ → directsuper(A) if A ∈ S (11)

Purely logic-based Semantic Web Service matching 7

The intention behind the Taxonomy strategy is to create a much more de-
tailed ranking of results and therefore achieve a higher precision than with the
Simple variant. This approach benefits especially if ontologies with a deep tax-
onomy are used for annotations and if concepts from every level of the taxonomy
are used.

Revisiting the example of the pizza delivery service search, the first approx-
imations according to the Taxonomy strategy are the following: instead of re-
placing Broccoli and Artichoke with >, we use their direct superconcept, which
in this case is Vegetable for both. The search for pizzas with Broccoli and any
other Vegetable or pizzas with Artichoke and any other Vegetable now only finds
the delivery service offering Artichoke and Mushroom pizzas. The service deliv-
ering Broccoli and Mandarine pizzas is not found during the first approximation
step, as Mandarines are a Fruit and no Vegetable. This pizza is found during
the second step, when Vegetable is further approximated to VegetarianFood, of
which Fruits are naturally are subconcept. Thus, the Broccoli and Mandarine
pizza would be considered less relevant, as the request had to be further weak-
ened to retrieve it.

Note that the approximator always generates all possible approximations of
a request at once, avoiding duplicates by checking the parameters of each re-
quest. So for each super- or subconcept of a concept, respectively, a new request
is generated. If the concept does not have a direct super- or subconcept, respec-
tively, then no approximation is created. This is only the case for OWLThing
and OWLNothing, as every other concept has OWLThing as superconcept and
OWLNothing as subconcept.

Additionally, the approximator tries to avoid term collapsing [4] by prohibit-
ing queries whose terms are all approximated to OWLThing. Term collapsing is
a negative effect of approximate subsumption, which occurs if the approximated
concept consists of conjunctions and one term is changed to OWLThing, or if it
consists of disjunctions and one concept is approximated to OWLNothing, effec-
tively turning the whole concept into OWLThing or OWLNothing, respectively.

During the creation of approximations, we generate a graph which captures
the relations between the original request and its approximations. The root node
of the graph is the original request, its direct children are the approximations
created during the first step, their children are the approximations generate from
them during the second step, and so on. This graph is later used to optimize
the execution time of the matchmaker, especially when approximating along the
taxonomy, which produces a large amount of queries: Q ∈ O(NP), with Q being
the number of created queries, P the number of parameters the request has and
N the maximum number of superclasses a concept has. So the number of queries,
and consequentially the execution time of the matcher, grows exponentially with
the number of parameters. However, web service have mostly only a couple of
parameters, so we hope to still calculate results in a reasonable amount of time.

The object representing an approximated query also stores the step in which
it was approximated and the sum of the cardinalities of all concepts which were
approximated to create this query. These two numbers are important to deter-

8 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

mine the position of each query’s results in the final aggregated result list, as the
partial matchmaker may process queries out of approximation order, and thus
their results can not simply be appended to the list.

Query-only Approximation A drawback of the definition of approximate
subsumption in [19] is the fact, that the concepts on both sides of the opera-
tor, in our case service requests and service offers, have to be rewritten. This
means the whole ontology containing the service offers has to be approximated
and reclassified by the reasoner for each request. Obviously, given an arbitrar-
ily large service ontology, this is not feasible in a reasonable amount of time.
We therefore changed the definition of the approximate subsumption operator
to only approximate the request, leaving the concepts of the service ontology
untouched.

∀I : I |= C v
S
D ⇔ CI ∩ (D)I

+
S = ∅

According to this definition we only apply the upper approximation to the
request and test for subsumption with the service offers.

Optimizations During Query Execution As mentioned before, the approx-
imation along the taxonomy produces a large amount of queries, leading to long
delays until the matchmaker returns the results. To reduce the number of queries
which have to be executed, we take advantage of the monotonicity property of
the approximate subsumption and the graph structure created when approxi-
mating a request. The approach is based on the observation, that if two different
queries, which were created during different steps and are related as ancestor /
descendant, produce the same result lists, then, due to the monotonicity, every
query between these two queries must produce the exact same result list and
subsequently need not be executed. Our matchmaker utilizes this property by
first executing the root and leave queries of the graph, and compares their re-
sults pairwise. If the results of a pair are equal, every query between this pair
are omitted, otherwise the graph is split in two parts, and again the top and the
bottom queries of this subgraphs are executed and compared.

Intersection Query After having executed the original query and all of its
approximations, we also add all service offers to the result list, which have at
least one concept in common with the request, no matter if it is used as input
or output parameter. Surprisingly, this has a quite large impact on the precision
of the Simple strategy, as we will show in the evaluation.

4 Evaluation

In this chapter we evaluate the performance of the implemented matcher. The
following points are considered:

Purely logic-based Semantic Web Service matching 9

– Retrieval performance of the implemented matcher compared to others
– Response time to user requests

We conducted the performance tests on a Mac Pro 3,17 running Windows
XP SP3 and Java 1.6.20.

4.1 SME2

The Semantic Web Service Matchmaker Evaluation Environment8 (SME2) is a
Java-based tool developed at the German Research Center for Artificial Intel-
ligence (DFKI) and is used during the Semantic Service Selection (S3) contest
to evaluate and compare the performance of matchmakers. It supports the ad-
dition of matchmakers and test collections as a plug-in; currently collections for
OWL-S and SAWSDL and the matchmakers written by the DFKI are publicly
available.

SME2 evaluates the matchers’ performance with standard performance mea-
sures of information retrieval [11]:

– Precision: Fraction of the retrieved results, which are relevant
– Recall: Fraction of all relevant documents, which are retrieved
– Fallout: Fraction of retrieved irrelevant documents.
– F-Measure: Weighted harmonic mean of Precision and Recall.

Furthermore, the average precision for each query is computed and other statis-
tics like execution time, query response time and memory consumption are
recorded.

We use SAWSDL-TC9, which is supplied with SME2, as test collection for
our matchmaker. It consists of 894 service offers and 26 service requests. For
each request the relevant service offers are specified, allowing the calculation of
the service measures mentioned above. The services are annotated with concepts
from several different ontologies from different domains, ranging from military
over education to health care and food.

The ontology with the extracted annotations of 894 services from SAWSDL-
TC contains 2149 named and 3261 anonymous classes (SubclassOf axioms). This
ontology is then classified by the matcher using a description logic reasoner
suitable for OWL.

4.2 Comparison of Retrieval Performance

This section compares the implemented matcher’s retrieval performance to that
of SAWSDL-MX2, which is, like SME2, developed at the DFKI. It implements
several possibilities for calculating matches [6]:

7 Two 2.8 GHz Intel Xeon Quad-Core processors, 2GB RAM
8 http://www.semwebcentral.org/projects/sme2/
9 http://projects.semwebcentral.org/projects/sawsdl-tc/

10 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

– Logic-based: computes matches based on the semantic annotations of input
and output parameters

– Text similarity: uses standard information retrieval methods for finding sim-
ilar descriptions

– Structural similarity: compares the structure of services: interfaces, bindings,
number of parameter, etc.

Additionally, SAWSDL-MX2 implements a machine learning feature to support
the weighting of each of this properties, when it ranks the result list.

Table 1 gives an overview of the matchers’ overall performance. The average
precision is the average of the average precision for every query. The query
response time is the time needed on average to execute a single query. The
number of executed queries is the number of requests issued to the reasoner.
This number is only available for our implementation.

Simple Taxonomy SAWSDL-MX2

∅ precision 65.52% 73.97% 70.50%
∅ query response time 1.06sec 15.15sec 3.18sec
executed queries 153 2487 n/a

Table 1. Overall performance of Simple, Taxonomy and SAWSDL-MX2

Overall Precision and Recall First, we will compare the overall precision
and recall of our matcher utilizing the Simple and Taxonomy strategies and
SAWSDL-MX2 (Fig. 3).

For every level of recall, Taxonomy achieves a higher precision than Simple.
Because Taxonomy returns the same services as results as Simple does, and
only refines the ranking produced by it, both strategies deliver an almost identi-
cal performance at lowest and highest recall levels. Between those, Taxonomy
shows the advantage of the fine grained approximation of concepts, achieving a
precision which is up to 30% higher than Simple’s. The Taxonomy approach
also has the highest average precision of all 3 matchers. However, its precision
is worse than that of SAWSDL-MX2 at the first quarter of the result list, where
SAWSDL-MX2 is able to reach a precision of almost 100%. Overall, the preci-
sion of both our implementations decreases slower than SAWSDL-MX2’s, which
drops below Simple’s precision towards the end of the result list.

Overall Recall and Fallout The recall/fallout diagram (Fig. 4) shows the
same tendencies as the overall recall and precision, and again emphasizes the
good proportion between precision and recall of the Taxonomy strategy. It
returns less false positives than SAWSDL-MX2, which produces almost twice as
much at full recall.

Purely logic-based Semantic Web Service matching 11

Fig. 3. Recall/Precision of Simple, Taxonomy and SAWSDL-MX2

Influence of the Intersection Query Figure 5 shows the influence of the
intersection query on the performance of the Simple and Taxonomy approach.
The recall/precision curves for Taxonomy with and without the intersection
query show only a slight difference. For Simple, however, the intersection query
increases the precision significantly; by up to 10% at full recall. The beginning of
the curves is identical between the variants with and without intersection query,
because it only adds offers to the bottom of the result list, as mentioned before,
and does not change the ranking of previous results.

4.3 Response Time to User Requests

Besides the retrieval performance, for a real world usage of the matcher, it is
also important to deliver results in a reasonable amount of time [13].

query response time ∅ median std dev cv

Simple 1054ms 892ms 438ms 0.42
Taxonomy 15204ms 7292ms 25863ms 1.70
SAWSDL-MX2 3178ms 2313ms 1541ms 0.48

Table 2. Average and median value, standard deviation (std dev) and coefficient of
variation (cv) for the query response time of some variants.

12 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

Fig. 4. Recall/Fallout of Simple, Taxonomy and SAWSDL-MX2

Table 2 shows the average value, median value, standard deviation and co-
efficient of variation of the response times the matchers need for evaluating a
single request. These numbers show that a higher precision comes at the cost of
longer wait time for the users. Simple is quite fast with about one second on
average and SAWSDL-MX2 is not much slower, taking around three seconds to
deliver results; Taxonomy uses a lot more time: 15 seconds on average.

Figure 6 and the median value, standard deviation and coefficient of variation
show, that Simple and SAWSDL-MX have quite steady query response times,
which do not vary wildly. For Taxonomy, however, the response times show huge
differences. Fortunately, most times are lower than the average, as indicated by
the median value only being half of the average precision. For some queries,
Taxonomy is faster than SAWSDL-MX, for others, there are some outliers for
which execution took around two minutes.

In general, Simple is faster than SAWSDL-MX, which is in turn faster than
Taxonomy, what corresponds directly with their average precision.

Optimization of Query Response Time The response times of Simple and
Taxonomy are already improved through the optimization described in Section
3.2. Without it, Taxonomy would need 20 seconds on average to answer a
request (Table 3). The benefits for Simple are minimal, as it only produces a
small query graph. However, Taxonomy issues almost one third less queries to
the reasoner, saving as much time for a request.

Purely logic-based Semantic Web Service matching 13

Fig. 5. Recall/Fallout of Simple, Taxonomy and SAWSDL-MX2

Fig. 6. Query response time of WSA Simple, WSA Taxonomy and SAWSDL-MX2

14 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

Simple Taxonomy

created queries 153 3680
executed queries 130 2487
∅ savings/request 15% 32%

∅ response time savings 3% 33%
Table 3. Number of created and executed queries, and savings through optimizations

5 Conclusion

We presented our implementation of a purely logic-based approximate web ser-
vice matcher, which is based on approximate subsumption. The results of our
evaluation are promising, especially for our goal to increase recall and still main-
tain a high precision. Considering the recall, our approach even performs better
then all other matchers contending in the S3, and still achieves competitive pre-
cision. Our extensions aimed at decreasing query response time have generally
helped to achieve a reasonable speed for our matcher, despite the additional
executed queries. However, in some special cases our implementation still needs
too much time for executing all approximations.

Future goals are to improve query performance, where we will consider several
possibilities: As the approximated queries are independent from each other, they
could be executed concurrently, but unfortunately parallelization is supported
poorly by current reasoners. Another possibility to improve the perceived per-
formance of the matcher is the implementation of an anytime behaviour, to show
the user some first results and then refine or extend the list in the background.

Long term goals are the integration of user preferences in the approximation
and ranking process, e.g., black or white lists defining which concepts should or
should not be approximated. Furthermore, the matcher could create proposals
for combining several services, which together can fulfill the users request. To
improve the matchers performance in a heterogeneous environment, where ser-
vice are annotated with concepts from different, not formally related ontologies,
an ontology alignment [3] process could improve retrieval performance.

References

1. E. Della Valle and D. Cerizza. Cocoon glue: a prototype of ”wsmo” discovery
engine for the healthcare field. In Proceedings of the WIW 2005 Workshop on
WSMO Implementations, Innsbruck, Austria, June 6-7, volume 134 of CEUR-WS,
pages 1–12, 2005.

2. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive matchmak-
ing using description logics. In INTERNATIONAL JOINT CONFERENCE ON
ARTIFICIAL INTELLIGENCE, volume 18, pages 337–342. Citeseer, 2003.

3. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag New York Inc,
2007.

Purely logic-based Semantic Web Service matching 15

4. P. Groot, H. Stuckenschmidt, and H. Wache. Approximating description logic
classification for semantic web reasoning. In European Semantic Web Conference
(ESWC), Heraklion, Greece, May 29 - June 1, volume Volume 3532 of Lecture
Notes in Computer Science (LNCS), pages 318–332. Springer, 2005.

5. W3C OWL Working Group. OWL 2 web ontology language document overview.
Technical report, W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-
overview-20091027/.

6. M. Klusch and P. Kapahnke. Semantic web service selection with ”sawsdl-mx”.
In Rubén Lara Hernandez, Tommaso Di Noia, and Ioan Toma, editors, Workshop
on Service Matchmaking and Resource Retrieval in the Semantic Web (SMRR),
Karlsruhe, Germany, October 27, volume 416 of CEUR Workshop Proceedings,
2008.

7. M. Klusch and P. Kapahnke. isem: Approximated reasoning for adaptive hybrid
selection of semantic services. In Proceedings of 4th IEEE International Conference
on Semantic Computing (ICSC), 2010.

8. M. Klusch, P. Kapahnke, and I. Zinnikus. ”sawsdl-mx2”: A machine-learning ap-
proach for integrating semantic web service matchmaking variants. In ICWS ’09:
Proceedings of the 2009 IEEE International Conference on Web Services, pages
335–342, Washington, DC, USA, 2009. IEEE Computer Society.

9. J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. ”sawsdl: Semantic annotations
for wsdl and xml schema”. IEEE Internet Computing, November / December:60
– 67, 2007.

10. H. Lausen, A. Polleres, and D. Roman. Web service model-
ing ontology (wsmo). W3C member submission, W3C, June 2005.
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/.

11. C.D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge Univ Pr, 2008.

12. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. Owl-s: Semantic markup for web services. W3C member submis-
sion, W3C, November 2004. http://www.w3.org/Submission/2004/SUBM-OWL-
S-20041122/.

13. R.B. Miller. Response time in man-computer conversational transactions. In
AFIPS Joint Computer Conferences 1968, San Francisco, CA, USA, December
9-11, pages 267–277. ACM, 1968.

14. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Importing the semantic web
in ”uddi”. In Web services, E-Business, and the Semantic Web, (WES) CAiSE-
Workshop, Toronto, Canada, May 27-28, volume 2512 of LNCS, pages 815–821.
Springer, 2002.

15. P. Plebani and B. Pernici. Urbe: Web service retrieval based on similarity evalu-
ation. IEEE Transactions on Knowledge and Data Engineering, 21:1629 – 1642,
2009.

16. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial
Intelligence, 74(2):249–310, 1995.

17. S. Schlobach, E. Blaauw, M. El Kebir, A. Ten Teije, F. Van Harmelen, S. Bortoli,
et al. Anytime classification by ontology approximation. In Ruzica Piskac, Frank
van Harmelen, and Ning Zhong, editors, New forms of reasoning for the Semantic
Web, volume 291 of CEUR-WS, pages 60–74, 2007.

18. S. Schulte, U. Lampe, J. Eckert, and R. Steinmetz. ”log4sws.kom”: Self-adapting
semantic web service discovery for ”sawsdl”. In IEEE Congress on Services, Miami,
FL, USA, July 5-10, pages 511–518. IEEE Computer Society, 2010.

16 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

19. H. Stuckenschmidt. Partial matchmaking using approximate subsumption. In
Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07), pages
1459–1464, Vancouver, British Columbia, Canada, July 2007. AAAI Press.

20. H. Stuckenschmidt and M. Kolb. Partial matchmaking for complex product-
and service descriptions. In Proceedings of Multikonferenz Wirtschaftsinformatik
(MKWI 2008), Special Track on Semantic Web Technology in Business Informa-
tion Systems, Munich, Germany, February 26-28, 2008.

21. S.S. Yau and J. Liu. Functionality-based service matchmaking for service-oriented
architecture. In International Symposium on Autonomous Decentralized Systems
(ISADS’07), Sedona, USA, March 21-23. IEEE Computer society, 2007.

22. A.M. Zaremski and J.M. Wing. Signature matching: a tool for using software
libraries. ACM Transactions on Software Engineering and Methodology (TOSEM),
4(2):170, 1995.

23. J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph matching for semantic search.
In International Conference on Conceptual Structures: Integration and Interfaces
(ICCS), Borovets, Bulgaria, July 15-19, volume 2393 of LNCS, pages 92–106, 2002.

SPARQL Endpoints as Front-end
for Multimedia Processing Algorithms

Ruben Verborgh1, Davy Van Deursen1, Jos De Roo2,
Erik Mannens1, and Rik Van de Walle1

1Ghent University – IBBT, ELIS – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

{ruben.verborgh,davy.vandeursen,erik.mannens,rik.vandewalle}@ugent.be

http://multimedialab.elis.ugent.be/
2Agfa Healthcare – ACA

Moutstraat 100, B-9000 Ghent, Belgium
jos.deroo@agfa.be

Abstract. Multimedia processing algorithms in various domains often
communicate with different proprietary protocols and representation for-
mats, lacking a rigorous description. Furthermore, their capabilities and
requirements are usually described by an informal textual description.
While sufficient for manual and batch execution, these descriptions lack
the expressiveness to enable automated invocation. The discovery of rel-
evant algorithms and automated information exchange between them is
virtually impossible. This paper presents a mechanism for accessing algo-
rithms as SPARQL endpoints, which provides a formal protocol and rep-
resentation format. Additionally, we describe algorithms using OWL-S,
enabling automated discovery and information exchange. As a result,
these algorithms can be applied autonomously in varying contexts. We
illustrate our approach by a use case in which algorithms are employed
automatically to solve a complex multimedia annotation problem.

Keywords: multimedia processing, N3Logic, OWL-S, Semantic Web,
SPARQL

1 Introduction

In the last decade, the world has witnessed an unprecedented growth of multi-
media data production and consumption. In this context, metadata, which are
generally defined as ‘data about data’, play a crucial role. Metadata enable the ef-
fective organization, access, and interpretation of multimedia content. Therefore,
they play an increasingly important role in bringing order to the growing amount
of available multimedia content. However, the lack of availability of many kinds
of metadata forms the main obstacle in many multimedia applications. For pro-
fessionals, metadata generation adds to the production cost because annotating
requires tedious manual work. Amateur producers do not possess the necessary
skills to provide metadata formally. Clearly, we need automated tools to assist
with this cumbersome task.

2 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

While automated feature extraction algorithms exist, they are prone to errors
and lack an intelligent view on the object under annotation. Currently, people
select the appropriate algorithms and parameters for a specific problem and ini-
tiate the process. As a result, manual intervention is required when a proposed
solution does not meet the requirements. This approach lacks actual coopera-
tion between different algorithms, which are unaware of their own abilities and
limitations.

Suppose we have a series of photographs that need to be provided with a
textual description automatically. We dispose of the following multimedia pro-
cessing algorithm implementations:

– description generation: creates a description based on image elements;
– face detection: detects face regions in an image;
– face recognition: recognizes a face in a region;
– text recognition: translates bitmap text into a string.

The above list encompasses all required algorithms to handle the task: we should
detect faces, recognize them, translate text, and finally generate a description
based on the found faces and text. While humans can find and execute the
necessary steps for this task, an automated platform cannot, because:

(1) it does not know how to select algorithms;
(2) it cannot combine these algorithms into a solution plan;
(3) each algorithm has an informally specified format for input and output.

Clearly, the first problem arises because the algorithms lack a formal descrip-
tion of their capabilities and requirements. A textual explanation of what the
algorithm performs, is insufficient to decide automatically whether it fits a cer-
tain purpose. Problems 1 and 2 are closely related, since the creation of a plan
also involves a formal description of the desired solution. Based on this descrip-
tion and that of the processing algorithms, an automated planner can devise a
solution plan.

The third problem occurs because algorithms usually have a proprietary in-
teraction scheme. More specifically, different algorithms use different ways to
specify input and output parameters. Further, these algorithms implement dif-
ferent (standardized or proprietary) multimedia content description schemes to
provide their results. This makes it impossible to interact with these algorithms
automatically. In addition, the required parameters and the effect of these pa-
rameters are often described informally.

In this paper, we address these shortcomings and aim to enable automated al-
gorithm discovery and execution. We propose RDF as input and output represen-
tation format. We describe how to transform multimedia processing algorithms
into SPARQL endpoints to formalize their interaction. Therefore, we introduce a
query prototype suitable for algorithm invocations. We describe algorithm capa-
bilities and requirements using OWL-S, adding support for SPARQL groundings.
We zoom in on the expression of various relations between input and output, in-
troducing N3 expressions into OWL-S. Finally, we discuss how to create concrete

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 3

algorithm implementations as SPARQL endpoints, providing a number of im-
plementation details. These contributions pave the way for complex multimedia
processing scenarios.

2 Algorithm Interaction

2.1 Representation format

The tasks performed by processing algorithms span a very wide range, so find-
ing a comprehensive interaction model poses a challenge. Input and output pa-
rameters must be precisely specified, at the same time leaving room for new,
previously unused parameters. The algorithm interaction should be:

– interoperable: enabling communication with various components, regard-
less of low-level details such as operating system and programming language;

– flexible: handling a variety of inputs and outputs;
– formal: able to communicate in a formal way with well-defined semantics

so machines are able to interpret the information.

The Resource Description Framework (RDF, [13]) is a data format fitting the
above requirements well. More specifically, RDF provides a means to represent
knowledge in a formal, machine-understandable way [4]. Further, vocabularies
and ontologies can be expressed with RDF Schema [5] and the Web Ontology
Language (OWL, [17]), which are both built on top of RDF. We can define or
reuse ontologies for the input and output vocabulary of a specific algorithm.
For instance, formalized versions of multimedia content description standards
(e.g., COMM representing a formal way to express MPEG-7 [1]) constitute one
possibility. Integrated semantics facilitate the automated interpretation and ex-
changeability of results, countering the issues with proprietary formats.

2.2 Communication protocol

An algorithm communication protocol should meet these design requirements:

– flexible: able to specify variations on input and outputs;
– distributed: provide access to algorithms located on different machines;
– transparent: exhibit identical behavior, regardless of varying properties

such as physical location and technological differences.

The above requirements hint at a Service-Oriented Architecture (SOA, [19]).
Therefore, we consider algorithms as Web services. A classic Web service com-
munication protocol choice is the Simple Object Access Protocol (SOAP, [11]).
However, this protocol is rather verbose and does not account for sufficient flex-
ibility: input and output parameters are passed in a rigid structure that does
not allow variations. Given the use of RDF and the definition of algorithms
as information-generating entities, our approach is to implement algorithms as
SPARQL endpoints.

4 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

The SPARQL Protocol and RDF Query Language [7, 20] is used to retrieve
information from semantic data sources, traditionally static databases of RDF
content. However, an algorithm is essentially a data source, which does not
necessarily offer predefined information, but rather creates new information in a
demand-driven way. By using SPARQL as Web service communication protocol,
we obtain the following features:

– Web services can be invoked using formally defined input and output pa-
rameters;

– the input and output is represented directly in RDF;
– Web services wrapping multimedia algorithms can be seamlessly integrated

with other endpoints in the Semantic Web.

There are clear advantages over using SPARQL endpoints instead of passing
RDF literals through classic technologies such as SOAP:

– the overhead and verbosity of SOAP is absent;
– the endpoint can check the presence of necessary parameters, as it is able

to parse and understand RDF. RDF literals, on the other hand, would be
treated as plain text and syntactic or semantic errors would go unnoticed.

Additionally, the cost of maintaining an endpoint is outweighed by the possibility
to do post-processing of the returned results directly in SPARQL:

– selection of relevant output values;
– structuring the output values to fit the application format.

In the next subsections, we present a number of querying techniques for on-
demand data sources such as multimedia processing algorithms.

Classic SPARQL queries The concept behind SPARQL is similar to that
of other query languages: to retrieve a specific view on a larger data collection.
The query mechanism validates the data against the constraints in the WHERE

clause, conditioning the output. This aligns with the way we think about the
underlying RDF database: the WHERE clause is a filter that retains all triples
matching the specified template. A first approach to query algorithms would be
the exact same way we query data sources.

Suppose we have an algorithm mixing two colors. We begin by defining formal
characteristics for the input and output parameters:

– Input: a number of Color entities with a hasColorName property;
– Output: a Color that has a hasColorName property, and a isMixOf prop-

erty with the list of input colors as value.

If we want to ask the result of mixing red and yellow, we could invoke the algo-
rithm using the query in Listing 1. Note that we can choose SELECT queries (to re-
trieve individual values) or CONSTRUCT queries (to retrieve an entire RDF graph).

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 5

PREFIX c: <http://example.org/ontologies/Colors#>
CONSTRUCT { ?color c:hasColorCode ?colorCode. }
WHERE {
c:Red a c:Color;

c:hasColorCode "#FF0000".
c:Yellow a c:Color;

c:hasColorCode "#FFFF00".
?color a c:Color;

c:hasColorCode ?colorCode;
c:isMixOf (c:Red c:Yellow).

}

Listing 1. Color mixer invocation with classic SPARQL

As opposed to querying data sources, invoking an algorithm is not as such
about filtering, but about retrieving the outputs of a process on the inputs.
Although it would be possible to build an algorithm this way, there are several
drawbacks to this approach:

– missing indication that the query is an algorithm invocation;
– unclear distinction between input and output in the WHERE clause;
– conceptual mismatch by forcing the inputs into output conditions.

Clearly, we need a more advanced query which makes the invocation explicit,
while strictly adhering to the SPARQL standard.

SPARQL queries with explicit invocation We consider the algorithm as
a virtual data source and refer to each invocation by a dedicated Request

entity. The input and output parameters of the invocation are are values of
the sr:input and sr:output properties. The inputs are generally threated as
known values; the outputs are usually unbound variables. Inside the SPARQL
query, we can refer to this entity and its associated properties. This enables us
to invoke an algorithm while keeping all the benefits of a SPARQL query and
its declarativeness.

The query in Listing 2 shows how this technique overcomes previous weak-
nesses, clearly indicating the invocation, its parameters, and their direction.1

The algorithm maintains an entity corresponding to the Request in the
WHERE clause, containing the same information as the entity in the query. The
algorithm executes its task on the entity input values; its computed output gets
bound to the entity output values. The resulting graph containing the Request
entity is subsequently queried in its entirety. We highlight the fact that this
Request entity is purely virtual: it is only accessible during the execution of
the query and remains invisible to other clients accessing the endpoint at the
same instant.
1 The ontology can be found at http://ninsuna.elis.ugent.be/ontologies/
arseco/sparqlrequest#

6 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

PREFIX c: <http://example.org/ontologies/Colors#>
PREFIX sr:

<http://ninsuna.elis.ugent.be/ontologies/arseco/sparqlrequest#>
CONSTRUCT { :mixedColor c:hasColorCode ?colorCode. }
WHERE {
[a sr:Request;
sr:method "MixColor";
sr:input [a c:Color;

c:hasColorCode "#FF0000"],
[a c:Color;
c:hasColorCode "#FFFF00"];

sr:output [a c:Color;
c:hasColorCode ?colorCode]]

}

Listing 2. Algorithm invocation with a Request entity

SPARQL queries with named parameters To generalize the query pro-
totype to a broader class of algorithms, it is necessary to provide parameter
identification for input and output. This is done by setting the value of the
input and output to a ParameterBinding entity, instead of solely the actual
value. An example is applying a mask to an image (Listing 3).

For simplicity, the query can be abbreviated by removing parts of the WHERE

clause that are known in advance. A request will always have type Request, and
a parameter will always be of type ParameterBinding, so these statements can
be omitted. The method name is mostly unnecessary, because algorithms usually
have a single task that is consequently identified the moment they receives a
query. However, if a query is viewed out of its usual context, these items clarify
its intended meaning.

SPARQL queries with complex parameters In case the input or out-
put parameters are complex, it is possible to specify either of them as Nota-
tion3 (N3, [2]) strings, which are serialized representations of RDF graphs. They
may be required when the structure of the output RDF graph is unknown in
advance, making it impossible to reserve sufficient variables for retrieval. Fur-
thermore, complex graphs – such as those containing reified statements – are
also better represented by N3 strings. The N3 specification has been extended
with this functionality by means of the log namespace.

The query in Listing 4, segmenting an image, illustrates complex output. We
do not know beforehand how deeply the segments and thus the result graph will
be nested. Since SPARQL does not provide facilities to capture all descending
nodes, we SELECT an N3 string to store the result, which must be parsed after-
wards to obtain the corresponding RDF graph. For the sake of example, we also
supply the input parameter as an N3 string. N3 strings also offer the freedom
to return more expressive values. Consider an algorithm that recognizes words

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 7

PREFIX sr:
<http://ninsuna.elis.ugent.be/ontologies/arseco/sparqlrequest#>

CONSTRUCT { <source.jpg> :hasMaskedImage ?maskedImage }
WHERE {
[a sr:Request;
sr:method "ApplyMask";
sr:input [a sr:ParameterBinding;

sr:bindsParameter "source";
sr:boundTo <source.jpg>],
[a sr:ParameterBinding;
sr:bindsParameter "mask";
sr:boundTo <mask.jpg>];

sr:output [a sr:ParameterBinding;
sr:bindsParameter "masked";
sr:boundTo ?maskedImage]]

}

Listing 3. Algorithm invocation with named parameters

in an audio fragment. In the strict case, the return value is ill-defined when
uncertainty between two alternatives arises. RDF enables us to express this un-
certainty semantically as shown in Listing 5, where is stated that a certain audio
fragment contains the word “summer” or the word “sombre”.

2.3 Algorithm conversion

Having defined a formal model for invocations, we now direct our attention
to a conversion method from algorithm to SPARQL endpoint. When designing
an algorithm, an author arrives at a point where the output format must be
decided. Often, a proprietary format is created, accompanied by an informal
description. In this case, it would be convenient to choose RDF as underlying
data model since this gives access to an existing formal model, compliant with
other information in the Semantic Web. Should the author proceed with another
model – proprietary or standardized – then an adapter needs to be written to
convert the input and output into RDF.

As such, algorithms communicate entirely using RDF. A SPARQL query
engine, surrounding the program, processes the virtual Request entity, turning
the algorithm into a SPARQL endpoint. This process is visualized in Fig. 1. The
RDF inputs are extracted from the query (1) and passed to the algorithm (2),
which generates RDF output (3). Input and output form the completed Request

entity (4). The query is executed on this entity (5), yielding the final result. The
latter implies that SPARQL is not only used to simply pass input and output
parameters, but can also be used to apply formalized restrictions on input and
output parameters and the final result.

8 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

PREFIX sr:
<http://ninsuna.elis.ugent.be/ontologies/arseco/sparqlrequest#>

PREFIX log: <http://www.w3.org/2000/10/swap/log#>
SELECT ?segmentsN3
WHERE {
[a sr:Request;
sr:method "SegmentImage";
sr:input [a log:Formula;

log:n3String "<image.jpg> a :Image."];
sr:output [a log:Formula;

log:n3String ?segmentsN3]]
}

Listing 4. Algorithm invocation with complex parameters

@prefix e: <http://eulersharp.sourceforge.net/2003/03swap/log-rules#>.
({<speech.wav#t=5.38,5.71> :contains "summer".}
{<speech.wav#t=5.38,5.71> :contains "sombre".}) e:disjunction [a e:T].

Listing 5. Expressing uncertainty in algorithm output

3 Capability and Requirements Description

3.1 Description method

Since SPARQL endpoints are in fact Web services, we can describe them as such.
A common RDF-compliant specification for semantic Web service descriptions
is OWL-S [16], which consists of a three-part paradigm:

– service profile: a limited description of the service’s capabilities and re-
quirements;

– service model: service usage modalities and a more in-depth description
of its capabilities and requirements, suitable for service composition;

– service grounding: technical details regarding communication with the
service.

Other possibilities for service descriptions include WSMO [15]. We chose OWL-S
because its definition of the process model is more mature [14], but the concepts
are transferable to WSMO. In the next subsections, we elucidate these different
parts through an example algorithm that recognizes a face in an image region:

– input: a region which depicts a face;
– output: the recognized face and the depicted person.

This informal description leaves room for interpretation and should be for-
malized. If the algorithm author already formalized the input and output param-
eter model in RDF, we can copy this into the service description. However, it will

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 9

query request

input

algorithm

output

result

2.

3.
5.

1.

4.

Fig. 1. Algorithm invocation process

@prefix Profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>.
:FaceRecognitionProfile a Profile:Profile;

Profile:hasInput :RegionInput;
Profile:hasOutput :FaceOutput;
Profile:hasOutput :PersonOutput;
Profile:has_process :FaceRecognitionProcess.

Listing 6. Algorithm profile description

often be more convenient to create the formal service description first, deciding
which RDF classes to use for input and output, and then use this description
to implement the actual RDF parameters of the algorithm. This corresponds to
the design by contract methodology in software engineering [18].

3.2 Service profile

The profile part is primarily meant for human reading or rendering purposes.
Therefore, it contains some basic information (useful for human interpretation),
reused from our model that we will define later on (Listing 6).

3.3 Service model

The model can be described as a process, containing detailed information about
all parameters. We will start with a basic description (Listing 7), extending it
as inadequacies come to light.

Although this profile seems correct on the surface, it does not convey all
intended semantics for a reliable description of a face recognition activity. Con-
sider an algorithm that, regardless of the input it receives, always returns the
exact same predefined person in the PersonOutput parameter. This algorithm
does not recognize faces, yet it fully complies with the description of the example
above. Also, there is no guarantee whatsoever that the region in RegionInput

10 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

@prefix Process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>.
:FaceRecognitionProcess a Process:AtomicProcess;

Process:hasInput :RegionInput;
Process:hasOutput :FaceOutput;
Process:hasOutput :PersonOutput.

:RegionInput a Process:Input;
Process:parameterType "http://example.org/Images#Region".

:FaceOutput a Process:Output;
Process:parameterType "http://example.org/Faces#Face".

:PersonOutput a Process:Output;
Process:parameterType "http://example.org/Persons#Person".

Listing 7. Basic algorithm process description

actually contains a face; it could depict anything or nothing at all. This means
that even an actual face detection algorithm could fail to return a correct result.
To obtain a process description that fits the algorithm, we need to correct the
following problems:

– the input is not guaranteed to contain a face
⇒ the input constraints must be specified rigorously;

– the face in the input is not necessarily that of the person in the output
⇒ we require a semantic relation between input and output parameters.

We can capture these semantics by using preconditions and postconditions.

Preconditions OWL-S supports the use of preconditions to enforce input con-
straints that go beyond RDF types. These conditions are typically expressed in
languages such as KIF [9] or SWRL [12]. We have opted to use N3 expressions,
which are very powerful due to the possibility of more sophisticated built-in
functions [3] and the existence of advanced reasoners such as Euler [8].

Therefore, we needed to extend the Expression ontology to include support
for N3 expressions and conditions, resulting in the N3Expression ontology.2 Our
example description is supplemented with preconditions in Listing 8.

Input and output parameters are referred to by parameter variables whose
name is the last segment of the parameter URI, lowercasing the first letter. As
a result, the parameter variable ?regionInput refers to the parameter named
http://example.org/FaceDetection#RegionInput. In case of ambiguity, the
description document can provide parameter name aliases. This technique is sim-
ilar to that of SWRL variables in OWL-S. However, a rigorous mechanism that
links parameters to variable names should be created. This is left as future work.

Also note the introduction of custom variables (face) in the precondition.
They are ordinary variables that remain bound in the postconditions, where they
can be used together with input and output variables.

2 http://ninsuna.elis.ugent.be/ontologies/arseco/n3expression#

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 11

@prefix Process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>.
@prefix Expression:

<http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#>.
@prefix N3Expression:

<http://ninsuna.elis.ugent.be/ontologies/arseco/n3expression#>.
:FaceRecognitionProcess Process:hasPrecondition :RegionPrecondition.
:RegionPrecondition a N3Expression:N3-Expression;

Expression:expressionBody
"?regionInput <http://example.org/Images#regionDepicts> ?face.
?face a <http://example.org/Faces#Face>.".

Listing 8. Algorithm process description preconditions

@prefix Process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>.
@prefix Expression:

<http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#>.
@prefix N3Expression:

<http://ninsuna.elis.ugent.be/ontologies/arseco/n3expression#>.
:FaceRecognitionProcess Process:hasResult :FaceRecognitionResult.
:FaceRecognitionResult a Process:Result;

Process:hasEffect :FaceRecognitionEffect.
:FaceRecognitionEffect a N3Expression:N3-Expression;

Expression:expressionBody
"?regionInput <http://example.org/Images#regionDepicts> ?faceOutput.
?faceOutput <http://example.org/Faces#isFaceOf> ?personOutput.".

Listing 9. Algorithm process description postconditions

Postconditions In a similar fashion, relations between input and output pa-
rameters can be expressed in the N3 format. OWL-S terminology defines post-
conditions as effects of a service result. It is possible to specify multiple results
that account for different cases, such as normal and erroneous execution. For
simplicity, we will limit the face recognition example to a single result and ef-
fect. In Listing 9, we express that the region of the input contains the face of
the person in the output.

3.4 Service grounding

The remaining part of the algorithm description details its SPARQL endpoint
properties. To access a SPARQL endpoint, we need at least the following details:

– the URL of the endpoint;

– the SPARQL versions supported;

– the supported query forms (e.g., CONSTRUCT, SELECT, ASK, or DESCRIBE).

12 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

owl-s-sparql Serviceservice-description

SparqlServiceGrounding ServiceGroundingEndpoint WsdlGrounding

ServiceSparqlService

Fig. 2. owl-s-sparql ontology overview

@prefix sd: <http://www.w3.org/2009/sparql/service-description#>.
@prefix owl-s-sparql:

<http://ninsuna.elis.ugent.be/ontologies/arseco/owlssparql#>.
:FaceRecognitionGrounding a owl-s-sparql:SparqlServiceGrounding;
owl-s-sparql:supportsQueryForm owl-s-sparql:SparqlQueryFormConstruct,

owl-s-sparql:SparqlQueryFormSelect;
owl-s-sparql:supportsSparqlVersion owl-s-sparql:SparqlVersionQuery1_0;
sd:url <http://example.org/FaceRecognition/sparql>.

Listing 10. Algorithm SPARQL grounding description

Unfortunately, OWL-S only provides built-in support for Web Services De-
scription Language (WSDL, [6]) service groundings. At the moment of writing,
a draft by the W3C SPARQL Working Group on endpoint descriptions exists,
but it is not linked to the OWL-S ontologies [23,24].

An interesting approach is to create a service grounding, compatible with
OWL-S, linked to the SPARQL endpoint description. Our owl-s-sparql on-
tology3 offers this functionality by uniting the definitions of service grounding
and SPARQL endpoint. Common grounding properties are provided by OWL-S.
SPARQL endpoint specific properties are imported from the service descrip-
tion ontology of the W3C draft. Properties that are currently missing, such as
supported SPARQL versions and query forms, are described in owl-s-sparql.
As depicted in Fig. 2, SparqlServiceGrounding is both a ServiceGrounding

(OWL-S) and an Endpoint (service description). A SparqlService is a Service
that has at least one SparqlServiceGrounding. Listing 10 shows a possible
grounding for the face detection algorithm.

3.5 Service

Finally, the three service parts need to be stitched together in an OWL-S service
construct (Listing 11). The user can choose to complement this description with
properties that facilitate human interpretation, such as textual descriptions.

3 http://ninsuna.elis.ugent.be/ontologies/arseco/owlssparql#

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 13

@prefix Service: <http://www.daml.org/services/owl-s/1.1/Service.owl#>.
:FaceRecognitionService a Service:Service;

Service:describedBy :FaceRecognitionProcess;
Service:presents :FaceRecognitionProfile;
Service:supports :FaceRecognitionGrounding.

Listing 11. Algorithm service description

4 Implementation

While algorithms can be developed independently, it is convenient to have a
software library to abstract common tasks. Two approaches are possible:

– the wrapper approach, in which the algorithm is a standalone program, in-
voked by a configurable wrapper;

– the toolkit approach, in which the algorithm directly uses the library for
tasks such as RDF parsing and SPARQL querying.

The advantages of the former are that the algorithm does not need to be
altered, at the cost of customizing the wrapper sufficiently. More importantly,
creating a configuration mechanism that accounts for all possible algorithm in-
teraction schemes is impossible, which is of course the main reason why we in-
troduced SPARQL endpoints. The toolkit approach requires adaptations to the
algorithm, improving performance but depending on the existance of an inter-
face between the employed programming language and the toolkit. In general,
the wrapper approach – where possible – proves best for existing algorithms
and the toolkit approach for algorithms in development, eliminating the need to
provide an intermediary communication format.

We implemented toolkits in C++ and C#/.Net, as well as a standalone com-
mand line version, to enable interaction with a great variety of programming lan-
guages. As an example, we transformed two multimedia processing algorithms
into SPARQL endpoints: a face detection and a face recognition algorithm. The
face detection algorithm was built from scratch and is based on an implementa-
tion of the Viola-Jones face detection algorithm [22]. Hence, in this case, we used
the toolkit approach to enable SPARQL communication. For the face recognition
algorithm, we used an existing implementation developed by Verstockt et al. [21],
which recognizes a face in a well-delineated region. Therefore, we applied the
wrapper approach for the face recognition algorithm in order to make the al-
gorithm accessible through SPARQL. Note that the face recognition algorithm
adheres to the example description of Section 3. Also note that both algorithms
can be deployed for the use case lined out in the introduction of this paper.

Example output for the face detection and recognition algorithms is shown
in Listing 12 and Listing 13 respectively. Invoking the face detection algorithm
results in one found region depicting a face. The latter is used as input for the
face recognition algorithm, which subsequently results in the recognition of the

14 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

@prefix sr:
<http://ninsuna.elis.ugent.be/ontologies/arseco/sparqlrequest#>.

@prefix img: <http://example.org/Images#>.
@prefix face: <http://example.org/Faces#>.
_:regionInput sr:bindsParameter "regionInput";

sr:boundTo <pict.jpg#xywh=45,121,51,51>.
<pict.jpg#xywh=45,121,51,51> img:regionDepicts [a face:Face>].

Listing 12. Face detection algorithm example output

@prefix sr:
<http://ninsuna.elis.ugent.be/ontologies/arseco/sparqlrequest#>.

@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix face: <http://example.org/Faces#>.
_:faceOutput sr:bindsParameter "faceOutput";

sr:boundTo [face:isFaceOf dbpedia:Johnny_Depp].
_:personOutput sr:bindsParameter "personOutput";

sr:boundTo dbpedia:Johnny_Depp.

Listing 13. Face recognition example output

face of the actor Johnny Depp. As one can see, multimedia processing algorithms
are not only accessed in a transparent and formalized way, they can also contain
pointers to other information available in the Semantic Web. This way, software
agents using these kind of endpoints can transparently query both static linked
open data sets and multimedia processing algorithms.

5 Conclusions and Future Work

The use of RDF as input and output representation format for algorithms
adds expressiveness with well-defined semantics. By approaching algorithms as
SPARQL endpoints, we have a standardized protocol to access them, combined
with a flexible query language to demand specific information. This way, we can
employ algorithms transparently, regardless of low-level system properties. Al-
gorithm queries consist of classic SPARQL, yet indicating the fact that they are
invocations. OWL-S enables us to describe the capabilities and requirements of
algorithms rigorously, N3 expressions therein can relate input and output pa-
rameters in various ways. An additional ontology lets us describe the SPARQL
grounding in OWL-S. We illustrated our approach with two example algorithms.

An interesting direction for future research, is the composition of a plan to
solve complex solutions using algorithms. We also require a framework which ex-
ecutes the plan and maintains state between invocations. Additionally, we must
elaborate some details such as variable identification in OWL-S descriptions.

SPARQL Endpoints as Front-end for Multimedia Processing Algorithms 15

It is important that we will apply our approach to several larger multimedia
use cases. As outlined in the introduction, information-generating tasks such as
metadata annotation prove interesting. Applications such as multimedia adapta-
tion could benefit from service-based algorithms, as suggested in [10]. Eventually,
we could extend the approach to general problem solving.

Acknowledgments

The research activities as described in this paper were funded by Ghent Uni-
versity, the Interdisciplinary Institute for Broadband Technology (IBBT), the
Institute for the Promotion of Innovation by Science and Technology in Flan-
ders (IWT), the Fund for Scientific Research Flanders (FWO-Flanders), and the
European Union.

References

1. Arndt, R., Troncy, R., Staab, S., Hardman, L., Vacura, M.: COMM: Designing a
Well-Founded Multimedia Ontology for the Web. In: 6th International Semantic
Web Conference (ISWC 2007). Busan, Korea (November 2007)

2. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C
Recommendation (Jan 2009), http://www.w3.org/TeamSubmission/n3/

3. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34 (2001)

5. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF
Schema. W3C Recommendation (Feb 2004), http://www.w3.org/TR/2004/REC-
rdf-schema-20040210/

6. Christensen, E., Curbera, F., Greg, M., Weerawarana, S.: Web Services
Description Language (WSDL) 1.1. W3C Member Submission (Mar 2001),
http://www.w3.org/TR/wsdl

7. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL protocol for RDF. W3C Rec-
ommendation (Jan 2008), http://www.w3.org/TR/rdf-sparql-protocol/

8. De Roo, J.: Euler proof mechanism, http://eulersharp.sourceforge.net/
9. Generereth, M.R.: Knowledge Interchange Format. Draft Proposed American Na-

tional Standard, http://logic.stanford.edu/kif/dpans.html
10. Geyter, M.D., Soetens, P.: A planning approach to media adaptation within the

Semantic Web. In: Distributed Multimedia Systems. pp. 129–134 (2005)
11. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J.: SOAP version 1.2 part

1: Messaging framework (second edition). W3C Recommendation (Apr 2007),
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.: SWRL: A Semantic Web
Rule Language combining OWL and RuleML. W3C Member Submission (May
2004), http://www.w3.org/Submission/SWRL/

13. Klyne, G., Carrol, J.J.: Resource Description Framework (RDF): Concepts
and abstract syntax. W3C Recommendation (Feb 2004), http://www.w3.org/
TR/2004/REC-rdf-concepts-20040210/

16 R. Verborgh, D. Van Deursen, J. De Roo, E. Mannens, R. Van de Walle

14. Lara, R., Roman, D., Polleres, A., Fensel, D.: A conceptual comparison of WSMO
and OWL-S. In: ECOWS 2004. LNCS, vol. 3250, pp. 254–269. Springer (2004),
http://dx.doi.org/10.1007/978-3-540-30209-4_19

15. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO),
howpublished = W3C Member Submission, note = http://www.w3.org/ Submis-
sion/WSMO/, day = 3, month = jun, year = 2005

16. Martin, D., Burstein, M., Hobbs, J., Lassila, O.: OWL-S: Semantic markup
for web services. W3C Member Submission (Nov 2004), http://www.w3.org/
Submission/OWL-S/

17. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language overview.
W3C Recommendation (Feb 2004), http://www.w3.org/TR/2004/REC-owl-
features-20040210/

18. Meyer, B.: Applying ”Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
19. Perrey, R., Lycett, M.: Service-Oriented Architecture. IEEE/IPSJ International

Symposium on Applications and the Internet Workshops p. 116 (2003)
20. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-

ommendation (Jan 2008), http://www.w3.org/TR/rdf-sparql-query/
21. Verstockt, S., Van Leuven, S., Van de Walle, R., Dermaut, E., Torelle, S., Gevaert,

W.: Actor recognition for interactive querying and automatic annotation in digital
video. In: IASTED International conference on Internet and Multimedia Systems
and Applications, 13th, Proceedings. pp. 149–155. ACTA Press, Honolulu, HI, USA
(2009)

22. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57(2), 137–154 (May 2004)

23. Williams, T.G.: SPARQL 1.1 service description. SPARQL Working Draft (Oct
2009), http://www.w3.org/TR/2009/WD-sparql11-service-description-20091022/

24. Williams, T.G., Mikhailov, I.: SPARQL service description. SPARQL Working
Group (2009), http://www.w3.org/2009/sparql/wiki/Feature:ServiceDescriptions

Integrating Semantic Web Services and
Matchmaking into ebXML Registry

Stefan Schulte, Melanie Siebenhaar, and Ralf Steinmetz

Multimedia Communications Lab (KOM)
Technische Universität Darmstadt, Germany

schulte@kom.tu-darmstadt.de

Abstract. While the “Universal Description, Discovery and Integra-
tion” (UDDI) service registry standard has drawn great attention by
the research community, it has not been widely adopted by the software
industry. Objections towards UDDI include technical as well as concep-
tional arguments. Being an official ISO standard and providing a num-
ber of features UDDI is missing, “Electronic Business using Extensible
Markup Language” (ebXML) Registry could be an adequate alternative
for the implementation of service registries and/or repositories. However,
little work has been done regarding the integration of Semantic Web Ser-
vices (SWS) into ebXML Registry.
In this paper, we present a solution extending the ebXML Registry by
capabilities to handle and provide SWS. This includes a concept for the
integration of SWS into ebXML Registry as well as a prototypical imple-
mentation using SAWSDL and the open source framework freebXML.

1 Motivation

One of the primary application areas of SWS is service discovery, which has
been a major topic from the very beginning of SWS research [19], [22]. In most
scenarios, services are registered at some kind of service catalogue, which can
be searched by (potential) service consumers. Apart from proprietary solutions,
the SWS research community has mostly deployed UDDI as service registry
standard and a multitude of solutions to include SWS into such registries have
been proposed (cp. Section 2).

Even though UDDI is still deemed to be one of the key building blocks of
service-oriented computing, it suffers from some major drawbacks. While con-
ducting research on query formulation, we had to learn that it is difficult to
use UDDI as a starting point for an advanced query formalism applied in SWS
discovery [25].

A comparison of some major features provided by ebXML Registry and
UDDI, which are important for the selection of a registry standard, are shown
in Table 1: First, UDDI provides by default only a registry, where metadata
about artifacts is stored. The actual artifacts (e.g., service descriptions mak-
ing use of the “Web Service Description Language” (WSDL)) are not stored in
UDDI. Instead, references to these artifacts are published in the registry. This

2 Stefan Schulte et al.

Table 1. Comparison of Registry Standards ebXML and UDDI (cp. [3], [28])

Category/Feature ebXML Registry 3.0 UDDI 3.0

Service description standards WSDL 1.1 WSDL 1.1
Registry YES YES
Repository YES NO
Object-oriented information model and API YES NO
Extensible information model YES NO
User-defined queries YES NO
SQL query syntax YES NO
XML query syntax YES YES
JAXR API YES YES

aspect of UDDI has been deemed as a major drawback by the software industry,
as it makes it difficult to establish service life cycle management for Service-
oriented Architectures1 (SOA) and therefore, service and SOA governance [28].
In contrast to UDDI, the ebXML Registry provides both, a registry and a corre-
sponding repository. Hence, besides the metadata, also the artifacts themselves
are published in ebXML Registry.

Second, UDDI makes use of a relatively flat data model, which cannot be
extended, whereas ebXML Registry offers an object-oriented and extensible in-
formation model and Application Programming Interface (API). Finally, while
both registry standards can be used by utilizing the “Java API for XML Reg-
istries” (JAXR), which provides a uniform way for communicating with a reg-
istry, search facilities differ as ebXML offers enhanced querying capabilities by
providing SQL support and user-defined queries in comparison to UDDI, which
is only able to process XML-based queries.

Regarding the integration of an advanced query formalism into a service
registry (cp. [25]), this is a major point and has been our main motivation
to restrain from making use of UDDI. As there has been little work on the
application of ebXML Registry in a generic SWS discovery framework, we have
developed our own solution which is presented in this paper.

The remainder of this paper is structured as follows: In Section 2, we will
give an overview of SWS integration approaches into registries. Afterwards, we
give an overview on ebXML Registry. In Section 4, we introduce a solution to
integrate SWS into ebXML Registry and a first implementation including an
interface for matchmakers. The paper closes with a conclusion and an outlook
on our future work.

1 http://www.zdnet.com/blog/service-oriented/ibm-acknowledges-bypassing-

uddi-calls-for-new-soa-registry-standard/864,
http://www.computing.co.uk/vnunet/news/2188598/ibm-calls-soa-discovery,
accessed at 2010-09-04

Integrating Semantic Web Services and Matchmaking into ebXML Registry 3

2 Related Work

The integration of SWS descriptions in service registries has been examined
in a multitude of approaches, mostly making use of UDDI as service registry
standard. In their seminal work on SWS, Paolucci et al. present the integration
of “DARPA agent markup language for services” (DAML-S) profiles in UDDI
[22]. The authors propose the mapping of a service profile to UDDI records.
Besides the DAML-S/UDDI mapping, an external matchmaker architecture is
suggested by the authors, which uses DAML ontologies publicly available on the
Web for semantic capability matching. In this approach, it is possible to search
for services using UDDI keyword-based search and a capability matching engine,
if requests are specified in the DAML-S format. Several authors have proposed
enhancements of the work by Paolucci et al., e.g., regarding the usage of UDDI-
internal matchmakers [1], the application of the “Web Ontology Language for
Web Services” (OWL-S) or semantically enhanced WSDL instead of DAML-S
[26], [27], or the integration of functionalities enabling the usage of semantic
search in UDDI on the client-side instead of altering the UDDI implementation
[17].

There are further approaches to integrate SWS into service registries in gen-
eral SWS frameworks, with METEOR-S [29] and the “Web Service Modeling
eXecution Environment” (WSMX) being prominent examples. However, in both
approaches the actual registry is more a means to an end than in the focus
of the work. In an early “Web Service Modeling Ontology” (WSMO) Registry
Working Draft, UDDI was intended to provide registry functionalities [12]. How-
ever, for WSMX, which is the reference implementation of WSMO, no further
information is given if a particular registry standard has been applied or not. In
fact, WSMX’s Resource Manager is an internal registry [11]; furthermore, it is
stated that an ebXML- or UDDI-based registry could be used for WSMX data
persistence [5]. More recently, Kourtesis et al. have proposed a combination of
SAWSDL, OWL DL, and UDDI (Version 2.0) for semantically enhanced Web
service discovery in the FUSION Semantic Registry [16]. While this framework
does not rely on any specific SWS standard, the reference implementation pre-
sented is based on SAWSDL. Neither the UDDI server nor its specification API
are altered, but are wrapped in the semantic registry.

A different approach to the integration of semantic information in service
registries has been implemented in PYRAMID-S [23]. Actually, PYRAMID-S
is an overlay to service registries which uses a hybrid peer-to-peer topology to
manage heterogeneous service registries. The aim of the framework is to allow
unified Web service publication and discovery, which does not adhere to a partic-
ular service registry standard. As PYRAMID-S facilitates the usage of different
service registry standards, it is necessary to define mediators for the designated
standards. Mediators for UDDI (based on [6]) and ebXML (based on [4]) have
already been defined. There are several differences between PYRAMID-S and
the work at hand: Most importantly, in PYRAMID-S, only those matchmakers
provided by ebXML Registry are explicitly regarded. The authors give no in-
formation on how to extend a registry’s matchmaking capabilities. As ebXML

4 Stefan Schulte et al.

Registry does not provide any semantic matchmaker, matching is limited to
syntax-based query statements and “non-fuzzy” semantic matchmaking, i.e., a
semantic annotation in a service advertisement has to be exactly the same as
specified in a service request. Furthermore, Pilioura and Tsalgatidou make use of
their own WSDL variant, namely PS-WSDL and do not regard, e.g., SAWSDL
or OWL-S.

Dogac et al. introduce another approach, which incorporates the integration
of “Web Ontology Language” (OWL) ontologies into ebXML registries in order
to enhance service discovery [8]. The work by Dogac et al. has been committed
as an OASIS Committee Draft for an ebXML Registry Profile for Web Ontology
Language [7], which could be used to integrate OWL-S services into ebXML. No-
tably, this work is limited to OWL Lite, while OWL-S ontologies are written in
OWL DL [2]; there is no information given on how this contradiction is handled.
The authors define a mapping of OWL elements to ebXML class hierarchies,
which can be performed automatically from a given OWL ontology. Concern-
ing the suggested mapping, OWL classes are represented through classification
nodes in ebXML, while RDF properties are modeled using ebXML associations.
This allows to represent whole OWL class hierarchies through ebXML elements.
Finally, stored procedures are defined in order to handle the OWL semantics,
e.g., to obtain all the super- or subclasses of a given class. These stored pro-
cedures can then be utilized by users in order to retrieve appropriate services
that are classified using the OWL classification nodes from the ebXML registry
[8]. This way, this solution is very inflexible, as it does not account for inferred
semantic relationships and relies on querying predefined semantic hierarchies.

In their work on making use of SPARQL as means to define preconditions
and effects in SWS descriptions, Iqbal et al. also use ebXML Registry [13]. The
registry is used to store SAWSDL-based service descriptions, while SPARQL-
based conditions are stored separately in the repository infrastructure. The au-
thors state that their ebXML-based service repository does not (yet) allow to
query for the integrated semantic metadata. The authors suggest to store the se-
mantically enhanced service descriptions within the ebXML infrastructure and
indicate a mechanism to reference additional semantic information in form of
SPARQL-based conditions. Unfortunately, the details of this approach are not
stated explicitly.

As it can be seen, existing solutions to integrate SWS into ebXML Registry
are either constricted to the elements needed in a particular matchmaking ap-
proach [8], [13] and/or rely on the existing matchmakers provided by ebXML
Registry [23]. In contrast, the solution at hand has been designed in order to
provide a generic framework for SWS discovery using ebXML Registry.

3 ebXML Registry – Overview

In 1999, ebXML2 has been initiated by OASIS and the United Nations/ECE
agency CEFACT. In general, it provides a modular suite of specifications for en-

2 http://www.ebxml.org/geninfo.htm, access at 2010-09-04

Integrating Semantic Web Services and Matchmaking into ebXML Registry 5

1..*

Service

ServiceBinding

ExtrinsicObject
[ObjectType=PortType]

ExtrinsicObject
[ObjectType=Binding]

WSDL:service

WSDL:port WSDL:binding

WSDL:portType

1

1

Fig. 1. Mapping WSDL Information to the ebXML RIM

terprises to perform business over the Internet (e.g., message exchange, registra-
tion of services), from which the specifications for registries and repositories are
relevant within the work at hand. In this context, two documents are currently
available as approved OASIS standards: the ebXML Registry Information Model
(RIM) [9] and the ebXML Registry Services and Protocols (RS) [10]. ebXML
RIM and ebXML RS have been standardized as ISO 15000, Parts 3 and 4, re-
spectively. The former specifies the underlying data model of the registry, i.e.,
the metadata classes, whose instances are used to describe the objects stored
in the repository, and the latter describes the functionalities provided by the
registry and the protocols used for interacting with the registry.

An ebXML registry may further implement different profiles, each defining
a processing standard as well as extensions and restrictions of the core ebXML
features for a specific type of content. The ebXML Registry Profile for Web
Services (WS) defines the publication, management and discovery of Web service
artifacts [21]. The RIM classes which are relevant for the registration of Web
services in an ebXML registry implementing the Web Service profile are depicted
in Figure 1.

A service is represented by an instance of the Service class, which itself con-
tains one or more instances of the ServiceBinding class providing technical in-
formation (e.g., the access URI) on how to access a concrete service instance in a
specific way. The class ExtrinsicObject represents the primary metadata class
for items stored within the repository [9]. To specify the type of content submit-
ted to the repository represented by an instance of the ExtrinsicObject class,
classification schemes are used. In standard ebXML implementations, WSDL
files are stored as ExtrinsicObject instances and classified with the WSDL
classification node. When submitting a WSDL document to the registry, a corre-
sponding Cataloging Service is invoked which performs a mapping of the WSDL
components to the ebXML RIM [21]. This is due to the fact, that the default ser-
vice information model as part of the RIM also supports the registration of other
types of services than Web services [9], i.e., represents a generic service model.
Consequently, the components which are specific to a certain kind of service have
to be stored as extrinsic objects and classified using custom-built classification

6 Stefan Schulte et al.

schemes. So far, ebXML WS has only been defined for WSDL 1.1-based service
descriptions.

4 Solution Approach and Prototypical Implementation

In order to integrate SWS into ebXML and provide appropriate service discovery
facilities, it is necessary to provide solutions for the following issues:

– Integration of SWS descriptions
– Integration of query formulations
– Integration of matchmaking capabilities

Regarding the integration of query formulations, we refer to our former work
presented in [25]. In the following, we will focus on the integration of SWS and
the provision of a matchmaking interface in ebXML; query formulation is only
regarded if necessary to complete a particular consideration. Afterwards, we
present a prototypical implementation using freebXML 3.1 3.

4.1 Integration of SWS Descriptions

In order to integrate SWS descriptions into ebXML Registry, it is necessary to
enhance the ebXML RIM by a new classification node, e.g., called SWS. Using
the newly created object type SWS, it is possible to classify SWS objects and to
distinguish between non-semantic and semantic Web services. The handling of
these new objects has to be implemented in the corresponding ebXML Registry
realization (cp. Section 4.4). We determine SWS descriptions to be published
using a subclass of the new classification node SWS; the corresponding WSDL
information is published by the standard publication mechanism. In doing so,
we assume SWS descriptions to make use of a WSDL grounding, as provided by,
e.g., WSMO and OWL-S [14], [15], [18].

SAWSDL services can be published without any modifications using the stan-
dard WSDL cataloging service of ebXML registrations. However, it is still neces-
sary to publish the semantic information described in SAWSDL using a separate
node in order to make a differentiation for syntax- and semantic-based service
discovery.

4.2 Integration of Matchmaking Capabilities

Per se, ebXML Registry offers syntax-based matchmaking capabilities based on
service queries defined using SQL or so-called ebXML filters [10]. In order to
enable semantic-based service discovery, it is necessary to provide new match-
making facilities.

Therefore, within the work at hand, an exemplary matchmaker is directly in-
tegrated into a service registry as proof-of-concept. A direct integration mecha-
nism for matchmakers into registries demands a generic concept, i.e., the creation

3 http://ebxmlrr.sourceforge.net/

Integrating Semantic Web Services and Matchmaking into ebXML Registry 7

and provision of interfaces. In doing so, further matchmakers can be introduced
without changing existing classes, but only through the implementation of ad-
ditional classes.

Since the registry should also provide semantic matching capabilities, the
management of ontologies has to be addressed. Regarding service (information)
life cycle management as well as service and SOA governance, (information
about) ontologies need to be managed by a service registry itself. Ontologies
needed in matchmaking depend on the services published in a registry. Thus,
a flexible mechanism for the management of ontologies is required, so that new
ontologies can be added at any time. For this, a semantic reasoning engine can
be integrated into a service registry in conjunction with an ontology knowl-
edge base, where arbitrary ontologies can be registered. For example, a service
provider could register the necessary ontologies together with the service of-
fers at publication time. If a query is enhanced with semantic information, the
syntax-based part can be directed to the standard search facilities provided by
a registry and the additional semantic information can be directed to semantic
matchmakers to allow for real reasoning support.

4.3 freebXML – An Open Source Reference Implementation of
ebXML Registry

Web Browser Web UI Java UI Admin Tool

JAXR API

JAXR Provider

HTTP SOAP

QueryManager LifeCycleManager

Authentication and Authorization

Persistence

SQLPersistenceManager RepositoryManager

RDBMS

R

R R R

R

Registry
Client
Layer

Registry
Client
API Layer

Registry
Server

Fig. 2. The freebXML Architecture

8 Stefan Schulte et al.

For our prototypical implementation, freebXML 3.1 was used and enhanced.
freebXML is an open source reference implementation of the OASIS ebXML Reg-
istry standards [9], [10]. freebXML is made up from a registry, where metadata
about artifacts can be published, and a repository, where the actual artifacts are
stored. In general, an ebXML registry may implement different profiles, i.e., pro-
vide functional enhancements for a specific type of content. Concerning profiles,
freebXML implements, among others, ebXML WS [21]. Basically, the freebXML
architecture comprises the three parts depicted in Figure 2: the Registry Client
Layer, the Registry Client API Layer and the Registry Server.

The Registry Client Layer depicts possible registry client types, which may
be represented by a Web browser with direct HTTP access for querying purposes
only, a thin client Web User Interface (UI) running within some Web container,
that can be accessed via a Web browser, a fat client Java UI running on a client
machine and a command line interface, e.g., in the form of an administration tool.
Instances of the last three client types are provided by the freebXML registry.

The Registry Client API Layer is the subsequent layer in the architecture.
It is represented by the JAXR API, which provides standard Java interfaces to
access the registry. The JAXR API requires a JAXR provider, which represents
an implementation of the JAXR API. The freebXML registry contains its own
JAXR Provider, which represents an advanced implementation of the JAXR
API.

Concerning the freebXML Registry Server, a HTTP and a SOAP interface
are provided. For browsing and discovery capabilities, the HTTP and the SOAP
interface offer a binding to the QueryManager interface, while the SOAP inter-
face also provides a binding to the LifeCycleManager interface for publishing
content. Furthermore, modifying access to the registry requires user authentica-
tion and authorization. For this, a security layer is part of the registry server.
In order to store content and metadata, an abstract persistence layer is defined
by the registry. For the actual storage of content and metadata, a relational
database management system (RDBMS) is used. By default, freebXML makes
use of Apache Derby, which runs in the same Java Virtual Machine as the registry
server. To manage the persistence of the registry server and the repository items,
an SQL persistence manager interface and an repository manager interface are
provided, respectively.

A comprehensive presentation of the freebXML registry architecture is given
at the project’s Web page4.

4.4 Prototypical Implementation

Based on the defined requirements, we have prototypically enhanced freebXML
as a generic SWS discovery framework. As SWS formalism, we make use of
SAWSDL and WSDL 1.1. Furthermore, we make use of a “query by example”-
approach, i.e., a SAWSDL description needs to be provided by the service re-
quester. In the following, the integration of SAWSDL into ebXML Registry, an

4 http://ebxmlrr.sourceforge.net/

Integrating Semantic Web Services and Matchmaking into ebXML Registry 9

HTTP Server

Storage

SAWSDL

HTTP Server

Web Container

ebXML

LifeCycleManager SWSCataloger

WSDL
Cataloging Service

Registry/
Repository

JAXR Provider

R

R

R

R

Client

Web Browser

Client

ebXML Client

R

Ontologies

Fig. 3. Enhanced ebXML Architecture (Publishing)

interface for arbitrary matchmakers, and the utilization of an example match-
maker are presented.

Apart from freebXML, the following major software components have been
used in our prototypical implementation:

Apache Tomcat 5.0.28 is the Web container freebXML is deployed to,
Java JDK 5.0 Update 22 is deployed for enhancements of freebXML and the

development of a registry client, and
Apache HTTP Server 2.2 is used to store Web service descriptions and on-

tologies.

Integration of SAWSDL into ebXML Registry: For SAWSDL-based ser-
vice descriptions, a classification node SAWSDL has to be created in the registry;
as presented in Section 4.1, SAWSDL is derived from SWS. Generally, depending
on the type of content, an associated cataloging service, which extracts the re-
quired information from submitted services, is invoked on publication time. The
information is then mapped to instances of the ebXML RIM representing the
content’s metadata, while the actual content is stored within the repository,

In detail, by submitting SAWSDL documents to the registry, they are clas-
sified using SAWSDL. The LifeCycleManager (cp. Figure 3) of the registry makes
a call to the appropriate cataloging service associated with the SAWSDL object

10 Stefan Schulte et al.

type. For this, a new cataloging service SWSCataloger has been developed. On
invocation, the SWSCataloger first makes a call to the standard WSDL Cata-
loging Service of freebXML, which performs a normal publication of the WSDL
information associated with the SWS document.

Finally, the published WSDL information has to be associated with the
SAWSDL representation of the service. For this, ebXML provides the ability
to relate any two objects in the registry using arbitrary relationship types. The
resulting registry and repository objects are then passed to the LifeCycleMan-
ager, which submits the contents to the Storage database of freebXML.

org.freebxml.omar.server.query

org.freebxml.omar.server.query.sws

processSQLQueryExt(...): RegistryObjectListType
getAdditionalValues(): SlotListType

<<interface>>
IMatchmaker

processSQLQueryExt(...): RegistryObjectListType
getAdditionalValues(): SlotListType

additionalValues: SlotListType

LOG4SWSMatchmaker

DEFAULT: String
LOG4SWS: String

<<interface>>
IMatchmakerConfig

submitAdhocQuery(...): AdhocQueryResponseType

QueryManagerImpl

<<use>>

Fig. 4. Registry Enhancements for the Integration of Matchmakers

Matchmaker Interface: For the integration of different matchmakers, the
QueryManager implementation of freebXML has been modified and additional
classes have been created. An overview of the classes is depicted in Figure 4. In
detail, each SQL query that is submitted to the registry is scanned for an SQL
extension, i.e., an enhanced SQL query string indicating that a semantic “query
by example” has been submitted as service request. If no extension is found,
the SQL query is processed in the usual way. Else, the enhanced query string is
forwarded to the semantic matchmaker.

Possible matchmakers can be registered within the IMatchmakerConfig class
in the form of a string-based constant that is associated with the fully qualified
name of the main class of a matchmaker. Using the Java Reflection API5, the

5 http://java.sun.com/docs/books/tutorial/reflect/index.html

Integrating Semantic Web Services and Matchmaking into ebXML Registry 11

HTTP Server

Storage

SAWSDL

HTTP Server

Web Container

ebXML

QueryManager

SQL Query
Processor

Registry/
Repository

JAXR Provider

R

R

 LOG4SWS.KOM

Logic
Matcher

R
OWL

Knowlege
Base

OntologiesSemantic-
Handler

R

R

LOG4SWSMatchmaker

R

R

Client

ebXML Client

Fig. 5. Enhanced ebXML Architecture (Discovery)

QueryManager implementation is able to redirect a query to the desired match-
maker. For the integration of a new matchmaker, the IMatchmaker interface can
be implemented by the respective class. In doing so, two methods have to be
realized by the new matchmaker; one for processing the SQL query extensions
and a second method to return an optional response slot list, which can be used
to send back additional information (e.g., a similarity value) of a matching ser-
vice to the client. The optional response slot list is provided by default by the
freebXML registry implementation as part of the response to an SQL query. For
the proof of concept implementation, the LOG4SWSMatchmaker class has been
created (see below), which establishes the connection to the matching facilities
provided by our matchmaker LOG4SWS.KOM [24]. In order to retrieve the set
of available service descriptions from the registry, the LOG4SWSMatchmaker
class makes use of the querying facilities provided by the SQL Query Processor
of freebXML. Each service object that matches the query is added to the final
result set, which is then sent back to the respective client.

The process for the retrieval of SWS is illustrated in Figure 5. First of all, a
“query by example”-enhanced SQL query string is created by a service requester
using the ebXML client. Afterwards, the matchmaker processes the SAWSDL
service descriptions according to its specific matchmaking algorithm. Finally, the
result is sent back to the ebXML client.

12 Stefan Schulte et al.

Example Matchmaker: For the prototypical implementation, an exemplary
matchmaker for SAWSDL, namely LOG4SWS.KOM, is utilized, which has been
presented in [24] and is also participating in this year’s “Annual International
Contest S3 on Semantic Service Selection Retrieval Performance Evaluation of
Matchmakers for Semantic Web Services” (S3 Contest)6. LOG4SWS.KOM takes
a “query by example” as service request and is provided with a set of service
offers by the ebXML Registry.

By default, LOG4SWS.KOM aims at performing a logical subsumption match-
ing, which accounts for the semantic annotations on the different component lev-
els of a SAWSDL-based service description. These components comprise inter-
faces, operations and parameters (i.e., inputs and outputs). For each component
level, an individual similarity value is computed during the matching process,
which is then aggregated to a global similarity value for the whole service based
on predefined weights for each level. In doing so, the resulting, individual sim-
ilarity values representing classical Degrees of Match [22] are transformed into
numerical representations between 0 and 1 for their combination. Since seman-
tic annotations may not be present on all service component levels or required
ontologies may be missing within the OWL knowledge base of a registry or may
even fail to load, LOG4SWS.KOM also provides a fallback strategy, which is
applied in these situations. The fallback strategy then processes the remaining
information, i.e., the names of the components in the first case or the names
of the semantic concepts in the other cases. The similarity measure is then de-
termined using the WordNet ontology [20], which represents a semantic net of
words for the English language. Based on the distance of a pair of words in
WordNet, the similarity value is computed.

In order to be able to determine subsumption relationships between the con-
cepts specified within a service query and the concepts specified within a service
offer, a reasoning engine has to be integrated into the registry. For this purpose,
a SemanticHandler is part of LOG4SWS.KOM, which provides an interface to
access a semantic reasoner (here: Pellet 2.0) and an OWL knowledge base. Since
the initialization of the semantic reasoner and the OWL knowledge is a very
time consuming task, it cannot be performed once again on every incoming ser-
vice query. Therefore, an instance of the SemanticHandler has been integrated
into the RepositoryManagerFactory, which represents a permanent and unique
instance within the freebXML registry, so that the SemanticHandler and the cor-
responding OWL knowledge base can be initialized once upon registry startup.
Within the work at hand, it is further assumed, that the required ontologies
for discovery already exist within the OWL knowledge base, when a query is
submitted to the registry. For this purpose, a list with the required ontologies
is provided to the SemanticHandler, so that the necessary ontologies are loaded
into the OWL knowledge base at registry startup.

6 http://www-ags.dfki.uni-sb.de/~klusch/s3/html/2010.html

Integrating Semantic Web Services and Matchmaking into ebXML Registry 13

5 Conclusion

Even though ebXML Registry provides a valid alternative to the usually applied
UDDI-based service registries, surprisingly little work has been done regarding
the application of ebXML Registry in SWS discovery frameworks. In the paper
at hand, we have presented a corresponding approach, which has been proto-
typically implemented deploying SAWSDL as SWS formalism and freebXML as
ebXML implementation.

Also our prototypical implementation is fully operational, we consider it pri-
marily as a foundation for more sophisticated solutions. Among other thing, we
want to address the following questions in our future work:

In this paper, we have proposed a quite lightweight interface for matchmakers.
The interface is based on the assumption that service requests are formulated
using a “query by example”-approach. However, as we have stated in our previous
work [25], it might be helpful to provide more sophisticated and fine-grained
query formalisms for SWS. Thus, the matchmaker interface might be replaced
by a more heavyweight one; the features such an interface should provide are
subject to a discussion in the research community.

Second, the prototypical implementation is restricted to SAWSDL-based ser-
vice descriptions. In our opinion, the heterogeneity of SWS formalisms is a major
obstacle especially regarding service discovery as, e.g., it is not possible to find
an OWL-S service profile based on a SAWSDL-based service request. In our
future work, we want to address this issue by providing a sophisticated, unified
query language in ebXML Registry.

Finally, as presented in Section 2, matchmakers can either be integrated into
registries or service queries can be intercepted to allow for a redirect to specific
external matchmakers. Both approaches require a modification of the registry’s
source code. However, using the first approach, a repetitive modification of the
source code is necessary, when new matchmakers are to be integrated. In the
second approach, a generic redirection mechanism can be implemented, so that
a modification of the registry’s source code has to be only performed once. Al-
though, a generic redirection mechanism is preferable, it is far more complex.
Thus, we used the first-mentioned approach in the work at hand. In our future
work, we will examine the integration of a generic redirection mechanism for
service requests to external matchmakers.

Acknowledgements. This work is supported in part by the E-Finance Lab
e. V., Frankfurt am Main, Germany (www.efinancelab.de).

References

1. Akkiraju, R., Goodwin, R., Doshi, P., Roeder, S.: A Method for Semantically En-
hancing the Service Discovery Capabilities of UDDI. In: Workshop on Information
Integration on the Web (IIWeb-03) at Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03). pp. 87–92 (2003)

14 Stefan Schulte et al.

2. Ankolekar, A., Martin, D., McGuinness, D., McIlraith, S., Paolucci, M., Parsia,
B.: OWL-S’ Relationship to Selected Other Technologies. W3C Member Submis-
sion (November 2004), http://www.w3.org/Submission/OWL-S-related/, access
at 2010-08-12

3. Châtel, P.: Service Registries Study. Thales Study (June 2006), http://www.

chatelp.org/work/LUCAS_registry_study.pdf, last access at 2010-04-13
4. Chiusano, J.M., Najmi, F.: Registering Web Services in an ebXML Registry,

Version 1.0. OASIS Technical Note (March 2003), http://www.oasis-open.

org/committees/download.php/11907/regrep-webservices-tn-10.pdf, access
at 2010-01-24

5. Cimpian, E., Zaremba, M. (eds.): Web Service Execution Environment (WSMX).
W3C Member Submission (June 2005), http://www.w3.org/Submission/WSMX/,
access at 2010-04-03

6. Colgrave, J., Januszewski, K.: Using WSDL in a UDDI Registry, Version 2.0.2.
OASIS Technical Note (June 2004), http://www.oasis-open.org/committees/

uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm, access at 2010-01-24
7. Dogac, A. (ed.): ebXML Registry Profile for Web Ontology Language (OWL). OA-

SIS Committee Draft (September 2006), http://docs.oasis-open.org/regrep/
v3.0/profiles/owl/regrep-owl-profile-v1.5.pdf, access at 2010-09-05

8. Dogac, A., Kabak, Y., Laleci, G., Mattocks, C., Najmi, F., Pollock, J.: Enhancing
ebXML Registries to Make them OWL Aware. Distributed and Parallel Databases
18(1), 9–36 (2005)

9. Fuger, S., Najmi, F., Stojanovic, N. (eds.): ebXML Registry Information Model
Version 3.0. OASIS Standard (May 2005), http://docs.oasis-open.org/regrep/
v3.0/specs/regrep-rim-3.0-os.pdf, access at 2010-02-09

10. Fuger, S., Najmi, F., Stojanovic, N. (eds.): ebXML Registry Services and Protocols
Version 3.0. OASIS Standard (May 2005), http://docs.oasis-open.org/regrep/
v3.0/specs/regrep-rs-3.0-os.pdf, access at 2010-02-09

11. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX – A Semantic
Service-Oriented Architecture. In: 2005 IEEE International Conference on Web
Services (ICWS 2005). pp. 321–328. IEEE Computer Society, Washington, DC,
USA (2005)

12. Herzog, R., Lausen, H., Roman, D., Zugmann, P. (eds.): D10 v0.1 WSMO Reg-
istry. WSMO Working Draft (April 2004), http://www.wsmo.org/2004/d10/v0.
1/20040426/, access at 2010-04-03

13. Iqbal, K., Sbodio, M.L., Peristeras, V., Giuliani, G.: Semantic Service Discovery
using SAWSDL and SPARQL. In: Fourth International Conference on Semantics,
Knowledge and Grid (SKG 2008). pp. 205–212. IEEE Computer Society (2008)

14. Kopecký, J., Moran, M., Vitvar, T., Roman, D., Mocan, A. (eds.): D24.2 v0.1
WSMO Grounding. WSMO Working Draft (April 2007), http://www.wsmo.org/
TR/d24/d24.2/v0.1/#grounding_wsdl, access at 2010-09-03

15. Kopecký, J., Roman, D., Moran, M., Fensel, D.: Semantic Web Services Grounding.
In: Advanced International Conference on Telecommunications and International
Conference on Internet and Web Applications and Services (AICT-ICIW 2006).
IEEE Computer Society, Washington, DC, USA (2006)

16. Kourtesis, D., Paraskakis, I.: Combining SAWSDL, OWL-DL and UDDI for Se-
mantically Enhanced Web Service Discovery. In: 5th European Semantic Web Con-
ference (ESWC 2008). LNCS, vol. 5021, pp. 614–628. Springer (2008)

17. Luo, J., Montrose, B., Kim, A., Khashnobish, A., Kang, M.: Adding OWL-S Sup-
port to the Existing UDDI Infrastructure. In: 2006 IEEE International Conference

Integrating Semantic Web Services and Matchmaking into ebXML Registry 15

on Web Services (ICWS 2006). pp. 153–162. IEEE Computer Society, Washington,
DC, USA (2006)

18. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N.,
Sycara, K.: OWL-S: Semantic Markup for Web Services. W3C Member Submission
(November 2004), http://www.w3.org/Submission/OWL-S/, access at 2009-06-12

19. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems 16(2), 46–53 (2001)

20. Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM
38(11), 39–41 (1995)

21. Najmi, F., Chiusano, J. (eds.): ebXML Registry profile for Web Services. Ver-
sion 1.0 Draft 3. Draft OASIS Profile (September 2005), http://www.oasis-open.
org/committees/download.php/14756/regrep-ws-profile-1.0-draft3.pdf, ac-
cess at 2010-03-05

22. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Importing the Semantic
Web in UDDI. In: International Workshop on Web Services, E-Business, and the
Semantic Web (WES 2002) in connection with The 14th Conference on Advanced
Information Systems Engineering (CAiSE 2002). Lecture Notes in Computer Sci-
ence, vol. 2512, pp. 225–236. Springer, Berlin Heidelberg (2002)

23. Pilioura, T., Tsalgatidou, A.: Unified publication and discovery of semantic Web
services. ACM Transactions on The Web 3(3), 1–44 (2009)

24. Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: LOG4SWS.KOM: Self-Adapting
Semantic Web Service Discovery for SAWSDL. In: IEEE 2010 Fourth International
Workshop of Software Engineering for Adaptive Service-Oriented Systems (SEASS
’10) at 2010 IEEE 6th World Congress on Services (SERVICES 2010). pp. 511–518.
IEEE Computer Society, Washington, DC, USA (2010)

25. Schulte, S., Siebenhaar, M., Eckert, J., Steinmetz, R.: Query languages for semantic
web services. In: Informatik 2010 (FORTHCOMING). Gesellschaft für Informatik
(2010)

26. Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A.: Adding Semantics to
Web Services Standards. In: International Conference on Web Services (ICWS
2003). pp. 395–401. CSREA Press (2003)

27. Srinivasan, N., Paolucci, M., Sycara, K.P.: An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In: First International Workshop on Semantic
Web Services and Web Process Composition (SWSWPC 2004), Revised Selected
Papers. Lecture Notes in Computer Science, vol. 3387, pp. 96–110. Springer, Berlin
Heidelberg (2004)

28. Sun Microsystems, Inc.: Effective SOA Deployment using an SOA Registry Repos-
itory. A Practical Guide (September 2005), http://www.sun.com/products/soa/
registry/soa_registry_wp.pdf, access at 2010-04-14

29. Verma, K., Sivashanmugam, K., Sheth, A.P., Patil, A., Oundhakar, S., Miller,
J.: METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic
Publication and Discovery of Web Services. Journal of Information Technology and
Management 6(1), 17–39 (2005)

Comprehensive service semantics and light-weight

Linked Services: towards an integrated approach

Stefan Dietze, Neil Benn, Hong Qing Yu, Carlos Pedrinaci,

Bassem Makni, Dong Liu, Dave Lambert, John Domingue

Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK

{s.dietze, n.j.l.benn, h.q.yu, c.pedrinaci, b.makni, d.liu, d.j.lambert, j.b.domingue}@open.ac.uk

Abstract. Semantics are used to mark up a wide variety of data-centric Web

resources but, are not used in significant numbers to annotate online services—

that is despite considerable research dedicated to Semantic Web Services

(SWS). This is partially due to the complexity of comprehensive SWS models

aiming at automation of service-oriented tasks such as discovery, composition,

and execution. This has led to the emergence of a new approach dubbed Linked

Services which is based on simplified service models that are easier to populate

and interpret and accessible even to non-experts. However, such Minimal

Service Models so far do not cover all execution-related aspects of service

automation and merely aim at enabling more comprehensive service search and

clustering. Thus, in this paper, we describe our approach of combining the

strengths of both distinct approaches to modeling Semantic Web Services –

“lightweight” Linked Services and “heavyweight” SWS automation – into a

coherent SWS framework. In addition, an implementation of our approach

based on existing SWS tools together with a proof-of-concept prototype used

within the EU project NoTube is presented.

Keywords: Semantic Web Services, Linked Services, Linked Data, IPTV.

1 Introduction

The past decade has seen a wide range of research efforts in the area of Semantic Web

Services (SWS), mainly aiming at the automation of Web service-related tasks such

as discovery, orchestration or mediation via broker-based approaches. Building on

formal service semantics, several conceptual models, such as OWL-S [14] and

WSMO [9], and also standards such as SAWSDL [18] have been proposed which aim

at formalizing semantic service descriptions usually covering aspects such as service

capabilities, interfaces and non-functional properties. Besides, a considerable research

community evolved around these SWS frameworks, providing, for instance, related

annotation and execution tools [7].

While semantics are used to mark up a wide variety of data-centric resources on

the Web, that does not apply to online services in significant numbers. The reasons

for this are two-fold. Firstly, SWS research has for the most part targeted WSDL [22]

or SOAP-based [21] Web services, which are not prevalent on the Web [4]. Secondly,

due to the inherent complexity required to fully capture computational functionality,

creating SWS descriptions has represented an important knowledge acquisition

bottleneck and has required the use of rich knowledge representation languages and

complex reasoners. There exists an inherent conflict between the need to capture

comprehensive and meaningful service semantics – to allow reasoning-based

automation of any sort – and the requirement to keep the costs for providing services

descriptions low in order to simplify the modeling process and to ensure that efficient

and scalable solutions can be implemented [17]. Hence, despite considerable amount

of research dedicated to the SWS vision and the existence of a range of SWS-related

projects, tools and specifications, so far there has been little take up of SWS

technology within non-academic environments.

The prevalent lack of impact of SWS technology is particularly concerning since

Web services – nowadays including a range of often more light-weight technologies

beyond the WSDL/SOAP approach, such as RESTful services, HTTP GET-style

requests or XML-feeds – are in widespread use throughout the Web where

applications use distributed requests to combine and mash-up data from a variety of

open data sources. Hence, the challenges SWS attempted to tackle are of even more

crucial importance for today’s highly distributed Web applications. These issues have

led to the emergence of more simplified SWS approaches to which we shall refer here

as “lightweight”, such as WSMO-Lite [19] or the Micro-WSMO/hRESTs [10]

approach which replace “heavyweight” service semantics with less comprehensive

and less costly to produce service models that are represented in RDF(S), and hence,

comply with the infrastructure of the growing Semantic Web [2]. Analogous to the

Linked (Open) Data (LOD) term [3], this approach was recently dubbed as the Linked

Service approach [17]. Due to the fact that such service annotations are much easier to

produce and can be populated with references to widely established LOD

vocabularies, they address a much wider audience and allow even non-SWS experts

to describe and annotate services. However, while those models are easier to produce

[4], they merely aim at enabling structured, semantics-enabled search by humans or

automated service clustering. More expressive solutions are required to achieve

greater levels of automation, for instance, dealing with matching service requests with

extensive capability representations of available services, or with handling of data-

level mismatches when executing a set of services in an orchestrated manner.

Therefore, here, we aim to combine the strengths of both distinctive SWS

approaches – lightweight Linked Services and more heavyweight broker-based SWS

automation – into a coherent SWS framework. By integrating collaborative and user-

driven Web-scale service annotations with comprehensive SWS specifications, we

benefit from both low cost for providing annotations and a high level of automation.

This also has the benefit of enabling a range of matchmaking scenarios (from user-

driven keyword matching to automated capability matchmaking).

Section 2 introduces work related to our research. Section 3 gives an overview of

our approach and describes the approach and tools that were developed to support our

two-stage approach, while Section 4 describes the deployment and evaluation of our

work within in an EU research project.

2 Related work & background

The landscape of SWS is characterized by a number of conceptual models that,

despite a number of common characteristics, remain essentially incompatible due to

the different representation languages and expressivity utilized as well as because of

conceptual differences. The main conceptual frameworks and specifications devised

thus far include for instance WSMO [20], OWL-S [14]. SAWSDL [18], which in turn

derives from WSDL-S [18]. The vast majority of the SWS initiatives were built upon

the enrichment of WSDL Web services with semantics. It is only recently that

researchers have started focusing on Web APIs and RESTful services. The main

outputs of this recent research are SA-REST [18] and MicroWSMO [12]

Over the last few years, a significant portion of research on the SW has been

devoted to creating what is referred to as LOD [3] which is based upon a set of

principles, including the usage of HTTP URIs to provide information and allow

access based on RDF and SPARQL. Since these principles were outlined, there has

been a large uptake, most notably through DBpedia [1] and others that have produced

a vast amount of linked datasets. While the great potential of this massive data space

still remains largely unexploited, service-oriented computing has been argued to be a

suitable approach to supporting the construction of advanced applications based on

linked data [16].

2.1. Lightweight service annotation: the iServe Linked Services approach

In order to support annotation of a variety of services, such as WSDL services as well

as REST APIs, the EC-funded project SOA4ALL1, has developed iServe2 a novel and

open platform for publishing semantic annotations of services based on a direct

application of linked data principles [17]. iServe supports publishing service

annotations as linked data—Linked Services—expressed in terms of a simple

conceptual model that is suitable for both human and machine consumption and

abstracts from existing heterogeneity around service kinds and annotation formalisms.

In particular iServe provides:

• Import of service annotations in a range of formalisms (e.g., SAWSDL, WSMO-

Lite, MicroWSMO, OWL-S) covering both WSDL services and Web APIs;

• Means for publishing semantic annotations of services which are automatically

assigned a resolvable HTTP URI;

• Support for content negotiation so that service annotations can be returned in plain

HTML or in RDF for direct machine consumption;

• SPARQL endpoint allowing querying over the services annotations;

• REST API to allow remote applications to consume and provide annotations.

• Support for linking service annotations to existing vocabularies on the Web.

In order to cater for interoperability, iServe uses what can be considered the

maximum common denominator between existing SWS formalisms which we refer to

1 http://www.soa4all.eu/
2 http://iserve.kmi.open.ac.uk

as the Minimal Service Model (MSM). The MSM, first introduced together with

WSMO-Lite and hRESTS [19], is thus a simple RDF(S) ontology able to capture

(part of) the semantics of both Web services and Web APIs in a common model.

MSM is extensible to benefit from the added expressivity of other formalisms. The

MSM, denoted with the 'msm' namespace in Fig. 1, defines Services as having a

number of Operations each of which have an Input, Output MessageContent, and

Faults. In turn, a MessageContent may be composed of MessageParts which may be

mandatory or optional. iServe additionally uses the SAWSDL, WSMO-Lite and

hRESTS vocabularies. The SAWSDL vocabulary captures in RDF the three main

kinds of annotations over WSDL and XML Schema, including modelReference,

liftingSchemaMapping and loweringSchemaMapping that SAWSDL supports.

WSMO-Lite builds upon SAWSDL by extending it with a model specifying the

semantics of the particular service annotations. It provides a simple RDFS ontology

together with a methodology for expressing functional and non-functional semantics,

and an information model for WSDL services based on SAWSDL’s modelReference

hooks. The hRESTS vocabulary extends the MSM with specific attributes for

operations so as to allow modeling additional details necessary for Web APIs.

Fig. 1. iServe conceptual model for services – The Minimal Service Model and WSMO-Lite.

In order to support users in creating semantic annotations for services two editors

have been developed: SWEET [12] (SemanticWeb sErvices Editing Tool) and

SOWER (SWEET is nOt a Wsdl EditoR), which support users in annotating Web

APIs and WSDL services respectively. However, SWEET and SOWER build on the

assumption that either HTML documentation of services/APIs (SWEET) or WSDL

files (SOWER) are available as starting point for annotation. In addition, while the

iServe approach enables uptake of SWS technology by a wider audience, the

automation and matchmaking scenarios which it facilitates are actually limited. The

reason for that being that the MSM deliberately excludes execution aspects for the

sake of simplicity and the lack of a commonly prescribed capability representation

model.

2.2. Automated services brokerage: the IRS-III framework

IRS-III3 [7] is a SWS execution environment which acts as a service broker –

mediating between the goals of a client and relevant services that are deployed on the

Web – striving for a high level of service automation. IRS-III adopts the WSMO

conceptual model of services. The ultimate aim of the WSMO model of Web services

is to be able to provide a well-defined semantics, which can then be interpreted by a

reasoner to enable automatic discovery, selection, composition, mediation, execution,

and monitoring of services [10]. As opposed to MSM, IRS-III directly covers

execution-related aspects.

The WSMO conceptual model of services consists of the following core elements:

goal, mediator, and Web service. These are described in a formal representation

language, for instance, OCML [15] in the case of IRS-III. The functionality offered

by a Web Service is captured by its capability description, which defines necessary

pre- and postconditions as well as underlying assumptions and effects of the service.

These are usually formalized as logical expressions. The means to interact with the

Web service is captured by its interface definition.

Given that IRS-III directly aims at automating service execution related aspects,

the interface covers choreography and orchestration descriptions. Choreography

addresses the communication between the IRS-III broker and a Web service, and is

described as so-called grounding. The IRS-III grounding mechanism supports REST-

based, SOAP-based, and XML-RPC based services [11]. Grounding involves two

processes referred to as lifting and lowering. Lowering involves transforming input

parameters at the semantic level to data input to the service at the syntactic level.

Lifting involves the opposite transformation, i.e. transforming the data output from

the service at the syntactic level into an ontological object at the semantic level.

Orchestration addresses the problem of how to model functionality that is

composed of several Web services. At the semantic level the orchestration is

represented by a workflow model expressed in OCML, that describes the flow of

control between the Web services. The IRS-III orchestration model supports the main

control-flow primitives of sequence, selection, and repetition.

At runtime, IRS-III automatically discovers and invokes Web services suitable for

a given client request, formulated as a goal instance, by selecting suitable services and

executing these whilst adhering to any data, control flow and Web service invocation

constraints. In principle, selection is based on comparing the capability descriptions of

the request with the ones of the relevant SWS. Such matchmaking is currently

supported, for instance, via (a) comparison and evaluation of logical expressions used

in the capability descriptions, or (b) a hybrid approach [6] which combines similarity-

computation via vector representations of SWS instances with (a). The IRS-III

functionalities are exposed through a Java API4 (details in [7]), and an HTTP-based

3 http://technologies.kmi.open.ac.uk/irs - IRS: Internet Reasoning Service
4 http://technologies.kmi.open.ac.uk/irs/irs3docs/api/index.html

REST API, which applications use to interact with IRS-III.

3 Two-stage service annotation and reasoning

In order to tackle the challenges introduced in Section 1, we aim at combining the two

distinct SWS representation approaches

(R1) lightweight Linked Services (as facilitated by MSM), and

(R2) heavyweight SWS automation (as facilitated by WSMO).

R1: Light-weight Linked Services R2: Semantic Web Service Automation

request goals

Developers

annotate & reuse services

C1: referencing

Applications

Web Service Web Service Web Service Web Service Web Service

C2: transformation

Fig. 2. From lightweight service annotations to heavyweight SWS automation - overall

approach.

While these approaches currently co-exist without a well-defined relationship, we

propose two different bi-directional correlations, which are under investigation:

(C1) service model cross-referencing,

(C2) service model transformation and augmentation.

Under (C1), we subsume all kinds of references between models across (R1) and (R2)

as depicted in Fig. 2. For instance, a lightweight service annotation (MSM) could

point to a heavyweight WSMO description that models the same service more

exhaustively or vice versa. That would allow semantics to be exploited in (R1) as well

as (R2) for reasoning of different sorts, for instance, to perform some clustering or

filtering based on (R1) to reduce the amount of potentially interesting services for a

given query in (R2). In addition, (C2) considers the transformation between models

across (R1) and (R2), either manually or (semi-)automatically. Our current

implementation builds upon existing SWS research namely WSMO and WSMO-

Lite/MSM by integrating iServe and IRS-III. The remainder of this section describes

the two approaches - (C1) and (C2) - in more detail.

3.1. Services model cross-referencing

Service model cross-referencing involves the formal definition of relationships

between service models. The two main types of relationship are depicted in Figure 3.

msm:Service wsmo:Goal
used-by

0..* 0..*

msm:Service wsmo:Goal
describes

0..* 0..1

(a)

(b)
Fig. 3. Supported service model cross-referencing relationships.

(a) MSM instances referring to WSMO goal instances:

This involves specifying a link between an MSM instance and a corresponding

WSMO goal description. Links of this kind define that the respective goal

(wsmo:Goal) makes use of the service described by the respective msm:Service, i.e.

for instance, the goal is linked to the service and potentially allows its discovery and

execution as part of a more complex orchestration. Following that reference,

developers are able to query the iServe repository via SPARQL or its API to (i)

discover suitable services described via MSM, and then (ii) use a corresponding goal

invocation URI to execute the service via IRS-III execution facilities. However, one

assumption for such use cases is the existence of service models in both, iServe as

well as IRS-III, which describe the same underlying service.

(b) MSM instances describing WSMO goal instances:

An additional link between MSM (iServe) and WSMO (IRS-III) is established by

annotating the interface for achieving a particular goal (wsmo:Goal within IRS-III)

itself as a minimal service description (msm:Service) within iServe. This is feasible

and useful since WSMO goals within IRS-III are exposed via a REST-API and hence,

each goal constitutes a particular service itself, which makes use of one or more actual

Web services/APIs to provide a specific functionality. This has the benefit of allowing

developers to query the MSM knowledge base in order to keep track of and discover

WSMO goals. In that, complex functionalities – which might make use of a number

of services – can be exposed via IRS-III and then be annotated within iServe as

(higher level) services themselves.

3.2. Service model transformation and augmentation

Here, we consider the transformation and augmention of models across (R1) and

(R2), either manually or (semi-)automatically. This involves transforming service

descriptions based on one conceptual model of services (e.g. the MSM) into the other,

e.g., WSMO and vice versa.

0..1
msm:Service wsmo:Service

maps-to

0..1

Fig. 4.Transformation between service representations across both conceptual models.

As can be seen from the previous sections, there is some overlap between the

elements of a service description according to the MSM and the elements of a service

description according to the WSMO conceptual model. This applies in particular to

the service entity within both models. Here, we investigated the overlap between both

schemas in order to establish potential mapping rules. The following figure depicts

the core entities of WSMO and MSM, their relationships and their potential cross-

model mapping. Please note, that for the sake of simplification, we left aside the

WSMO elements goal and mediator, which have no expression in the MSM

whatsoever.

Fig. 5.MSM vs WSMO entities: relationships and mappings.

As depicted above, both models share a certain overlap, mainly relating to the core

concepts such as Ontology, Web Service and Non-Functional Parameter (Property)

and a number of properties which are equivalent. We foresee a bi-directional semi-

automated transformation strategy between WSMO and MSM consisting of the

following steps:

S1. Generating raw target model from source model.

S2. Semi-automatic augmentation of target model.

This transformation is making use of the mentioned model schema overlap and aims

at generating raw target models (e.g. a WSMO service instance) from a given source

model (e.g. a MSM service instance) as part of S1. S2 then aims at semi-automatically

enriching the generated service instance in order to create a fully target schema

compliant service instance.

3.3. Implementation: service annotation and integration via SmartLink

In order to tackle some of the issues mentioned above and to approach integration of

service models, a new services annotation and search tool was created, SmartLink

("SeMantic Annotation enviRonmenT for Linked services"). SmartLink allows

annotation of REST-ful services based on the MSM from scratch, that is, without any

pre-existing services documentation such as WSDL or HTML files, as assumed by

existing iServe annotation tools (Section 2.1). Besides, SmartLink exploits an

extension of the MSM schema including a number of additional non-functional

properties. MSM-schema properties are directly stored in iServe, while additional

properties are captured in a complementary RDF store based on OpenRDF Sesame5.

Due to these extensions, we refer in the following to our service RDF store as

iServe+. These non-functional properties are, for instance, contact person, developer

name, Quality of Service (QoS), development status, service license, and WSMO goal

reference. The latter property directly contributes to facilitate our vision of allowing

MSM models to refer to existing WSMO goals which utilize the same service entity;

that is, it facilitates our model referencing vision (Section 3.1) between MSM and

WSMO models. In addition, by allowing developers to directly annotate existing

REST-ful services and APIs, SmartLink directly provides another contribution to

enable our service model integration vision (Section 3.1) based on allowing the

annotation of WSMO goal requests – which in fact are REST-ful services themselves

– as MSM service instances.

SmartLink currently provides mechanisms which enable the export of particular

(MSM) service instances as RDF or human-readable HTML. In order to facilitate

service model transformation and augmentation between MSM and WSMO as

proposed in Section 3.2, current research deals with the establishment of an export

mechanism of MSM service models as WSMO instances. While current

implementation work is concerned with adding corresponding export facilities to

SmartLink, model transformation is just enabled on a manual basis at the moment.

4 Case study: two-fold service annotation within NoTube

This section describes a first application of our approach in the context of the NoTube

project6 where the ultimate goal is to develop a network of services, connected

through the use of semantics, to personalize consumption of digital (IP)TV content.

4.1. NoTube challenges

In order to illustrate the challenges with respect to service-related tasks, we describe

one of the main use cases driven by the TV broadcast industry partners within the

NoTube project – namely the requirement to provide personalized content and

metadata delivery to users. Here, the basic feature is the matching of heterogeneous

users’ profiles, e.g. including interests, preferences and activity data, and user

contexts (e.g. current location and viewing device) to filter and deliver TV content

from a variety of sources. Addressing this particular use case in a service-oriented

manner involves selecting and orchestrating between numerous services that provide

various functionality, for instance, to aggregate users’ topic interests based on their

social networking activities, retrieve electronic program guide (EPG) data from

various sources, and provide recommendations based on a dedicated algorithm. To

support the highly service-oriented nature of the project, two major goals need to be

supported: (1) support of distributed developers with lightweight service annotations,

5 http://www.openrdf.org/
6 http://www.notube.tv

and (2) support of application automation with Semantic Web Service brokerage. To

support these goals, we deploy and adapt iServe and IRS-III as SWS frameworks.

4.2. Two-fold service semantics: implementation and integration within NoTube

Supporting lightweight NoTube service annotations via SmartLink and iServe
While the NoTube development takes place in a highly distributed setting and follows

service-oriented principles, NoTube developers need to be provided with the means to

document and search for appropriate services and data sources in order to build

applications and higher-level services.
<rdf:RDF xmlns:so="http://www.purl.org/vocabularies/service-ontology#"
xmlns:msm="http://cms-wg.sti2.org/ns/minimal-service-model"
xmlns:saw="http://www.w3.org/ns/sawsdl#”...>

<rdf:Description
rdf:about="http://lupedia.ontotext.com/lookup#text2rdfa">
 <so:hasContactPerson>Stefan Dietze</so:hasContactPerson>
 <so:hasGoal>GET-LUPEDIA-ENTITIES-GOAL</so:hasGoal>
 <msm:hasInput
 rdf:resource="http://lupedia.ontotext.com/lookup/input#lookupText"/>
 <msm:hasOutput
 rdf:resource="http://lupedia.ontotext.com/lookup/output#lookupResult"/>
 …
 <so:hasOneLiner>Lookup of free text in DBPedia based on entity recognition and
 DBPedia lookup.</so:hasOneLiner>
 <msm:hasOperation
 rdf:resource="http://lupedia.ontotext.com/lookup/#text2rdfa"/>
 <sa:modelReference rdf:resource="http://www.service-
 finder.eu/ontologies/ServiceCategories#Multimedia"/>
 <sa:modelReference rdf:resource="http://www.service-
 finder.eu/ontologies/ServiceCategories#Content"/>
 …
</rdf:Description>
…
<rdf:Description
rdf:about="http://lupedia.ontotext.com/lookup/output#lookupResult">
 <sa:modelReference rdf:resource="http://dbpedia.org/data/Entity"/>
</rdf:Description
…
</rdf:RDF>

Listing 1. RDF-excerpt of LUPedia service description based on MSM.

Hence, as an initial step, lightweight service semantics need to be generated, stored

and exposed in an explorable way to support the NoTube developers in finding and

reusing appropriate services. NoTube adopts the iServe environment by utilising the

iServe+ and SmartLink tools which cater for additional NoTube-specific requirements

(Section 3.3) which operates on top of the iServe RDF store. In addition, the general-

purpose service taxonomy used by iServe (ServiceFinder ontology7) was extended

with a service classification specific to the NoTube domain.

Listing 1 depicts an extract of the RDF description of a particular NoTube service

(LUPEDIA8) which performs a lookup of free text in DBPedia in order to allow

enrichment of EPG metadata with additional DBPedia entities. Besides the utilisation

7 http://www.service-finder.eu/ontologies/ServiceCategories
8 http://lupedia.ontotext.com/

of model references to external vocabularies – please note the highlighted reference

(<sa:modelReference>) at the bottom – the listing also highlights some of the

integrative elements which had been utilized within NoTube. For instance, the

<so:hasGoal>-property refers to a particular WSMO goal instance within IRS-III to

cater for our model referencing approach (Section 3.1).

The following screenshot depicts the query interface of SmartLink, which allows to

query for services. Service matchmaking is being achieved by matching a set of core

properties (input, output, keywords) or submitting more comprehensive SPARQL

queries.

Fig. 6. SmartLink service query interface as utilized in NoTube.

Support of service automation with Semantic Web Service brokerage
The IRS-III acts a middleware component for the NoTube project with the purpose of

automatically finding, combining and invoking relevant Web Services based on goals

specified by NoTube application developers. By annotating existing services via

WSMO, we abstract from the Web service implementations, ensuring a high level of

autonomy and flexibility. That is, service consumers treat goals as black boxes which

provide abstract functionalities achievable by IRS-III in terms of reasoning on

WSMO service instances to discover and orchestrate suitable services. Goals are

requested via the IRS-III REST API (Section 2.2), and, as such, each individual goal

achievement request constitutes a service itself.

The following code excerpt shows the WSMO description (in OCML) of the same

NoTube service (LUPedia) and a corresponding WSMO goal (GET-LUPEDIA-

ENTITIES-GOAL). This code has been obtained by manually applying our

transformation strategy from Section 3.2. Besides the I/O definitions (“has-text” and

“has-lupedia-entities”) the listing also shows the grounding definitions that

determine how the WSMO goal invocation instance is grounded to the underlying

Web service. The grounding consists of three key definitions (highlighted in the

Listing):

• The definition of the service listener (GET-LUPEDIA-ENTITIES-WS-PUBLISHER-

INFORMATION);

• The lowering definition defining the lowering from the semantic level

(WSMO/OCML instances) into the input parameters of the Web service (LOWER-

FOR-GET-LUPEDIA-ENTITIES-GOAL, not shown in full detail);

• The lifting definition which describes the lifting of service execution results into

WSMO/OCML instances (LIFT-FOR-GET-LUPEDIA-ENTITIES-GOAL, not shown in

full detail). The lifting defines a rule for parsing and handling the XML result of

the LUPedia service (see also [11])

(DEF-CLASS GET-LUPEDIA-ENTITIES-GOAL (GOAL)
 ((HAS-INPUT-ROLE :VALUE has-text)
 (HAS-OUTPUT-ROLE :VALUE has-lupedia-entities)
 (has-text :TYPE String)
 (has-lupedia-entities :TYPE List)))
…

(DEF-CLASS GET-LUPEDIA-ENTITIES-WS-PUBLISHER-INFORMATION (PUBLISHER-INFORMATION)
 ((HAS-WEB-SERVICE-HOST :VALUE "lupedia.ontotext.com")

 (HAS-WEB-SERVICE-LOCATION :VALUE "/lookup/text2xml")))

(DEF-RULE LOWER-FOR-GET-LUPEDIA-ENTITIES-GOAL
 …)

(DEF-RULE LIFT-FOR-GET-LUPEDIA-ENTITIES-GOAL
 …
 (extract-lupedia-entities-from-xml ?xml ?list-of-lupedia-entities)
 if
 (= ?list-of-lupedia-entities
 (setofall ?lupedia-entity
 (and
 (#_xml:rootElement ?xml ?rootEl)
 (#_xml:contents ?rootEl ?rootContents)
 (member ?lookupsEl ?rootContents)
 (#_xml:tag ?lookupsEl "lookups")
 (#_xml:contents ?lookupsEl ?lookupsContents)
 (member ?instanceURIEl ?lookupsContents)
 (#_xml:tag ?instanceURIEl "instanceUri")
 (#_xml:contents ?instanceURIEl (?instanceURIContents))
 (#_xml:value ?instanceURIContents ?instance-uri)
 (member ?classURIEl ?lookupsContents)
 (#_xml:tag ?classURIEl "instanceClass")
 (#_xml:contents ?classURIEl (?classURIContents))
 (#_xml:value ?classURIContents ?class-uri)
 (= ?lupedia-entity (#_LUPediaEntity
 ?instance-uri
 ?class-uri)))))))

Listing 2. WSMO/OCML-code of LUPedia service.

Integration aspects between MSM and WSMO within NoTube
Section 3 introduced two methods for integrating the MSM and WSMO approaches:

(a) Service model cross-referencing, and (b) Service model transformation. Within

NoTube, the service model cross-referencing approach as described in Section 3.1

was implemented in two ways: by including a property in the extended MSM schema

that provides a link to a corresponding WSMO goal description in the IRS-III

execution environment (as illustrated by Listing 1). Furthermore, each WSMO goal

invocation URI, that is the REST API goal achievement request which itself

represents a REST-ful service for invoking some particular functionality, is also

represented as a service following the extended MSM. That allows to expose higher

level functionalities – achieved by orchestrating a number of heterogeneous services –

as services themselves. Due to a lack of automated model transformation mechanisms

so far and the lack of use cases requiring models being used in both representations,

service instances had so far been transformed manually between WSMO and MSM.

For instance, the service description in Listing 1 was generated by following the

transformation procedure introduced in Section 3.2 to generate the service instance

illustrated by Listing 2.

4.3. Lessons learned

From our initial use case, a few observations have been made which will shape our

future efforts related to our two-fold services annotation and reasoning approach.

While it was fairly easy to gather lightweight service semantics within NoTube by

encouraging developers in the project to directly annotate their services via

SmartLink, the lack of service automation and execution support provided by our

extended MSM models, and, more importantly, the current tool support, made it

necessary to transform and augment these models to expose them via IRS-III, i.e. as

WSMO models within IRS-III, in order to perform more execution-oriented tasks.

While transformation currently was achieved manually, future work will be dedicated

to minimize this effort by striving for (semi-)automated transformation as sketched in

Section 3.2.

The recommendation of LOD model references via open APIs – SmartLink

currently uses WATSON9 – proved very useful to aid the population of our iServe+

store. However, due to the increasing number of LOD datasets – strongly differing in

terms of quality and usefulness – it might be necessary in the future to select

recommendations only based on a controlled subset of the LOD cloud in order to

reduce available choices.

With respect to service automation and brokerage, WSMO and IRS-III provide

certain facilities to define service orchestrations or to achieve automated service

selection [5]. However, while SWS frameworks strive for fully automated service

brokerage, current tools and technologies do not facilitate that vision and allow only a

very limited degree of actual automation. Still, the execution-oriented nature of

WSMO/IRS-III provided a number of benefits when dealing with highly

heterogeneous services. For instance, NoTube benefited from applying our rule-based

definition of lifting- and lowering mechanisms [11] to map between heterogeneous

service input and output schemas – e.g., based on JSON, RDF or XML – and the

knowledge-level representations of services, to allow some further reasoning-based

processing of data.

However, while our integrative approach proved useful in the sense that it

supported required services discovery and automation scenarios within NoTube,

maintaining services models following two distinct representation approaches turned

out to be a costly task triggering the need for further investigation.

5 Conclusions

We have described a two-stage approach to semantic service representation and

reasoning, aiming at a combination of the strengths of two distinctive methods –

lightweight Linked Services and more heavyweight broker-based SWS automation –

into a coherent SWS framework. The paper argued that by integrating collaborative

and user-driven Web-scale service annotations with comprehensive SWS

specifications, application developers benefit from both low cost for providing

annotations and a high level of automation. In that, while taking advantage of service

9 http://watson.kmi.open.ac.uk/WatsonWUI/

models produced by a large non-expert audience, both structured search for service

instances by humans as well as automation of service tasks is supported to some

extent.

In our vision, integration between lightweight service annotations and

comprehensive SWS specifications is achieved by different means of (a) model cross-

referencing and (b) model transformation and augmentation. Based on this vision we

proposed a consistent approach of integrating a set of SWS-related tools and service

models aiming at interoperability between lightweight service annotations and

heavyweight service specifications. Besides, an application of our approach within the

EU research project NoTube was presented as a proof-of-concept prototype.

While the current solution provides an overall framework for integrated service

models which support different levels of automation, future work needs to investigate

automated model transformation mechanisms in order to support the seamless

integration of instances across distinct service models schemas. However, it might be

argued, that there exists only an insufficient overlap between MSM and WSMO

which does not support a more automated means of transformation as such. Besides,

as mentioned above, maintaining services models following two distinct

representation paradigms leads to additional effort. As additional downside, we like to

point out that existing SWS brokerage technologies, such as IRS-III, support

automation only to a certain extent.

In these respects, our future work will also investigate on (a) different levels of

services automation, ranging from simple I/O matchmaking to capability

matchmaking and execution handling, (b) their feasibility and usefulness and (c)

possibilities to extend light-weight approaches, such as MSM, in order to support

higher levels of automation.

6 Acknowledgments

This work is partly funded by the European project NoTube. The authors would like

to thank the European Commission as well as all partners of the NoTube project for

their support.

7 References

[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2008).

Dbpedia: A nucleus for a web of open data. In Proceedings of 6th International Semantic

Web Conference, 2nd Asian Semantic Web Conference (ISWC+ASWC 2007), pages 722–

735.

[2] Berners-Lee, T., Hendler, J., Lassila, O (2001). "The Semantic Web". Scientific American

Magazine. retrieved March 29, 2009.

[3] Bizer, C., T. Heath, et al. (2009). "Linked data - The Story So Far." Special Issue on

Linked data, International Journal on Semantic Web and Information Systems (IJSWIS).

[4] Davies, J., Domingue, J., Pedrinaci, C., Fensel, D., Gonzalez-Cabero, R., Potter, M.,

Richardson, M., and Stincic, S. (2009). Towards the open service web. BT Technology

Journal, 26(2).

[5] Dietze, S., Benn, N., Domingue, J., Conconi, A., and Cattaneo, F.: "Interoperable

Multimedia Metadata through Similarity-based Semantic Web Service Discovery". In

Proceedings of 4th International Conference on Semantic and Digital Media Technologies

(SAMT '09), 2--4 December 2009, Graz, Austria.

[6] Dietze, S., Benn, N., Domingue, J., Conconi, A., and Cattaneo, F. (2009) Two-Fold

Semantic Web Service Matchmaking – Applying Ontology Mapping for Service

Discovery, 4th Asian Semantic Web Conference, Shanghai, China.

[7] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci,

C.: “IRS-III: A broker-based approach to Semantic Web Services”, Jounal of Web

Semant, pp. 109-132. Elsevier Science Publishers B. V, 2008.

[8] Farrell, J., and Lausen, H. 2007. Semantic Annotations for WSDL and XML Schema.

http://www.w3.org/TR/sawsdl/. W3C Candidate Recommendation 26 January 2007.

[9] Fensel, D.; Lausen, H.; Polleres, A.; de Bruijn, J.; Stollberg,, M.; Roman, D.; and

Domingue, J. 2007. Enabling Semantic Web Services: The Web Service Modeling

Ontology. Springer.

[10] Kopecky, J.; Vitvar, T.; and Gomadam, K. 2008. MicroWSMO. Deliverable, Conceptual

Models for Services Working Group, URL: http://cms-

wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf.

[11] Lambert, D., and Domingue, J. (2008) Grounding semantic web services with rules,

Workshop: Semantic Web Applications and Perspectives, Rome, Italy

[12] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2009). Supporting the creation of

semantic restful service descriptions. In Workshop: Service Matchmaking and Resource

Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Conference.

[13] Maleshkova, M., Kopecky, J., and Pedrinaci, C. (2009). Adapting SAWSDL for semantic

annotations of restful services. In Workshop: Beyond SAWSDL at OnTheMove Federated

Conferences & Workshops.

[14] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2004).

OWL-S: Semantic Markup for Web Services. Member submission, W3C. W3C Member

Submission 22 November 2004.

[15] Motta, E., Reusable Components For Knowledge Modelling: Case Studies in Parametric

Design Problem Solving. IOS Press, ISBN I 58603 003 5, 1999.

[16] Pedrinaci, C., Domingue, J., and Reto Krummenacher (2010) Services and the Web of

Data: An Unexploited Symbiosis, Workshop: Linked AI: AAAI Spring Symposium

"Linked data Meets Artificial Intelligence".

[17] Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.

(2010) iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories

and Editors for the Semantic Web at 7th Extended Semantic Web Conference.

[18] Sheth, A. P., Gomadam, K., and Ranabahu, A. (2008). Semantics enhanced services:

Meteor-s, SAWSDL and SA-REST. IEEE Data Eng. Bul l., 31(3):8–12.

[19] Vitvar, T.; Kopecky, J.; Viskova, J.; and Fensel, D. 2008. Wsmo-lite annotations for web

services. In Hauswirth, M.; Koubarakis, M.; and Bechhofer, S., eds., Proceedings of the

5th European SemanticWeb Conference, LNCS. Berlin, Heidelberg: Springer Verlag.

[20] WSMO Working Group (2004), D2v1.0: Web service Modeling Ontology (WSMO).

WSMO Working Draft, (2004). (http://www.wsmo.org/2004/d2/v1.0/).

[21] World Wide Web Consortium, W3C: Simple Object Access Protocol, SOAP, Version 1.2

Part 0: Primer, (2003). (http://www.w3.org/TR/soap12-part0/).

[22] World Wide Web Consortium, W3C: WSDL: Web services Description Language

(WSDL) 1.1, (2001). (http://www.w3.org/TR/2001/NOTE-wsdl20010315)

An Interest-based Offer Evaluation System for
 Semantic Matchmakers

Samira Sadaoui and Wei Jiang

Computer Science Department,
University of Regina, Regina, SK, Canada S4S 0A2

{sadaouis, jiang20w}@uregina.ca

Abstr act. Matchmaking systems failed to provide the best matched results to
individuals. Semantic matchmaking can help the buyer find the requested offers
but it is not good enough to find the best offer. In this work, we propose a
system that evaluates and sorts the request-matched offers according to the
buyers’ interests and tastes. To evaluate the offers, we modify the MultiNomial
Logit model to produce an interest model that analyzes individual’s interests
and favors. Our system captures the buyer’s interests, builds his interest model,
and then returns the best offer. The best offer denotes the highest interest value
to the buyer. Through a case study, we present in detail the phases of our offer
evaluation process.

Keywords: Interest model, multiple offer attributes, best matched offer, Self
Organizing Map (SOM), MultiNomial Logit (MNL).

1 Introduction

Matchmaking is the online process through which buyers and sellers trade goods or
services. Most of the matchmaking systems are semantic-based. Research on ontology
lead the early semantic matchmaking systems to understand and process the
purchasing requests much better [1, 2, 3]. Nevertheless, with the blooming of e-
commerce and e-services, buyers can obtain more and more request-matched offers. It
is really time consuming for buyers to browse, evaluate and sort all the candidate
offers in order to find the best offer. Today determining the best offer is more
important than before for any matchmaker. Recent matchmakers are trying to
determine the best offer by using the semantic ranking [4, 5, 6, 7, 8]. Most semantic
ranking algorithms examine the similarity of inputs, outputs, preconditions and effects.
Yet all existing matchmakers failed to bring the best matched results to individuals.
Indeed, they do no guarantee that the best offer will be purchased by the buyer since
his specific interests and tastes are ignored. Without studying human interests and
only relaying on the semantic matching and ranking, matchmakers cannot recognize
the differences between buyers’ favors and needs.

Researchers realized that a better matchmaking system “could quicken the trend
toward personalization” [9]. Matchmaking based on semantic can help the buyer find

2 Samira Sadaoui and Wei Jiang

the requested offers but it is not good enough to find the best offer. Consequently, we
develop a system that evaluates and sorts the request-matched offers according to the
buyers’ specific interests and tastes. In our system, the best offer denotes the highest
interest value to the buyer. Analyzing individual interests along with the semantic
matching brings better results to each individual buyer. As illustrated in Figure 1, first
the buyer submits to our system a purchasing request which is then sent to a
connected semantic matchmaker. The latter returns a list of request-matched offers.
To sort these offers according to the buyer’s interests, our system performs the
following tasks: cluster the values of each offer attribute, interact with the buyer to
take into account his interests and tastes, calculate the attribute’s interest weight and
interest rate, build the interest model based on interest weights and rates, evaluate and
sort the offers according to the buyer’s interest model.

Fig. 1. System Process Overview

In order to take into account individual’s interests, we need to utilize the clustering
technology called Self Organizing Map (SOM) [10, 11]. As a neural-network
approach, SOM is employed to cluster high-dimensional inputs onto lower-
dimensional outputs. The reason of using SOM in our work is that the offer attributes
may be complex or contain high-dimensional data, such as the attributes of our case
study. Furthermore, to define the interest model specifically for each buyer, we
modify the MultiNomial Logit (MNL) model [12]. MNL is widely used in commerce
to study human shopping behaviors [13]. Nevertheless, MNL suggests a model for a
group of people and needs an appropriate sample data. The good thing is that we are
able to modify MNL to analyze individual’s needs alone and without considering a
sample data.

2 Related Work

In the early time of e-commerce, matchmakers focused on mapping the offer attribute
values [14]. Requests and offers can be expressed in different schemas and words

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 3

even when representing the same semantic meaning. This causes matchmakers to be
blind to some potential offers. To solve this problem several semantic matching
models, based on ontological technologies, have been proposed [1, 2, 3]. In [1],
matching the offers is based on the similarity of the request and services. [2] uses
logical relationships to map the offers with the request. [3] focuses on the semantic
matching using a platform-independent framework called UDDI. These matchmakers
return an unranked list of offers.

 To find the best offer, recent matchmakers evaluate service description [4, 5],
service constraints [6], service process [7] or both [8]. The best offer denotes the
highest semantic matching degree. These matchmakers map the functional properties
of offers with the request’s functional description. However, these matchmakers
cannot explain why sometimes a buyer prefers an offer different from the returned
best offer. To address this issue, non-functional matching methods [15, 16] have been
introduced by following a matching standard like Qos [17]. These papers argue that
the buyer’s choice is caused by other criteria often referred to as non-functional
properties.

 All these matchmakers are based on matching the query words but not on matching
individual’s interests. Our goal is to build the interest model specifically for the buyer
and then find the best matched offer which is the closest to the buyer’s real needs.

3 An Example

Our case study consists of purchasing computers based on 2-dimensional attributes:
CPU and Price. We have here a company which submits the following inventory
query:

Request computers with CPU ＞ 1.5 GHz, Price < $3500 for the first ten
purchased computers, and Price ＜ $3000 for the next ten.

To formulate the requests and offers, matchmakers utilize well known web service

languages, such as WSDL, SWSL and WSML, which offer a high degree of
flexibility and expressiveness. Thus, we translate the purchasing request to for
example WSDL following the structure defined in [18] (cf. Figure 2). We assume the
connected semantic matchmaker returns the candidate offers given in Table 1 where
CPU contains high dimensional values and Price has two ranges.

In the next phases, our system will evaluate all the candidate offers of Table 1 in
order to help the company find the best supplier which might become its long-term
business partner.

4 Samira Sadaoui and Wei Jiang

Fig. 2. Formatting the Purchasing Request

Table 1. Candidate Offers

Supplier ID CPU (GHz) PriceRange1 ($)
For the First 10 Items

PriceRange2 ($)
For Item 11 to 20

1 2.5 1100 799
2 2.2 470 370
3 2.5 600 500
4 2.33 1100 800
5 2.4 999 799
6 2.5 1030 830
7 2.66 2500 2200
8 2.3 1000 880
9 2.2 420 400

10 2.4 950 900
11 2.8 1200 1150
12 (1.9, 1.9) 800 700
13 (3.0, 3.0) 2900 2600
14 (1.8, 1.8) 680 680
15 (3.2, 3.2) 3200 2500

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 5

4 Attr ibute Data Cluster ing

Our system first determines all the attributes from the purchasing request. For each
attribute, it extracts all its values from the candidate offers and stores them in a single
table. Our system can now cluster the values of each attribute. The purpose of this
clustering is to be able to take into account the buyer’s interests. So the buyer can
select one of the clustering to represent his most interested area. In Figure 3, we
define the clustering function called ClusterAttributeData() which is based on the
algorithm Self Organizing Map (SOM) [11] given in Figure 4.
 We apply SOM to recursively divide a large clustering into three sub-clustering
until there are less data in the clustering. During the learning time, a set of Learning
Vector Quantizations (LVQs) is tuned towards the input attribute data. SOM applies
competitive-learning given in the steps 3.1.1 and 3.1.2 of Figure 4. In SOM function:
t is the learning time; CreateLVQ() is a function that generates three random LVQ mi
in the range of DataAttribute; alpha (t) controls the learning loop and is the learning
rate function which is decreased by learning time t; mc is the closest LVQ to the
selected data x; hci() is the “neighborhood” function that updates LVQ in the learning
time [11].

 void ClusterAttributeData(DataAttribute: Array)
 {1. SOM(DataAttribute, A1, A2, A3);
 //Cluster all data into 3 groups
 2. ArrangeClustering(A1, A2, A3);
 //Arrange clustering in ascending order
 3. for i = 1 to 3
 if (IsLargeEnough(Ai))
 ClusterAttributeData(Ai);
 //Cluster each sub-group}

Fig. 3. Clustering Algorithm of Attribute Data

 void SOM(DataAttribute: Array, A1: Array, A2: Array,
A3: Array)
 {1. var t = 1; //Initialize learning time
 2. CreateLVQ(DataAttribute, m1,m2,m3);//Create LVQ mi
 3. while (alpha(t) is not too small)//Decrease by time
 {3.1 while (PickUpValue (DataAttribute, x))
 //Select x in the data set
 { 3.1.1 ||x - mc|| = min{||x - mi||};
 //Find closest LVQ mc
 3.1.2 mi(t+1) = mi(t) + hci(t)[x(t)-mi(t)];
 //Update mi during learning
 }
 3.2 t = t+1;//Update time
 }}

Fig. 4. SOM Algorithm

6 Samira Sadaoui and Wei Jiang

Example. Figures 5 and 6 illustrate respectively the CPU and Price clustering
(represented as a tree structure).

Fig. 5. CPU Data Clustering

Fig. 6. Price Data Clustering

Our system displays the CPU and Price clustering to the company. The latter can

now select the most interested clustering for each attribute. These selections are
performed through the GUI of Figure 11. With these selections, our system knows the
range and depth of the company’s needs. The selection information, representing the
company’s purchasing interests, will help the system to create the interest model in
the following phases.

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 7

4 Interest Weight Computation

An interest weight denotes the degree of importance of an attribute in a matching. It is
related to the depth and range of the buyer’s selection. The smallest and deepest
clustering shows the best interest of the buyer. In order to produce the attribute’s
weight, we use the interest-weight coefficient which contains the buyer’s interest in
one attribute. We create Formula (1) to compute the interest-weight coefficient of an
attribute called k: K is the attribute set, DataAttribute is the data range of k,
SelectedClustering is the buyer’s selected clustering for k, SelectedLevelTree is the
selected clustering level, and TotalLevelTree is the number of levels of the clustering
tree.

Kk
TreeTotalLevel

velTreeSelectedLe
usteringSelectedCl

uteDataAttribcoeIW
k

k

k

k
k ∈⋅=_

(1)

 This coefficient has to be compared with the other attributes’ coefficients (cf.
Formula (2)). An attribute with a larger interest weight coefficient gets a larger
interest weight compared to the other attributes. This means we can finally link the
interest weights with the buyer’s selection.

Kk
coeIW

coeIWIW K

k
k

k
k ∈=

∑
=1

_

_

(2)

Example. We suppose the company chooses the CPU clustering [2.2, 2.5]. This
selection is at level 2 of the 5-level CPU tree and all CPU data are in the range of [2.2,
(3.2, 3.2)]. So, the CPU interest weight coefficient is calculated as 4.4667 with
Formula (1). We perform the same calculation for the Price attribute with a
coefficient of 44.8125. According to Formula (2), we can get all the attribute interest
weights (as shown in Figure 13). For example, CPU interest weight is the following:

0906.0
8125.444667.4

4667.4
≈

+
=CPUIW

Based on the interest weights of Figure 11, we can see that Price is much more
important than CPU. Such interest feature will help the company to select its best
supplier.

5 Interest Rate Function Generation

The goal here is to produce the interest rate of each attribute. To do this, we need to
define an interest rate function. A linear function is usually used to measure the
attributes’ rates [1, 13, 14]. In some cases, linear utility functions cannot assign
weights to attributes in order to make an offer as the best one.

In order to solve this problem, we use the un-linear sigmoid function

xk +
=(x)ς -exp1

1

 . We believe the sigmoid function is the closest function to human
natural interest change. In our work, we use the sigmoid function to simulate each

8 Samira Sadaoui and Wei Jiang

attribute interest rate. Here x denotes the value of an attribute and y its interest value.
In Figure 7, we show that x of the sigmoid function has less changes in the two
intervals [-∞, -2] and [2, +∞]. The Sigmoid function in these two intervals can be
considered as a linear function with an acceptable standard error. Meanwhile the
interval [-2, 2] is a quickly changeable area. A buyer’s selected attribute clustering
contains a specific interest for this attribute. In order to represent such interest in our
interest rate function, we need to bind the buyer’s selected clustering into the quickly
changeable interval [-2, 2].

Fig. 7. Sigmoid Function and Value Change

We employ LVQ as the center of our interest rate function since LVQ can be
considered as the density center of the attribute data. Attribute data [AL, AR] can be
distributed accordingly, and the selected clustering [L, R] is bound into the interval [-
2, 2]. LVQ point can be either in the selected clustering [L, R] or outside. If LVQ is
inside the clustering, we divide the interest rate function into two functions (cf.
Formula (3)) where αL is generated when binding [L, LVQ] into the interval [-2, 0], αR
is generated when binding [LVQ, R] into [2, 0], Sign is +1 or -1 w.r.t ascending or
descending order of the clustering.

LVQ) - (R / 2- = αR
R =x when 0)- (2 · 1- = LVQ) -(x . αR

LVQ) - (L / 2 = αL
L =x when 0) - (-2 · 1- = LVQ) -(x · αL

] LVQ[
exp1

1

]LVQ L,[
exp1

1

)]LVQ([

)]LVQ([L

∈

∈

−⋅⋅

−⋅⋅

AR,x
+

Ax
+

=(x)ς

xSign

xSign

Attribute

Rα

α

 (3)

Example. We can now generate the interest rate functions for CPU and Price by
binding all the selected clustering into the quickly changeable area. According to the
CPU attribute tree, the selection [2.2, 2.5] has the LVQ of (2.4767, 0.3189). To be

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 9

able to process high dimensional values, we use the distance between attribute data
and the best attribute data. Here, we believe CPU clustering [3.2, 3.2] is the best data.

Table 2. Distances of High-Dimensional Data

 x BestAttr ibuteData Distance(x, BestAttr ibuteData)

2.2 *** (3.2, 3.2) 3.3526
 2.5 ** (3.2, 3.2) 3.2757

(2.4767,0.3189) * (3.2, 3.2) 2.9705
***Min selection value (L), **Max selection value (R), *LVQ

According to the distance calculation in Table 2, LVQ is closer to the best data than
any other data in the selected clustering. Consequently, the following interest rate
function for attribute CPU has only αL. Figure 8 displays the company’s interest rate
for CPU.

] 3.2) (3.2,,2.2[
exp1

1
exp1

1

]2.9705))2.3,2.3(,(tan[2342.5

)]uteData)BestAttribLVQ,(tan),(tan([L

∈−⋅

−⋅⋅

x
+

=

+
=(x)ς

xceDis

ceDisuteDataBestAttribxceDisSignCPU α

 Fig. 8. Interest Rate Function for CPU

We suppose that the company selected the Price clustering [(420, 400), (470, 370)]
which is then bound into the area [-2, 2]. After data binding, we produce the
following interest rate function where LVQ of 39.88 is its center point. Based on this
function, we can easily get the company’s interest rate for Price attribute as shown in
Figure 9.

10 Samira Sadaoui and Wei Jiang

]2500) (3200,,)400,420[(

exp1
1

exp1
1

exp1
1

exp1
1

]39.88))400,420(,(tan[1085.0

]39.88))400,420(,(tan[0502.0

)]uteData)BestAttribLVQ,(tan),(tan([

)]uteData)BestAttribLVQ,(tan),(tan([

Pr

R

L

∈

−⋅

−⋅

−⋅⋅

−⋅⋅

x

+

+
=

+

+
=(x)ς

xceDis

xceDis

ceDisuteDataBestAttribxceDisSign

ceDisuteDataBestAttribxceDisSign

ice

α

α

Fig. 9. Interest Rate Function for Price

6 Offer Evaluation with the Interest Model

MNL model expresses the utility for a group of people choosing an item. The utility
function for an individual in a population includes the deterministic and random
components as follows [13]:

∑
=

∈+⋅=
K

k
njnjkknj CjxbU

1
,ε

(4)

where
• Unj is the utility for buyer n selecting item j.
• (bk . xnjk) is the “representative” taste of the population. This component

consists of K observed deterministic features xnjk; bk is the weight for each
feature xnjk.

• εnj is the individual taste for the item j.
• C is the set of items.

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 11

 We now adapt the MNL formula to define the interest model for each individual.
First we consider the deterministic features as the offer attributes. Furthermore, εnj can
be decomposed into K attributes since εnj is the total alternative with K features. This
means the evaluation of the attributes may be different according to the interests of
each individual (cf. Formula (5)). At the market level, the individual taste ε is brought
into the population model as a random utility. Since it comes from individuals and its
value is random, ε is usually removed when users generate the MNL model. However,
in our system individual taste becomes important.

∑
=

∈+⋅=
K

k
njknjkknj CjxbU

1
)(ε

(5)

 In order to produce the interest model, our system calculates the interest weights,
IW, and simulates the interest rates, IR. IW denotes the interest weight bk and IR the
interest rate value xnjk +εnj . We propose Formula (6) to build the interest model IM for
each individual. IM is the degree of interest of the buyer purchasing an offer j with K
attributes. Based on the consumer theory, an individual seeks to maximize his utility
in each purchasing behavior.

CjIRIWIM
K

k
jkjkj ∈⋅=∑

=1
)()((6)

Example. After our system gets the interest weights and interest rate functions for the
two attributes, it generates the interest model (IM) for the company as follows.

IMCompany(Supplier) = 0.0906·ϛCPU(CPU) + 0.9094·ϛPrice(Price)

For example, we show below how the interest model calculates the interests for
the first two suppliers:

 IMCompany(Supplier1) = 0.0906 · ϛCPU(2.5) + 0.9094·ϛPrice[(1100,799)]
 = 0.0906 · 0.1684 + 0.9094 · 6.2583E-36
 = 0.0189
 IMCompany(Supplier2) = 0.0906 · ϛCPU(2.2) + 0.9094 · ϛPrice[(470,370)]
 = 0.0906·0.1192 + 0.9094·0.1192
 = 0.1192

So, we got an interest rate of 0.0189 for Supplier1’s offer and 0.1192 for Supplier2’s
offer. Based on these values, we can conclude that Supplier2 has a higher chance than
Supplier1 to be the company’s partner. With our interest model, we can evaluate all
the candidate offers of Table 1. Table 3 shows that Supplier9 is the best supplier for
the company.

12 Samira Sadaoui and Wei Jiang

Table 3. Sorted Offers for the Company

Supplier ID CPU (GHz) Pr iceRange1 Pr iceRange2 Interest
9* 2.2 420 400 0.8118
2 2.2 470 370 0.1192
12 (1.9, 1.9) * 800 700 0.0152
13 (3.0, 3.0) * 2900 2600 0.0127
14 (1.8, 1.8)* 680 680 0.0137
15 (3.2, 3.2)* 3200 2500 0.0152
11 2.8 1200 1150 0.0173
7 2.66 2500 2200 0.0122
3 2.5 600 500 0.0152
6 2.5 1030 830 0.0137
1 2.5 1100 799 0.0189
5 2.4 999 799 0.0903
10 2.4 950 900 0.0906
4 2.33 1100 800 0.0900
8 2.3 1000 880 0.0906

*: best offer with the max interest degree

7 Design and Implementation

We developed our system with a distributed architecture as illustrated in Figure 10.
The buyer interacts with the client side via the GUI. After the buyer submits his
request, the GUI passes it to the connected semantic matchmaker. On the server side,
the OfferManager component: (1) collects the request-matched offers and stores them
in the ContentOffer database, (2) analyzes the request and offers to extract the
attributes and their values, and (3) stores them in the OfferAttribute database. For each
attribute, the AttributeDataClustering component clusters its values and sends its
clustering tree to the client side. GUI helps the buyer to select the most interested
clustering (cf. Figure 11). Once the buyer’s selection is completed, the
InterestModelCreator component is called to build the buyer’s interest model. It first
passes all the selected clustering and the whole attribute clustering trees to
InterestWeightCalculator and InterestRateFunctionCreator. For each attribute,
InterestWeightCalculator returns the interest weight coefficient and interest weight
(cf. Figure 12), and InterestRateFunctionCreator the interest rate function. The
OfferEvaluator component applies the generated interest model on the candidate
offers, and returns to the buyer the list of offers sorted by interests. In Figure 13, we
show for instance the offer evaluation process on the client side.

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 13

Fig. 10. System Top-Level Architecture

Fig. 11. Selecting CPU and Price clustering

14 Samira Sadaoui and Wei Jiang

Fig. 12. Calculating the Interest Weights for CPU and Price

We implemented our system using Visual Studio C# (on the .net 3.5 framework)
and the SQL Server 2008. Figures 14 and 15 show the class diagrams of the client and
server side programs. We created two separate databases sources, called serverDB
and clientDB, to support server and client side programs. These two classes contain
all the necessary functions about database processing and data binding. The other
classes are created with a window interface by using software MS Blend3, the
interface developing tool for Windows form application. The classes ServerWindow
and ClientWindow contain multi-thread and network communication functions.

Fig. 13. Client Side: Offer Evaluation

An Interest-based Offer Evaluation System for
 Semantic Matchmakers 15

Fig. 14. Server Side Class Diagram

Fig. 15. Client Side Class Diagram

8 CONCLUSION AND FUTURE WORK

In this paper, we showed the benefits of sorting the request-matched offers according
to the buyer’s interests and needs. Our interest model provides a solution to existing
matchmaking systems and avoids the linear matching problems. Adopting an
economic method, we produced a simple and automated model to determine the best
matched offer based on the buyer’s selections.
One possible direction of this work is to include the interest learning [19] in our
system. The main purpose of this learning is to update the interest model to fit the
buyer’s interests instantly. A learned interest model will be able to determine the best
offer in these two situations: the buyer shifts his interests, or new offers are added in
our database.

16 Samira Sadaoui and Wei Jiang

References

1. Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Klusch, M., and Fischer, K. Model-
Driven Approach to the Integration of Multi-Agent Systems and Semantic Web Services.
Enterprise Distributed Object Computing Conference Workshops. IEEE. 314-324 (Sept.
2008)

2. Wang, H., and Li. Z. Z.: A Semantic Matchmaking Method of Web Services Based on
SHOIN^+ (D)*. Services Computing. IEEE. 26-33 (Dec. 2006)

3. Kawamura, T., Hasegawa, T., Ohsuga, A., Paolucci, M., and Sycara, K.: Web services
lookup: a matchmaker experiment. IT Professional. IEEE. Vol. 7, No. 2, 36-41 (Mar-Apr
2005)

4. Qiu, T., and Li, P. F.: Web Service Discovery Based on Semantic Matchmaking with
UDDI. In Proceedings of the The 9th International Conference. Young Computer
Scientists. 1229-1234 (Nov. 2008)

5. Bai, D. W., Liu, C. C., Peng, Y. and Chen, J. L.: Web Services Matchmaking with
Incremental Semantic Precision. Wireless Communications, Networking and Mobile
Computing. IEEE. 1-4 (Sept. 2006)

6. Bai, D., Fei, A. G., and Cai, S. F.: Semantic Matchmaking of Web Services Constraint
Conditions. Wireless Communications, Networking and Mobile Computing. IEEE. 1-5
(Sept.2009)

7. Huang, R., Zhuang, Y. W., Zhou, J. L., and Cao, Q. Y.: Semantic Web-based Context-
aware Service Selection in Task-computing. In Proceedings of the WMSO '08
International Workshop. 97-101 (Dec. 2008)

8. Bellur, U., and Vadodaria, H.: Web Service Ranking Using Semantic Profile Information.
In Proceedings of the ICWS 2009. IEEE. 872-879 (July 2009)

9. Essex, D.: Matchmaker, matchmaker. ACM Communications, ACM. Vol. 52, 16-17 (May
2009),

10. Kohonen, T.: The Self-Organizing Map, 3rd Edition. Springer (2001)
11. Chen, Y. Y., and Young. K. Y.: Applying SOM as a Search Mechanism for Dynamic

System. Decision and Control, IEEE. 4111- 4116 (Dec. 2005)
12. McFadden, D.: Economic Choices. American Economic Association. American Economic

Review. Vol. 91, No. 3, 351-378 (Jun. 2001)
13. McFadden, D., and Zarembka, P.: Conditional logit analysis of qualitative choice

behavior. Academic Press. Frontiers in Econometrics. 105-142 (1974)
14. Ha, S. H., and Park, S. C.: Matching buyers and suppliers: an intelligent dynamic

exchange model. IEEE. Intelligent Systems. Vol. 16, No. 4, 28- 40 (Jul-Aug 2001)
15. Wang, X., Vitvar, T., Kerrigan, M., and Toma, I.: A QoS-aware selection model for

semantic web services. In Proceedings of the 4th Int. Conference on Service-Oriented
Computing. 390–401 (2006)

16. Yu, Q., and Reiff-Marganiec, S.: Non-functional property based service selection: a
survey and classification of approaches. In Proceedings of the Non Functional Properties
and Service Level Agreements in SOC Workshop (Nov. 2008)

17. QoS for Web Services: Requirement and Possible Approaches. http://www.w3c.or.kr/kr-
office/TR/2003/ws-qos/

18. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
19. Wei, Y.Z., Moreau, L., Jennings, N.R.: Learning users' interests by quality classification in

market-based recommender systems. Knowledge and Data Engineering. IEEE
Transactions. Vol.17, No. 12, 1678- 1688 (Dec. 2005)

Anatomy of a Semantic Web-enabled
Knowledge-based Recommender System

Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

CEFRIEL – Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
{name.surname}@cefriel.it

Abstract. Knowledge-based Recommender Systems suggest to users
items of their interest, on the basis of some understanding of both items’
characteristics and users’ profiles. In order to properly work, this kind of
recommender systems need a thorough modeling of items and users; the
usual barrier to their development is, therefore, the availability of the
necessary knowledge and its maintenance over time.
With this respect, Semantic Web technologies can be of great help: not
only knowledge technologies and languages can be employed to build the
knowledge base, but the large availability of open and linked data about
a growing variety of fields and topics, published on the Web of Data,
further simplifies the modeling step for recommender systems.
In this paper, we present our concept of Semantic Web-enabled Recom-
mender System, based on the retrieval from the linked data Web of the
necessary pieces of knowledge about items and users. We illustrate the
general structure of this new family of Knowledge-based Recommender
Systems and we explain how we concretely followed this approach to de-
velop a tool to recommend Web services in the context of the SOA4All
project. We also offer our considerations about the strengths, the current
limitations and the possible extensions of our proposal.

1 Introduction and Motivation
Recommender systems are becoming more and more commonly used to help
users serendipitously find items they were (implicitly or explicitly) looking for.
From a user’s point of view, recommendations are seen as suggestions that are
proactively provided by the system, in a timely fashion. In order to be effectively
useful, the recommendations should be accurate, as to “foresee” a user’s needs.

Recommender systems are usually classified by the recommendation tech-
nique they use [9]:
– Collaborative Filtering Recommender Systems [30]: given a user, they find

users with similar behavior to predict items of interest;
– Content-based Recommender Systems [25]: they usually employ a classifier

to predict items’ similarity;
– Demographic Recommender Systems: they compute users’ similarity using

demographic information (age, location, etc.);
– Knowledge-based Recommender Systems [8]: they build a knowledge base

with a model of the users and/or items in order to apply inference techniques
and find matches between users’ need and items’ features.

2 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

Additionally, another category of systems, the Hybrid Recommender Systems [9],
tries to join the advantages of two or more techniques described above. In this
paper we focus on the Knowledge-based Recommender Systems.

Knowledge-based Recommender Systems offers some advantages with respect
to the other techniques. First, they need a minimal amount of users, i.e. they
do not require a huge amount of data to compute recommendations, differently
from other classes of Recommender Systems; moreover, they do not suffer the
so-called cold start problem: when a new user/item is added with its descrip-
tion, the system is immediately able to compute recommendations for the new
user/item; finally, by their very nature, they are able to generate proofs for the
recommendations, i.e. they are able to “explain” the motivation behind an item
proposal on the basis of the user/item modeling at disposal.

The main drawback of Knowledge-based Recommender Systems, however,
consists in the modeling, building and maintenance of the knowledge base: a
correct and up-to-date description of items to be recommended, as well as of
users to which provide suggestions must be ensured, in order to guarantee a
high level of recall and precision of the generated recommendations. Several
elements can change over time: new users and new items can be added, old users
and old items can require an updated description, the domain knowledge can
evolve or be modified to take into consideration new features, the set of policies
defined to compute recommendations can be revised to better meet users’ needs
and requirements, and so on.

This knowledge base creation and maintenance require a lot of effort, with
a heavy human intervention. A special attention must also be given to assure
the consistency, quality and reliability of the modeled knowledge. Therefore, in
this context, it is quite natural to think about applying technologies and tools
coming from the Semantic Web community to help and support this phase.
Some efforts in this directions were already explored (as we report in Section 5);
still, a comprehensive work to design a Semantic Web-enabled Knowledge-based
Recommender System is missing.

In this paper, we present a holistic approach to apply Semantic Web technolo-
gies and the knowledge coming from the Web of Data to support and enhance the
knowledge base modeling as well as all other phases of the recommender life cy-
cle. Indeed, we believe that the recent availability of large amounts of linked data
can definitely offer new opportunities to build innovative and enriched recom-
mender systems. Moreover, the widespread uptake of Semantic Web standards
– RDF [15], SPARQL [29] and also the recently published RIF [6] W3C Recom-
mendation – provides new favorable circumstances to improve recommendation
algorithms and tools, by leveraging on users’ and items’ semantics.

The rest of the paper is structured as follows: in Section 2 we describe our
concept for a Semantic Web-enabled Recommender System and we introduce
the scenario in which we applied our proposed approach to recommend Web
services, in the context of the SOA4All project. The details of our approach are
offered in Section 3, in which we explain how the Web of Data can be leveraged
to build a knowledge base, and in Section 4, where we illustrate how Semantic

Anatomy of a Semantic Web-enabled Recommender System 3

Web technologies can help in computing recommendations; those sections in-
clude also the description of the actual realization of our conceptual approach
in the Web service recommendation scenario. Finally, in Section 5, we introduce
some previous works to combine Semantic Web technologies with Recommender
Systems and in Section 6 we conclude with our considerations about open issues
and current limitations and we provide hints for future extensions.

2 Our Concept of Semantic Web-enabled Recommender
System

For the last years, the Semantic Web community has been working to realize
the Web of Data, i.e. to publish structured information and datasets on the
Web and interlinking them. Thanks to the popularity of Tim Berners-Lee linked
data meme [3] and to the growing interest and coordinated effort of the Web
community, a first nucleus of this Web of Data has been built and constantly
updated and enriched since early 2007 to constitute the so-called “Linking Open
Data dataset cloud” or simply LOD Cloud1, which comprises around 4.7 billion
RDF statements, connected by 142 million RDF links (as of May 2009 [4]).

We believe that the Web of Data should be considered as an interesting
source of information to be used by Knowledge-based Recommender Systems.
The LOD Cloud is a huge public source where information can be found to
describe several kinds of items, users and domains. Accessing and exploiting the
Web of Data can allow the partial automation of the knowledge base creation
and maintenance, simplifying the modeling and profiling of items and users.
Furthermore, the computation tasks to generate recommendations, operating
on the knowledge base, can be performed and enhanced by the use of Semantic
Web tools like SPARQL processors, reasoners or rule-based systems.

In this paper we propose a holistic approach to design and to realize a
Knowledge-based Recommender System using Semantic Web technologies. In
Section 2.1 we explain the high level architecture of such a system, which will be
detailed in Sections 3 and 4. The scenario in which we demonstrate the applica-
bility of our approach is introduced in Section 2.2; we will use this application
scenario also in the following sections to explain how we realized in practice a
prototype of our Semantic Web-enabled Recommender System.

2.1 High-level Architecture of a Semantic Web-enabled
Recommender System

A recommender system is usually part of a more complex application (like a Web
site), so it exchanges data with other components. It provides its functionalities
to a set of known users about a predefined set of items; both those sets can be
modified over time (users and items can be removed or added).

Our concept of recommender system processes information from both private
and public sources. We call private data the information about users and items
generated by other parts of the application; with public data we identify the data
published and freely accessible on the Web of Data.

1 Cf. http://lod-cloud.net/.

4 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

Figure 1 shows the schematic high-level architecture of our Semantic Web-
enabled Recommender System, that consists of two main components, the Model
Builder and the Recommendation Engine.

Model Builder
Recommendation

Engine
Model of
users and
items

Recommendations
Users
Items

Semantic Web‐enabled Recommender System

Private
data Public data

(Web of Data)

Fig. 1. Schema of our Semantic Web-enabled Recommender System

The Model Builder is related to the knowledge base building and maintenance; its
goal is to create a model containing the descriptions of items’ and users’ profiles.
Additionally, this model should contain information about how users (and their
interests) are related to items (and their features). In order to build such a
model, this component queries and interacts with the available data sources, both
private and public ones, and identifies the knowledge “bits” useful to describe the
items to be recommended and the users. For what regards the items, the Model
Builder should look for available descriptions, categorizations and classifications,
reviews and ratings, related entities, etc.; it should also reconstruct the users’
profiles by retrieving useful information about their tastes and their preferences.

The second component, the Recommendation Engine, is devoted to the com-
putation of item suggestions; it receives as input the model generated by the
Model Builder and analyzes this knowledge to find semantic connections be-
tween users and items. The assumption is that, if a user profile can be connected
to an item description by a set of semantic links, this means that that item is a
good candidate for recommendation. Still, the component should also check for
specific characteristics of those connection “paths” in order to compute a score
– the so-called utility value – that represents the system’s degree of confidence
in the usefulness of such recommendation for the user.

2.2 Application Scenario: Recommending Web Services

SOA4All2 is a European research project aimed to provide a comprehensive
framework that integrates SOA, context management, Web principles, Web 2.0
and semantic technologies into a service delivery platform. SOA4All tools can
be used by developers to discover, compose and reuse services in order to build a
new application. In this scenario, the users of the system are developers looking

2 Cf. http://www.soa4all.eu/.

Anatomy of a Semantic Web-enabled Recommender System 5

for services, which are the items to be recommended. For example, a developer
who wants to build an e-commerce website is interested in finding pre-existing
services to be reused, like a shopping cart manager or a payment service.

Within the SOA4All project, we applied the approach sketched above to
realize a Semantic Web-enabled Recommender System3 to suggest developers
(users) services of their interest (recommended items). Developers are identified
by their OpenID, which is an unambiguous Web identifier; by using this identi-
fier, the Model Builder retrieves a user description from the Web of Data which
complements the “private” data about the user. Moreover, the services to be
recommended have their own URIs to identify them and are semantically an-
notated with a categorization ontology; this lets the Model Builder find related
information. Finally, the Recommendation Engine processes the SOA4All users’
profiles and the services’ description to find if and how they are semantically
connected; if such connections exist, the engine computes their utility values in
order to detect which services can be interesting for the system users.

It is worth noting that, since our Recommender System is a Semantic Web
application that accesses distributed linked data sources, we developed it on top
of LarKC4 [11], an integrated and pluggable platform for Web-scale semantic
computing. We configured a set of LarKC “workflows” to search for relevant
sources on the (Semantic) Web and to interact with them to retrieve the desired
data. A LarKC workflow is activated when it receives a request under the form
of SPARQL query.

3 Building a Knowledge Base with the Web of Data

The Model Builder creates a model containing users’ profiles and items’ descrip-
tions by processing the available data sources, both private and public data.
This component can be further divided in three parts, as depicted in Figure 2:
the User Profiler, the Item Profiler and the Linker.

User Profiler

Linker

Model of
users and
items

Item Profiler

Model Builder

Users
Items

Private data
Public data

Fig. 2. The Model Builder and its components

The User Profiler and the Item Profiler respectively build a description of the
users and a description of the items; the main task of the Linker is to connect

3 Cf. http://etechdemo.cefriel.it/rs-answers-service/.
4 Cf. http://www.larkc.eu/.

6 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

the users to the items, adding the missing data to complete the “paths” between
users, their tastes and interests on the one hand, and items and their features
on the other hand.

3.1 Generic Entity Profiler

Since both User and Item Profilers aim at building a semantic description of a
user/item respectively, to better clarify their role, we firstly describe a generic
Entity Profiler. Then, in Sections 3.2 and 3.3, we detail the specificities of those
two components within the Model Builder.

An Entity Profiler can be characterized by the entities to be described and
by some specification of the desired description of those entities, e.g. in terms
of the requested entity attributes. To reconstruct the entity description, the
Entity Profiler accesses both the private sources and the public data published
on the Web of Data; the Entity Profiler queries and traverses those knowledge
sources and retrieves the needed data; in case, it interlinks the gathered data to
reconstruct a complete model of the entities to be described.

We assume that the entities to profile can be identified by URIs; this kind
of identifier can be used to retrieve more information from the Web. We also
consider that the entity profile will be expressed in terms of RDF triples and
RDF links to external sources. In order to build such a profile, the Entity Profiler
can be configured to specify what kind of profile data should be fetched; the
basic assumption is a SPARQL query in the form DESCRIBE <entity-URI>, but
configuring this component could mean defining a detailed CONSTRUCT query.
In the latter case, the CONTRUCT clause could be used to transform the original
retrieved data into a common format that is more suitable for the subsequent
elaborations. When the entity description is fetched from several heterogeneous
sources, this transformation is needed to homogenize the different pieces of data.

For what regards the data sources, the Entity Profiler should first search in
the application private data; then it should look for additional data from external
sources. Those public sources can either be manually identified or dynamically
discovered; in the former case, the Entity Profiler can be configured with a list
of known data sources (to be used, for example, in the FROM clause of SPARQL
queries), while, in the latter case, the component should query a Semantic Web
search engine service (like Sindice5 [22] or Watson6 [10]) and then interact with
the returned list of sources to retrieve the additional information.

A final note about the “storage” of entity profiles: the most natural approach
would be to store all the reconstructed profiles locally; this is also the most
common approach in existing recommender systems. Growing the amount of
data gathered from public sources, however, this could be unfeasible. Being the
Web of Data distributed by nature, moving from a dataset to a connected one is
always possible by following RDF links. A Semantic Web-enabled Recommender
System could therefore have a local knowledge base for the RDF links to external

5 Sindice http://sindice.com/.
6 Watson http://watson.kmi.open.ac.uk/.

Anatomy of a Semantic Web-enabled Recommender System 7

public datasets, leaving in their original locations a large part of the public
data. Incorporating only the links to the remote locations lets the system keep
its knowledge base small and manageable, without hindering the possibility to
access the public data on the Web. Of course, a pragmatic solution could include
partial local caching of remote data.

3.2 User Profiler

The User Profiler is the instantiation of the generic Entity Profiler with the
goal of reconstructing the user profile. Usually, recommender systems adopt two
different strategies to derive a user profile: by analyzing implicit user feedbacks
and by processing explicit user inputs.

The implicit feedbacks analysis [14] allows to define users’ needs by collecting
data about their behavior, for example capturing navigation links, bookmarks
and so on. The resulting user profile in this case can be inaccurate, but the
advantage is that it is reconstructed without bothering users, e.g. when they
cannot or do not want to provide personal details. On the other hand, when
users insert specific information about themselves and their preferences, they
build an explicit profile describing their interests. As a consequence, the system
gets a very accurate user profile based on what users voluntarily provide.

Our concept of Semantic Web-enabled Recommender System does not re-
quire the adoption of either specific technique. The User Profiler addresses the
challenge of complementing a user description, derived via implicit/explicit tech-
niques, with additional public information from the Web of Data. Therefore, the
following considerations are valid in both scenarios.

The Web of Data allows for a relevant enrichment of the profiles, through
the discovery of different kinds of information. Not only the User Profiler can
look for specific information about users and their tastes; it can also enrich the
description of users’ needs, by retrieving more detailed descriptions of interest
topics. The availability of such information is due to the growing success of
social networks; Web users are more and more accustomed to describe their
profile on a multitude of different platforms and the Semantic Web community
has investigated how to automatically derive a structured user profile from the
social Web (e.g. extracting users’ interests from their Facebook pages [27]).

In particular, we refer to FOAF 7 [7] profile information which, in the LOD
Cloud, represents one of the largest datasets. To recommender systems, FOAF
can offer useful kinds of information, like relations between users (foaf:knows
links between profiles) and users’ topics of interest (foaf:interest property
values). Retrieving the FOAF profiles of the recommender system’s users can
be a successful way to obtain additional data to enrich users’ profiles; for exam-
ple, turning to FOAF data can be very useful when the system has no available
information about new users (the so-called user cold start problem). Unfortu-
nately, existing FOAF profiles do not always contain useful information, but
we believe that, with the growing adoption of this vocabulary, more and more
relevant information about people will be made available on the Web of Data.

7 Cf. http://www.foaf-project.org.

8 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

Reconstructing SOA4All developers’ profiles. In the scenario of service
recommendation introduced in Section 2.2, system users are developers identified
by their OpenID. In this context, therefore, we used this identifier to find an
available FOAF profile, since FOAF specification defines the inverse functional
property foaf:openid. If such a profile is found, we retrieve foaf:interests,
thus collecting the useful hints to understand users’ preferences.

Since we want to build a profile that lets the recommender system provide
useful service suggestions, we do not limit the developers’ profiling to their FOAF
description. Starting from the values of the foaf:interest property, we try to
identify related DBpedia resources [5]. In this way, as explained later, we pave
the way for an easier discovery of semantic connections between developers and
the services to be recommended. An example of FOAF profile expressed in N3
retrieved from the Web of Data starting from an OpenID could be the following:

<user-uri> foaf:openid <user-openid> ;

foaf:interest dbp:ClassicalMusic .

Finally, the retrieved profile data are converted into a common format expressed
by the Weighted Interest Ontology8; this data model lets us keep track of the
different interest degree of a user with regards to a topic. Moreover, this ontology
could be used to tell apart the different “contexts” of a user’s profile: a person
could be interested in books in his private life and in music for professional
reasons. The example above should therefore be converted as follows:

<user-uri> foaf:openid <user-openid> ;

wi:preference [

rdf:type wi:WeightedInterest ;

wi:topic dbp:ClassicalMusic ;

wi:weight "1" ;

wi:context "professional life"

] .

3.3 Item Profiler

As the User Profiler builds users’ description, the Item Profiler performs similar
actions on the recommendable items. The goal of this component is to recon-
struct a description of the items, collecting their relevant features and properties.

Since an item is any entity that could be recommended to the user, the
specific kind of information to be retrieved strongly depends on the concrete
scenario and cannot be generalized. Nonetheless, in the following we offer some
hints on how Semantic Web technologies can help this component. In particular,
we focus on enriching the “private data” about items with additional details from
the Web of Data; as with users’ profiles, we assume each item can be identified
by a URI to let the Item Profiler search for related information.

For what regards the data sources to be queried, it is of course hard to
indicate a source that can prove useful in any possible case. As explained in

8 Weighted Interest Ontology http://xmlns.notu.be/wi/.

Anatomy of a Semantic Web-enabled Recommender System 9

Section 3.1, the location of data sources of interest can be reached through the
use of a Semantic Web search engine, by looking for information directly related
to the item or relevant with respect to some domain-specific concept or entity.

It can also be advisable, however, to retrieve information from the most com-
mon generic sources, like the already cited DBpedia – “the crystallization point
for the Web of Data” [5] – or Freebase9. The connection of an item description
to those broad and common sources, in turn, can result in an easier discovery of
semantic connections with users’ profiles, as illustrated in Section 3.4.

Reconstructing SOA4All services’ descriptions. In the SOA4All scenario,
the recommendable items are services. Each service – either SOAP or REST –
is identified by a URI and semantically described; the basic service data can be
retrieved through the iServe10 linked data endpoint developed in SOA4All. In
particular, services are annotated with regards to the Service-Finder Category
ontology11, which describe general purpose classifications of services. An example
of service profile retrieved in such a way is the following:

<service-uri> rdf:type sf:Service ;

sawsdl:modelReference sfcat:Music .

As illustrated for user profiling, service description could be turned in a common
format suitable for recommendation computing. A possible expressive model is
offered by the Service-Finder ontology12 as follows:

<service-uri> rdf:type sf:Service ;

sf:hasCategoryAnnotation [

sf:hasCategory sfcat:Music ;

sf:strength "1"

] .

3.4 Linker

The output of the two profilers consists of two RDF graphs (Figure 3), one
containing users’ profiles and one describing recommendable items and their
features. As described in Section 4, computing recommendations is the process of
analyzing the relations between users and items, thus, the goal of the Linker is to
supply the additional RDF triples describing the relations between users (or their
interests) and items (or their features). Some of these connections could already
be part of items/users profiles; otherwise, the Linker should look for the missing
links. In [9], those three models to be connected are named User Knowledge,
Catalog Knowledge (data about items’ features) and Functional Knowledge (data
about the mapping between user interests and items).

To discover useful connections, the Linker could perform two operations on
the Web of Data: inference and RDF paths search. Applying inference on User

9 Freebase http://www.freebase.com/.
10 iServe http://iserve.kmi.open.ac.uk/.
11 Cf. http://www.service-finder.eu/ontologies/ServiceCategories.
12 Cf. http://www.service-finder.eu/ontologies/ServiceOntology.

10 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

and Catalog Knowledge, the Linker could find hidden relations among the de-
scribed entities. In addition, inference could improve the RDF path search by
adding new “starting points” to the data discovery.

Users’ model Items’ model

Web of Data

Fig. 3. Linker connection discovery

The RDF path search consists in the discovery of the missing links between users’
and items’ profiles on the Web of data. This means that, if additional connections
exist, they could as well be published on the Web of Data. In literature, some
works to perform RDF path search on the LOD Cloud already exist.

RelFinder13 [16, 12] is an application that receives as input two entities and
looks for paths among them. It constructs a set of SPARQL queries that ask for
a path between the two entities with a predefined orientation and length; then
it submits the queries to a SPARQL endpoint to retrieve the paths. RelFinder
works if both the entities are accessible through the same endpoint.

SCARLET [28] copes with the problem of looking for connections between
two concepts. First it looks for an ontology that contains both concepts: if it
exists, the ontology is processed to derive the relation between the concepts
(e.g., disjointness or equivalence). If it doesn’t, SCARLET recursively looks for
a set of ontologies that allows to link the two inputs.

The idea behind SCARLET could be extended from concepts to generic
entities. The Linker could act in a similar way: given the two resources for which
a connection should be found, it should firstly identify the datasets potentially
containing the RDF paths; then, traversing the datasets by following a specific
policy (for example using only a set of predefined properties), it should try to
find the connections. It is worth noting that an exhaustive search for paths is
not an issue, since the Linker’s aim is to find useful paths for the computation
of the recommendations.

Linking services to SOA4All users. As explained above, services are anno-
tated by the use of the Service-Finder Category ontology. Those categories are

13 RelFinder http://relfinder.dbpedia.org/.

Anatomy of a Semantic Web-enabled Recommender System 11

mapped to DBpedia categories14, by the use of SKOS [20] mapping properties
(specifically, skos:closeMatch). This existing mapping enables the connection
between any service annotated with the Service-Finder Category ontology with
the Web of Data. Our Linker, therefore, starting from the service categorization
recalls the link between such categorization and DBpedia categories from the
Service-Finder mapping, fetching additional knowledge, as follows:

sfcat:Music skos:closeMatch dbpcat:Music .

Moreover, DBpedia categories constitute a taxonomy, in which categories are
related via the skos:broader mapping property. DBpedia topics are then re-
lated to DBpedia categories by a skos:subject predicate. Thus, the Linker can
find a path between user interests (expressed as DBpedia topics) and service
categorizations (mapped to DBpedia categories). The following triples complete
the path between the user and the item of the previous listings:

dbp:ClassicalMusic skos:subject dbpcat:ClassicalMusic .

dbpcat:ClassicalMusic skos:broader dbpcat:MusicGenre .

dbpcat:MusicGenre skos:broader dbpcat:Music .

4 Computing Recommendations with the Semantic Web

The last element in our vision for a Semantic Web Recommender System is of
course the component to generate suggestions of interesting items to the users:
the Recommendation Engine. On the basis of the RDF graph that connects users
to items as computed by the Model Builder, this component must derive a list of
recommendations, i.e. a list of user-item pairs qualified by a utility value which
represents the confidence in the predicted user/item correlation.

The approach of our Recommendation Engine is oriented to find meaningful
relations between users and items in the descriptive graph. The first step is thus
identifying the relevant path(s) – in terms of RDF triples – that connects a user
with an item within the graph reconstructed by the Linker. It is possible that
no path exists to connect a user to an item: in this case, the Engine does not
produce any recommendation for that pair; on the other hand, when multiple
paths exist, all paths or only a subset of them can be considered. In any case,
each path must be evaluated and given a score.

In order to judge if an item can be of interest for a user, the bare existence of
a path between them is not enough; indeed, the path should contain evidence of
the recommendation “utility”. To this end, Semantic Web technologies can play
again an important role: the RDF path in fact is not only a route connecting
two points in a graph, but it consists in a “semantic” description of the reasons
why the user and the item are linked.

Under this perspective, the Recommendation Engine must check the “con-
tent” of the user-item connection path, to identify signs of potential utility. For

14 Cf. http://www.service-finder.eu/ontologies/SFC2DBpedia.

12 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

example, it could verify if the path contains triples that express interest, lik-
ing or importance (e.g. the user likes a topic which is related to the item); on
the contrary, it should make sure that the path does not contain expressions
of disapproval or distaste (e.g. the user dislikes a subject to which the item
refers). Finally, it could take into account the user “context” or “role” to give
higher scores to paths relevant for the current user needs. Therefore, the Rec-
ommendation Engine should verify a set of constraints within the RDF path(s);
the satisfaction of each constraint leads to the attribution of a score and the
combination of all scores constitutes the utility value for the user-item pair.

Pragmatically, those constraints to be verified can be expressed in a num-
ber of different ways using Semantic Web technologies, including SWRL [13] or
RIF [6] rules. In the simplest case, those constraints can be expressed as triple
patterns to be verified via a SPARQL query [29]: the query verifies specific path
characteristics, like triples with specific predicates. To configure a Recommender
Engine, a set of constraints should be provided, each one qualified by a score
that, in case of verification, contributes to the utility value computation. Once
all those computations take place, making item recommendations for a specific
user means selecting the user-item pairs with the highest utility values.

Moreover, when suggesting those recommendations to the user, the Recom-
mendation Engine could also provide a proof for its choice, i.e. the path connect-
ing the user to the recommended item. This proof lets the user understand the
“semantics” of the recommendation and check its validity; in turn, this could
enable the possibility to gather feedbacks from the user about the soundness of
a recommendation, thus paving the way for an improvement of the user/item
model (e.g. the user could add/modify his interests in order to get more tailored
suggestions).

Computing service recommendations scores. In our service recommen-
dation scenario, we compute the utility value by analyzing the paths. On the
one hand, we rely on the knowledge about users and items: user interests are
“weighted” as exemplified before and service annotations have a “strength” rep-
resenting how much the employed automatic annotator software is confident
about the categorization. On the other hand, the RDF path connecting a user
to a service contains other information, like the DBpedia topics and categories.

For each user-service couple, the system computes a correlation value out
of all the paths connecting them. Given a path, a first utility value is com-
puted considering specific characteristics of the RDF path, like the number of
skos:broader relations between DBpedia categories (the fewer relations, the
higher the score) and the presence of DBpedia “top” categories (if present, the
connection path is probably not very meaningful). Then, this value is combined
with the interest’s weight and the categorization’s strength, in order to compute
a global utility value for the path.

Anatomy of a Semantic Web-enabled Recommender System 13

5 Related works

Semantic Web and Recommender Systems are two research fields with several
points of contact: in literature, it is possible to find several works related to the
study of their interaction [26].

A first way to use Semantic Web technologies in recommender systems is
to describe users’ profiles and items’ features. Middleton, Alani and De Roure
in [19] use ontologies to model the topics taxonomy of research papers (the items
to be recommended) and users’ interests, in order to compute recommendations
and to identify meaningful groups of users (communities of practice). In [2],
Bannwart et al. present OMORE, a Content-based Recommender System for
movies; it runs as a Firefox plug-in and it predicts how much a movie could be
of interest for a user. When running, the application analyzes the Web pages the
user views; if a page is related to a movie, OMORE processes it, retrieving the
features of the movie through the LOD Cloud and, thus, profiling the user.

Regarding the use of Semantic Web tools for the generation of recommenda-
tions, Abel et al. in [1] present a recommender system for an on-line community
with the goal of suggesting relevant discussions to the users. To process the
recommendations, the system can select among several collaborative filtering
algorithms; those algorithms are exposed as Semantic Web Services described
using OWL [18]. To choose the best algorithm, the system employs a Semantic
Web rule-based engine (with rules defined in SWRL [13]).

In [17], Manikrao and Prabhakar present a recommender system for Web
services. One of the core components of their system is a semantic matcher,
that operates on a knowledge-base in order to match users’ needs with services.
Knowledge-based Recommender System can take advantage of Semantic Web
tools like reasoners and inference engines; to our best knowledge, however, the
use of those technologies in recommender systems is still quite limited.

Another way Semantic Web could help to build a Knowledge-based Recom-
mender System is to build recommendations’ proof. Passant and Decker in [23]
present dbrec, a recommender system to compute music recommendations. The
system gets description of musicians and music bands from DBpedia and pro-
cesses the retrieved RDF graph in order to compute a semantic similarity value
(called Linked Data Semantic Distance) among artists. When users navigate the
dbrec Web site, the system shows the reasons behind the recommendations of
similar musicians.

Finally, Semantic Web technologies can be successfully employed to integrate
data from heterogeneous sources. Passant and Raimond in [24] propose the use of
the data in the LOD Cloud to build a music recommender system. They analyze
three different kinds of data available on the LOD Cloud that could be used to
compute recommendations: social-network data (the FOAF-o-sphere), descrip-
tions of artists and bands and user-defined tags. Those data are distributed on
several sources, such as DBpedia or MusicBrainz, and they are integrated and
interlinked by following the Linked Data principles [3].

Another example of Semantic Web-based integration can be found in [31],
where Szomszor et al. cope with the problem of building a unified knowledge-

14 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

base to compute recommendations from two datasets (IMDb and Netflix). To
achieve their goal, they employ RDF and make the integrated data accessible
via a SPARQL endpoint.

6 Conclusions

In this paper we presented our vision of how a Knowledge based Recommender
System could be based on and exploit all the capabilities of Semantic Web tech-
nologies. We explained how the model of users and items can be enriched with
the knowledge from the Web of Data and how Semantic Web tools can be em-
ployed to elaborate data and support generating recommendations. We designed
the structure and the main modules that compose such a system at a conceptual
level, giving hints on how this can be realized in practice; additionally, we illus-
trated how we concretely built a demonstrator of such a Semantic Web-enabled
Recommender System in the context of service recommendations in the SOA4All
project.

Our main goal with this paper was to present several opportunities to leverage
the results of the Semantic Web community in the Recommender Systems field;
we hope that other researchers can take our concept and analysis as reference
for further investigations on the possible interplay of the two “worlds”.

The pure adoption of Semantic Web technologies, however, does not solve
some existing open issues in building a Knowledge-based Recommender System.
In particular, since the quality of recommendations is directly correlated with
the quality of data, relying on the knowledge in the LOD Cloud means trust-
ing the quality of its contents. To dispel the concerns about the quality of data
and the level of “trust” of the linked data sources on the Web, the Semantic
Web community is putting a lot of effort in the definition and standardization of
“provenance” descriptions15 [21]. With the arrival of massive amounts of Seman-
tic Web data, information about the origin of that data becomes an important
factor in telling apart reliable data from low-quality information.

In an open and inclusive environment such as the Web, information is often
contradictory or questionable; the distributed and redundant nature of the Web
puts at risk not only the consistency of knowledge, but also its completeness and
reliability. To overcome those problems, usually people make trust judgments
based on what they know about the data provenance. However, when prove-
nance information is not available or is not enough, the problem of managing
inconsistency remains open. This, in turn, has a direct consequence on the possi-
bility to evaluate the generated recommendations, e.g. in terms of precision and
recall. On the other hand, the employment of semantic descriptions paves the
way to a recommendation evaluation based on the meaning of data.

All in all, our proposed approach is far from being complete. Our future work
will be devoted to extend and improve the current proof of concept, to evaluate
it and to detail the lessons learned from the adoption of our approach. In our
roadmap, we would like to investigate in the direction of deriving user profiles
from implicit knowledge (as in our previous work [32]) and of leveraging the

15 Cf. http://www.w3.org/2005/Incubator/prov/.

Anatomy of a Semantic Web-enabled Recommender System 15

semantic relations between users and between items. Finally we would like to
explore the feasibility of realizing a hybrid system [9] by joining our Semantic
Web-enabled Recommender System with a Collaborative Filtering approach.

Acknowledgments

This research has been partially supported by the SOA4All (FP7-IST-215219), LarKC

(FP7-IST-215535) and Service-Finder (FP7-IST-215876) EU co-funded projects.

References

1. F. Abel, I. I. Bittencourt, N. Henze, D. Krause, and J. Vassileva. A Rule-Based
Recommender System for Online Discussion Forums. In Proceedings of the 5th in-
ternational conference on Adaptive Hypermedia and Adaptive Web-Based Systems
(AH ’08), pages 12–21, Berlin, Heidelberg, 2008. Springer-Verlag.

2. T. Bannwart, A. Bouza, G. Reif, and A. Bernstein. Private Cross-page Movie
Recommendations with the Firefox add-on OMORE. In 8th International Semantic
Web Conference (ISWC2009), Washington DC, USA, October 2009.

3. T. Berners-Lee. Linked Data – Design Issues. Online at
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – The Story So Far. Inter-
national Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

5. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia – A Crystallization Point for the Web of Data. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, 7:154–165, 2009.

6. H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D. Reynold. RIF
Core Dialect – W3C Recommendation. Available at http://www.w3.org/TR/rif-
core/, June 22th, 2010.

7. D. Brickley and L. Miller. FOAF Vocabulary Specification 0.97. Available at
http://xmlns.com/foaf/spec/, January 1st, 2010.

8. R. Burke. Knowledge-Based Recommender Systems. Encyclopedia of Library and
Information Science, 69(32), 2000.

9. R. Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370, 2002.

10. M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou, M. Sabou, and E. Motta.
Characterizing Knowledge on the Semantic Web with Watson. In Proceedings of
the 5th International Workshop on Evaluation of Ontologies and Ontology-based
Tools (EON2007), co-located with the ISWC2007, pages 1–10, Busan, Korea, 2007.

11. D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. Della
Valle, F. Fischer, Z. Huang, A. Kiryakov, T. Kyung-il Lee, L. School, V. Tresp,
S. Wesner, M. Witbrock, and N. Zhong. Towards LarKC: a Platform for Web-scale
Reasoning, 8 2008.

12. P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stegemann. RelFinder:
Revealing Relationships in RDF Knowledge Bases. In Proceedings of the 4th Inter-
national Conference on Semantic and Digital Media Technologies (SAMT 2009),
volume 5887 of Lecture Notes in Computer Science, pages 182–187. Springer, 2009.

13. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available
at http://www.w3.org/Submission/SWRL/, 2004.

14. D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliog-
raphy. SIGIR Forum, 37(2):18–28, 2003.

16 Daniele Dell’Aglio, Irene Celino, and Dario Cerizza

15. G. Klyne and J. J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax – W3C Recommendation. Available at
http://www.w3.org/TR/rdf-concepts/, 2004.

16. J. Lehmann, J. Schüppel, and S. Auer. Discovering Unknown Connections - the
DBpedia Relationship Finder. In Proceedings of the 1st SABRE Conference on
Social Semantic Web, 2007.

17. U. S. Manikrao and T. V. Prabhakar. Dynamic Selection of Web Services with
Recommendation System. In Proceedings of the International Conference on Next
Generation Web Services Practices (NWESP ’05), page 117, Washington, DC,
USA, 2005. IEEE Computer Society.

18. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview –
W3C Recommendation. Available at http://www.w3.org/TR/owl-features/, 2004.

19. S. E. Middleton, H. Alani, and D. C. De Roure. Exploiting Synergy Between
Ontologies and Recommender Systems. In Proceedings of the WWW2002 Interna-
tional Workshop on the Semantic Web, 2002.

20. A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System
Reference – W3C Recommendation. Available at http://www.w3.org/TR/skos-
reference/, August 18th, 2009.

21. L. Moreau. The foundations for provenance on the web. Foundations and Trends
in Web Science, November 2009.

22. E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello.
Sindice.com: a document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies, 3(1):37–52, 2008.

23. A. Passant and S. Decker. Hey! Ho! Let’s Go! Explanatory Music Recommenda-
tions with dbrec. In ESWC Part II, pages 411–415, 2010.

24. A. Passant and Y. Raimond. Combining Social Music and Semantic Web for Music-
Related Recommender Systems. In Proceedings of the 1st Workshop on Social Data
on the Web (SDoW2008), co-located with the ISWC2008, Karlsruhe, Deutschland,
October 2008.

25. M. J. Pazzani and D. Billsus. Content-Based Recommendation Systems. In The
Adaptive Web, pages 325–341, 2007.

26. E. Peis, J. M. M. del Castillo, and J. A. Delgado-López. Semantic Recommender
Systems. Analysis of the state of the topic. Hipertext.net, 6:online, 2008.

27. M. Rowe and F. Ciravegna. Getting to Me – Exporting Semantic Social Network
from Facebook. In Proceedings of the 1st Workshop on Social Data on the Web
(SDoW2008), co-located with the ISWC2008, 2008.

28. M. Sabou, M. d’Aquin, and E. Motta. SCARLET: SemantiC relAtion discoveRy
by harvesting onLinE onTologies. In Proceedings of the 5th European Semantic
Web Conference (ESWC2008), Tenerife, Spain, 2008.

29. A. Seaborne and E. Prud’hommeaux. SPARQL Query Language for RDF – W3C
Recommendation. Available at http://www.w3.org/TR/rdf-sparql-query/, Jan-
uary 15th, 2008.

30. X. Su and T. M. Khoshgoftaar. A Survey of Collaborative Filtering Techniques.
Advances in Artificial Intelligence, vol. 2009(Article ID 421425), 2009.

31. M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldassarri, V. Loreto, and
V. D. Servedio. Folksonomies, the Semantic Web, and Movie Recommendation .
In Bridging the Gap between Semantic Web and Web 2.0 workshop, colocated with
ESWC2007, 2007.

32. A. Turati, D. Cerizza, I. Celino, and E. Della Valle. Analyzing User Actions within
a Web 2.0 Portal to Improve a Collaborative Filtering Recommendation System.
In Web Intelligence/IAT Workshops, pages 65–68. IEEE, 2009.

Behavioral Matchmaking of Semantic Web

Services?

Zijie Cong and Alberto Fernández

CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
zijie@ia.urjc.es, alberto.fernandez@urjc.es

Abstract. Service matchmaking is an integral link of service discovery,
composition, invocation and other similar tasks under Service-Oriented
Architecture (SOA). Most current approaches measure the degree of
match of two services based merely on their I/O pairs which could leads
to false results. This paper presents an approach for matchmaking in Se-
mantic Web Services (SWS) that considers each service as a sub-graph
of the semantic network of the ontology formed by inputs, outputs, pre-
and post-conditions with contribution of syntactical information such as
keywords and textual descriptions. The similarity between services is de-
�ned as the similarity between these graphs. The aim of this approach
is to reveal the internal work �ow and intention of service, i.e. behav-
ior, thus it agrees with human intuition to a larger extent than existing
approaches.

1 Introduction

The original intention of adding semantic annotations to web services is to
improve the automation of service discovery, selection, invocation and inter-
operation by letting service descriptions to be machine-processable [12]. One
integral part of such automation is matchmaking among services.

Various approaches have been proposed in previous studies. Without con-
cerns about semantics of its components, one primitive method to calculate the
similarity of services is based on the syntactical information - e.g. keywords,
tag-clouds and textual descriptions.

For services with semantic information, inputs/outputs (I/O) matching is a
common method for measuring the similarity. Inputs and outputs of a seman-
tic service are instances of ontological concepts. The similarity of two services
is determined by the subsumption relation the taxonomy tree between corre-
sponding concepts of I/O pair. The result is a degree of semantic similarity,
such as exact, plug-in, subsumes and fail [11]. Some studies, such as [9],
aimed to achieve higher robustness and precision by combining both semantic
and syntactical approaches.

? Work partially supported by the Spanish Ministry of Science and Innovation through
grants TIN2009-13839-C03-02 and CSD2007-0022(CONSOLIDER-INGENIO 2010)

More recently, various graph based approaches have been proposed. In [7],
a service was considered as a composition of processes and thus could be rep-
resented as a �nite-state machine (FSM), the similarity between services was
de�ned as the similarity between two FSMs. Like other similar graph-based ap-
proaches [6,5], it concentrated on structural similarity of services instead of the
semantic similarity of atomic units of functionality.

This paper presents a novel but preliminary approach for service matchmak-
ing. The main rational behind this approach is that a service could be considered
as a sub-graph (Service Behavioral Graph) of a semantic network which maps
input concepts to output concepts via elements speci�ed in conditions, retrieved
from textual description, it reveals the behavior of services which could be a
more intuitive option for calculating the degree of match of services.

The rest of the paper is organized as follows. Section 2 shows the motivation
of this work with an example of 2 service descriptions using a shared ontology
with 20 concepts and 10 relations. The concept and main components of Ser-
vice Behavioral Graph are de�ned in section 3, algorithms for obtaining those
components are also shown. Section 4 describes the calculation of the degree of
match between two services and how it compromises with other studies. Finally,
in section 5 we conclude our current work with a discussion and future plans.

2 Motivation

Although an appropriate measurement of degree of match is di�cult to de�ne,
it is consensus that the result of matching should agree with human intuition.
Inputs and outputs sometimes may not provide su�cient information about
service's behavior, and relying solely on them may lead to false results. An
example is presented in the rest of this section.

Figure 1 illustrates an ontology of publication with 20 concepts and 10 rela-
tions connecting them, this ontology is adopted from [1].

Every service description used in this paper is a 4-tuple (T, I,O,Q), where:

S(T) is syntactical information of the service which may include keywords, tag-
cloud or textual description.

S(I) is a set of input concepts.
S(O) is a set of output concepts.
S(Q) is a set of predicates that must be true after the execution of the service,

i.e. post-conditions.

Due to the diversity of speci�cations and implementations of conditions in
di�erent service description approaches, in this paper, for the sake of simplicity,
we consider these conditions as a conjunction of predicates that are de�ned in
the ontology. A predicate is a binary relation between two concepts, such as
hasBirthday(Novelist, Date).

The preconditions are intentionally ignored as these conditions are usually
checked before the execution of the service thus they do not concern with the
actual behaviors.

Thing

Date

Publication

Person

Expression
Price

Book

Journal
Newspaper

Writer

Publisher

Reader

Title

Text

Novelist Journalist

Novel

Short_story

Article

Newspaper_article

hasPrice

datePublished

writtenBy

writtenBy

writtenBy

publishedBy

contains

contains

isTitled

isTitled

isTitled

reads

hasBirthday

buys

Fig. 1. An ontology of publications with 20 concepts and 10 relations, solid lines rep-
resent subClassOf relations.

To illustrate the problem with I/O matching approaches, we de�ne two ser-
vices in �gure 2. By using I/O matching approaches such as [11], the matchmaker
will not be able to distinguish between S1 and S2 as their inputs and outputs are
identical, thus these two services matches exactly, even though the functionality
of those two services is di�erent.

Therefore the aim of our approach is to overcome the above limitations by
exploiting the behavioral information of services.

3 Service Behavioral Graph (SBG)

To exploit the behavioral information of a service, we consider a service as a
function that maps its inputs to its outputs. In Semantic Web Services, where
inputs and outputs are ontological concepts, this mapping is usually de�ned by
relations in the same domain ontology. As an ontology can be represented by
a multi-relational graph where each vertex denotes a concept and each edge
denotes a relation between concepts, a service thus can be further considered as
a sub-graph of an ontology. More formally,

S1 =

T = returns the birthday of a given novelist

I = {Novelist}
O = {Date}
Q = hasBirthday(Novelist, Date)

S2 =

T = published date of a novelist′s earliest book

I = {Novelist}
O = {Date}
Q = /O

Fig. 2. Services using the ontology of publication

De�nition 1. (Service Behavioral Graph) Let G be an ontology in its graph
representation, G = (V,E) where V is the set of concepts and E is the set of
relations of heterogeneous types, where each relation is represented using a pair
< L, (V ×V) >, where L is the label of the relation (e.g. hasBirthday). A service

S is denoted as GS =
(
V

′
,E′

)
where V

′ ⊆ V and E′ ⊆ E. Elements of V
′
and

E′
are identi�ed using the service description. This sub-graph of the ontology is

referred as Service Behavioral Graph (SBG).

Figure 3 shows the SBGs of S1 and S2. These graphs can be discovered from
the ontology graph using critical elements and behaviorally correct paths, which
are de�ned in the following sections. Note that those graphs are di�erent each
other despite the fact that their I/O descriptions coincide.

hasBirthday
NovelistDate

datePublished
NovelistDate Novel

writtenBy
Behavioral Graph of S2

Behavioral Graph of S1

Fig. 3. SBGs of S1 and S2

3.1 Critical Elements

As we have mentioned in the beginning of this section the mapping from inputs
to outputs is de�ned by the relations in the domain ontology. This mapping is, in
fact, a set of paths from input concepts to output concepts, consisting of one or
more relations. There may exist multiple paths between a pair of I/O concepts,
therefore, �nding proper paths is critical for describing the service's behavior
correctly.

Such paths are determined by several components in the ontology which can
be concepts or relations, and are referred as critical elements in this paper.
Q(Post-condition) and T(Syntactical information) of service descriptions may
o�er some clues to determine these critical elements.

Syntactical Information Syntactical information is valuable for revealing ser-
vice's behaviors. For example, even though S1(I,O) = S2(I,O), the textual
descriptions (T) di�er these two services at human-readable level. To �nd
the critical elements, syntactical information and ontological components'
identi�ers (ID or labels) need to be processed using information retrieval
techniques [3] to transform them into a set of keywords with irrelevant words
and morphological variants removed. Then components with keywords ap-
peared in the syntactical information of the service are considered to be a
critical element. For example, in S1, relation hasBirthday, concepts Novelist
are identi�ed as critical elements because the words �birthday� and �novelist�
have appeared in S1(T).

Post-conditions The post-conditions is a set of predicates that must be true
after the execution of the service, for example, conditions that are speci�ed
in the ConditionalOutput or ConditionalE�ect part of an OWL-S service
description. These predicates often connect input elements with output ele-
ments, hence they reveal important information about service's behavior.

Figure 4 shows how critical elements can be determined and weighted. This
function takes two arguments: O is the domain ontology used by service and
S is the service description 4-tuple. Any postcondition which its domain and
range are from inputs and outputs separately is considered to be critical elements
with weight 1. Syntactical information such as textual descriptions are tokenized
and stemmed. A normalized weight computed using TF-IDF [8] technique is
assigned to each token. The TF-IDF weight measures the importance of certain
words and their corresponding ontological elements in service, the calculation
can be done with information of other services in the registry where service
advertisements are registered, most commonly a UDDI registry [4]. Ontological
elements corresponding to these tokens are considered as critical elements and
assigned with weight of its token.

1: function CriticalElements(O,S)
2: for all o ∈ O do

3: o.weight = 0 . Initialize weights to 0
4: end for

5: for all q ∈ S(Q) do

6: if range, domain of q are in S(I) and S(O) separately then

7: q.weight = 1
8: end if

9: end for

10: T ← tokenize(S(T))
11: T ← stem(T)
12: T ← S(T)\Stoplist . Remove common words
13: for all t ∈ T do

14: w ← TFIDF(t) . Calculate normalized tf-idf weight
15: E ← OntologyElements(O, t) ∩ S(I,O)

16: for all e ∈ E do

17: e.weight = w . Assign weights to the elements
18: end for

19: end for

20: return E
21: end function

Fig. 4. Algorithm for determining and weighting the critical elements

3.2 Behaviorally Correct Path (BCP)

To connect inputs with outputs, a path containing critical elements de�ned in
the previous section needs to be found, we refer this path as a behaviorally correct
path (BCP).

In semantic networks, concepts are usually connected by heterogeneous links,
including hierarchical relations as well as other relations. For similarity measur-
ing purpose, it is necessary to have a unique path between two elements, and
such path should not only contain the critical elements, but also be behaviorally
correct.

In [2], Aleksovski et al. considered a path to be semantically correct if and
only if no hierarchical links appear after a non-hierarchical one. For example,
in �gure 1, a path {ShortStory, is_a, Book, writtenBy, Writer} is semantically
correct, while {ShortStory, is_a, Book, writtenBy, Writer, is_a, Person} is not.

In practice, however, there is a high possibility that no semantically correct
path exists between two concept using Aleksovki's de�nition. Therefore, for the
purpose of this paper, we de�ne a behaviorally correct path as:

De�nition 2. A Behaviorally Correct Path (BCP) is a path in a semantic net-
work between two concepts containing critical elements with maximum one turn
from non-hierarchical relation to hierarchical relation.

And two assumptions must be hold to ensure the existence of a BCP:

1. Any relation in an ontology is invertible.
Relations have directions from range to domain. This assumption implies

that the graph representation of an ontology is undirected as for each relation
there exists a inverse relation, e.g. if a relation contains(Newspaper, Article)
exists, although not all articles are contained in newspapers, we assume a
relation ContainedIn(Article,Newspaper) also exists.

2. All relations are inheritable from a super-concept to a sub-concept.
This assumption implies that if there exists a relation p between concepts x
and y, i.e. p(x, y), and is_a(z, x), then p(z, y). This eliminates the sequence
of subsumption relations that might be appeared in the beginning of a BCP
and also reduces the length of BCPs.

Together, de�nition 2, assumption 1 and 2, ensure that there always exist a
behaviorally correct path between two concepts.

1: function SBG(O, S)
2: SBG← ∅
3: CE ← CriticalElements(O,S)
4: if |CE| > 0 then

5: for all o ∈ S(O) do

6: Paths← ∅
7: for all i ∈ S(I) do

8: Paths.append(BCP from o to i with maximum average weight)
9: end for

10: SBG.append(Path with maximum average weight in Paths)
11: end for

12: else

13: SBG = S(I) ∪ S(O)

14: end if

15: return SBG
16: end function

Fig. 5. SBG Discovery

Figure 5 shows how a SBG is discovered. Firstly, if there are critical ele-
ments determined, for each pair of inputs and outputs, a BCP with maximum
average weight is used to represent their behavioral connection. As not all input
concepts contribute to the main behavior of the service, the path �nding starts
from output concepts and for each output concept, only one input concept is
associated. The service behavioral graph is thus a set containing these paths.

If no critical elements can be identi�ed, SBG will simply be a union of input
and output concepts.

The SBGs of S1 and S2 were depicted in �gure 3

4 Service Similarity

Paolucci et al. de�ned four degrees of matching: exact, plug-in, subsumes
and fail, in their approach in [11] based on the hierarchical relation between

I/O pairs of service advertisement and request. They re�ect the probability of
conducting operation correctly of an advertised service and the satisfaction of
its results with certain request. This approach guarantees the matched services
can be invoked and operated correctly at lowest level, we will use these degrees
as the baseline of our approach.

Algorithm in �gure 6 computes the degree of match using approach from [11]
at the beginning. This step eliminates the services that cannot be invoked and
operated correctly even though their behaviors might be similar to certain extent.
Also, this step guarantees that in the worst case, if no critical elements were
found in the previous SBG discovery phase, i.e, SBGs are simply sets of input
elements and output elements, the result is equivalent to Paolucci's approach.

1: function ServiceMatch(SBGR, SBGA)
2: hierarchicalDegree← hierarchicalMatch(SR, SA)
3: behavioralDegree← 0
4: if hierarchical = FAIL then

5: return < FAIL,−1 >
6: end if

7: if SBGR = SR
(I,O) or SBGA = SA

(I,O) then

8: return < hierarchicalDegree,−1 >
9: end if

10: for all Paths pr and pa in SBGR and SBGA do

11: degree←MaxPathMatch(pr, pa)
12: if degree > behavioralDegree then
13: behavioralDegree← degree
14: end if

15: end for

16: return <hierarchicalDegree, behavioralDegree>
17: end function

Fig. 6. Calculation of degree of match

The result of our approach is a pair, for example using the services presented
in �gure 2, the degree of match is <exact, 0.375>, the �rst element of this
pair is the degree of match using Paolucci's approach, and the second element
is the behavioral di�erence of two services, this structure provides requester
more �exibility on interpreting the degree of match depends on their needs and
environment.

This di�erence is computed based on the di�erences of paths where -1 indi-
cates no behavioral matching has been done, 0 indicates an exact match. As a
path is a sequence of concepts and relations, the di�erences of two paths can
be de�ned as their edit distance. We use Levenshtein distance [10] in this paper
as presented in �gure 7, other distance metrics could also be used here such as
Longest Common Sub-sequence (LCS).

1: function PathMatch(PR, PA)
2: degree← EditDistace(PR, PA)
3: if degree = 0 then

4: return 0
5: else

6: return degree
PA.length+PR.length

7: end if

8: end function

Fig. 7. Distance between paths

5 Conclusion and Future work

This paper presents a novel but preliminary approach of calculating the degree of
match between two services. This approach intends to reveal the behavioral infor-
mation of services, and by comparing their similarity to achieve higher accuracy,
robustness and in agreement with human intuition. The main notion behind this
approach is that we consider a service as a sub-graph of semantic network that
connects its inputs concepts and output concepts via critical elements, referred
as Service Behavioral Graph (SBG). We use syntactical information and condi-
tions to determine the critical elements, and a SBG is discovered by exploiting
these elements.

Experiments with actual realistic test cases are necessary to access the prac-
ticability of our approach. One expectable limitation of our approach is that it
depends on the quality (in term of richness) of the ontology to a large extent
which is highly unstable in practice. Also, in open environments, services may
not use the same ontology to describe its functionality, so semantic alignments
need to be performed. Our future work includes implementation, experiments
and evaluation of this approach, also solving open issues such as e�cient calcula-
tion of SBGs, reduction of the deviation caused by the instability of the quality
of ontologies and re�ne the degree of match.

References

1. Owls-tc version 2.2 revision 2. http://projects.semwebcentral.org/projects/owls-
tc/.

2. Z. Aleksovski, W. ten Kate, and F. van Harmelen. Exploiting the structure of
background knowledge used in ontology matching. In Ontology Matching Workshop
at International Semantic Web Conference (ISWC). Citeseer, 2006.

3. G.G. Chowdhury. Introduction to modern information retrieval. Facet, 2004.

4. L. Clement, A. Hately, C. von Riegen, T. Rogers, et al. UDDI Version 3.0. 2. UDDI
Spec Technical Committee Draft, 20041019, 2004.

5. J. Corrales, D. Grigori, and M. Bouzeghoub. Bpel processes matchmaking for
service discovery. On the Move to Meaningful Internet Systems 2006: CoopIS,
DOA, GADA, and ODBASE, pages 237�254, 2006.

6. D. Grigori, J.C. Corrales, and M. Bouzeghoub. Behavioral matchmaking for service
retrieval: Application to conversation protocols. Information Systems, 33(7-8):681�
698, 2008.

7. A. Günay and P. Yolum. Structural and semantic similarity metrics for web service
matchmaking. In Proceedings of the 8th international conference on E-commerce
and web technologies, pages 129�138. Springer-Verlag, 2007.

8. K.S. Jones et al. A statistical interpretation of term speci�city and its application
in retrieval. Journal of documentation, 60:493�502, 2004.

9. M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx: Hybrid owl-s service
matchmaking. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, volume 142, 2005.

10. V. Levenshteiti. Binary codes capable of correcting deletions, insertions, and re-
versals. In Soviet Physics-Doklady, volume 10, 1966.

11. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. The Semantic Web (ISWC 2002), pages 333�347, 2002.

12. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web
services standards. In Proceedings of the International Conference on Web Services,
pages 395�401. Citeseer, 2003.

