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Abstract. This paper describes an application of semantics to sensors
to automatically create sensor compositions. Two main contributions of
this paper are a sensor ontology and a composition system. The OWL
ontology describes user goals, functional and non-functional properties
of sensors and sensor composition, while the Region Connection Calculus
and Allen’s Interval Algebra are used for describing the spatial and tem-
poral properties of sensors. The composition system composes sensors
and sensor processes to satisfy a user specified goal. Through experi-
ments, this paper demonstrates the feasibility of semantics for specifying
sensor compositions with low reasoning times, and the composition ap-
proaches with low composition times in most cases. Some scalability is-
sues with semantic sensor networks are resolved with reasoning, but new
composition approaches are needed for large scale use requiring large
compositions.

1 Introduction

Sensors are becoming more prevalent and diverse [1], requiring methods of man-
aging this diversity to ensure interoperability. This paper describes the appli-
cation of semantics to sensors for composition, which provides some semantic
interoperability. The definition of a sensor in this paper is “an entity capable of
observing a phenomenon and returning an observed value” [2]. Semantic sensor
composition allows data flow between sensors to be specified based on seman-
tic constraints of sensors and user goals. Semantics allow users to interact with
sensor networks without needing to know specifics of the sensor networks. Ab-
stracting these low level details is a way of dealing with the diversity of sensors.
This paper describes two contributions: a sensor ontology describing semantic
constraints of sensors and goals, and a composition system that uses these con-
straints and reasoning to build sensor compositions satisfying user goals.

The sensor ontology describes semantics for composition such as types, pro-
cesses, spatial and temporal properties, user goals, and sensor specific semantics.
The Web Ontology Language (OWL) (specifically OWL 1.1 [3]) is used to specify
these semantics. To improve the expressivity of spatial and temporal properties,
semantics from the Region Connection Calculus (RCC) [4] and Allen’s Interval



Algebra (AIA) [5], respectively, are used in addition to OWL. This semantic
diversity is advantageous [6] by expressing relations of regions for sensing and
communication, and of time intervals for operation time. These relations sim-
plify the quantitative descriptions of regions and intervals, and allow reasoning
in their respective logics, which are not covered by OWL.

The composition system, in the initialisation phase, takes syntactic sensor
specifications, extracts the semantics, and asserts them into the sensor ontology.
The derivation of RCC and AIA relations are performed by the composition
system. In the composition phase, a matchmaking algorithm then analyses a set
of sensors and sensor processes to create a set of possible matches based on the
sensor and user goal constraints. A composition algorithm then creates composite
sensors by building a binary tree of source to target sensors using the matches.
The new composite sensors are then added to the current set of sensors. The
process repeats until the goals are satisfied or there are no more compositions
to be created. Every composition must end at data collecting sensors or base
stations.

This paper discusses experiments that evaluate the capabilities of the compo-
sition system through three aspects of sensor networks: the number of neighbour-
ing sensors, the number of sensors in the network, and the length of composition.
The first aspect looks at wide composition trees, which translates to many short
compositions at each sensor. The second aspect tests the filtering of relevant
sensors and processes by the matchmaking algorithm. The third aspect looks
at deep composition trees, or long sensor compositions. Favourable results are
seen with the first two experiments with low execution and reasoning time. The
third experiment shows some scalability issues with the matchmaking approach
adopted by other sensor composition systems.

An evaluation of the sensor ontology and composition system is given to iden-
tify and discuss strengths and weaknesses of the system. The novel addition of
RCC and AIA semantics in addition to OWL allows relations about spatial and
temporal properties be asserted in the ontology. These additions are exploited
in the composition system through the fast reasoning to find spatially and tem-
porally collocated sensors. The composition system allows composition to be
created automatically based on user specified goals. While short compositions
can be found quickly, long and large sensor compositions are still problematic
because of the matchmaking approach. However, the application of semantics to
sensors shows feasibility for composition, which provides semantic interoperabil-
ity of sensor resources, and automation of many tasks, allowing users to interact
with sensor networks on a higher level by expressing queries and goals.

The rest of this paper is organized as follows. Section 2 summarises related
work. Section 3 describes the semantic constructs of the sensor ontology with
visualisations. Section 4 describes the composition system. Section 5 shows a
few experiments with the system. Section 6 gives an evaluation of the ontology
and the system. Section 7 provides concluding remarks. The sensor ontology and
other artefacts from this paper, including the original thesis [7], are available from
http://cs.anu.edu.au/people/Nguyen.Tran/SemanticSensorComposition/.

http://cs.anu.edu.au/people/Nguyen.Tran/SemanticSensorComposition/


2 Related Work

This section looks at the related research fields of semantic Web service compo-
sition (SWSC), sensor ontologies and sensor composition.

In SWSC, semantic interoperability of Web services provides additional ca-
pabilities that can be automated: (semantic) searching, invocation, composition,
interoperation, execution monitoring and recovery [8]. Syntactic interoperability
of Web services is the syntax and the established communication protocols of
the Web. To gain additional functionalities that are meaningful to humans, Web
Services are marked up semantically using ontologies. For example, searching
for the desired output of Web services based on ambiguous terms, and compos-
ing multiple Web services to create a new Web service that satisfies some user
goals [9]. The semantics for Web services and their composition are adapted to
this work for sensor processes in a similar way to Lécué et al. [10].

The research on sensor ontologies has produced many ontologies for modelling
of sensors and their capabilities, but they are domain specific for each research
community [11], such as focusing on marine or geospatial use. The design of
the sensor ontology makes extensions or integration simpler to perform. For
example, the CSIRO sensor ontology is a generic sensor ontology that describes
sensor capabilities and operation [12]. The ontology provides some of the basic
semantics for describing sensors in the sensor ontology. The sensor ontology could
be integrated into the CSIRO sensor ontology to provide diverse semantics that
have been evaluated with a sensor composition system.

There are two sensor composition systems that relates to this paper by focus-
ing on the data flow in sensor networks: a Semi-Automatic Sensor Composer and
Semantic Streams. The Semi-Automatic Sensor Composer is an extension of the
Semi-Automatic Web services Composer [13]. The composer uses a matchmaking
algorithm to compose the Web services [14]. The extension adds non-functional
sensor attributes to the Web Services on the sensor. The composition system
aids a user in matching sensors by their processes, a reinterpretation of Web ser-
vices, and non-functional attributes such as location and types. This approach
is clearly not scalable as there can be many sensors of many types in a sensor
network.

Semantic Streams offers a fully automated semantic sensor composition sys-
tem based on Constraint Logic Programming Reals (CLP-R) [15]. The functional
and non-functional properties of sensors are described semantically in CLP-R.
The non-functional properties are hard-coded such as the numeric boundaries of
the sensing region. These boundaries are computed quantitatively for each query
to build the semantic streams of data flowing through the network. The sensor
compositions are deduced automatically from the inference engine with back-
tracking capabilities. The Semantic Streams research shows the composition of
sensors being performed automatically. However the logic used is very restrictive
in its expressiveness and so limits the capabilities of the composition system.

These two sensor composition systems have a similar composition approach
of identifying the user goals and build sensor composition trees towards that
goal. Composing sensors mainly differs from composing Web services by the



additional sensor, spatial and temporal properties. These properties add addi-
tional complexities to the composition problem, which are not addressed by Web
services composition. This paper follows the composition approach of the two
sensor systems above.

3 Sensor Ontology

This section describes the construction of the sensor ontology. Each of the se-
mantics used for composition can exist independently, but each is required in
the composition system.

3.1 Type Semantics

The top level of the COMETMAN energy classification scheme of sensors is
used in the sensor ontology: Chemical, Optical, Mechanical, Electrical, Thermal,
Magnetic, Acoustic, and Nuclear [16]. These can be extended to be more or less
descriptive of a sensor or a family of sensors.

3.2 Process Semantics

The semantics for sensor processes are modelled after the CSIRO Sensor On-
tology [12] with some differences and an explicit modelling of the data types,
inputs and outputs. Each process has a set of inputs and outputs. The data flow
between two processes is a match of an output to an input, which is recorded as
a binding. Figure 1 shows the ontology fragment of the Process concept. Fig-
ure 2 shows the Binding concept, where the bindingDistance property records
the distance between the composed processes. The advantage with this form of
composition is the coordination or micro-management of sensors through their
inputs and outputs.

The matching of outputs to inputs on the semantic level allows analysis
beyond precise or identical definitions required on the syntactic level. The added
semantics allows determining the degree of match of outputs to inputs, which
is exploited with the DataType concept. The hasDataType property maps to
a string representing the DataType concept. The composition system takes the
strings and interprets them as concepts3.

3.3 Spatial Semantics

Sensors have spatial information required in forming networks that can benefit
from a semantic interpretation, Figure 3. The sensing/communication regions of
sensors can be approximated with polygons [17]. Polygons have the advantage
of storage of points of the polygon, and variability of region and number of
3 The Semantic Web Best Practice Description discusses this issue further: http:

//www.w3.org/TR/swbp-classes-as-values/.

http://www.w3.org/TR/swbp-classes-as-values/
http://www.w3.org/TR/swbp-classes-as-values/


Fig. 1. The process semantics in the sensor ontology.

Fig. 2. The binding semantics in the sensor ontology.

points. An OWL mapping of the Region Connection Calculus (RCC) relations
describes the relationships between the regions. The RCC relations are externally
determined by analysing the polygons, and then asserted into the ontology. The
combined use of RCC and OWL provides semantic diversity and capabilities
beyond OWL.

Some advantages of using RCC relations are that the RCC relations only
change when necessary, whereas numeric descriptions require frequent compu-
tation. The view of the spatial and temporal world as relations is more natural
to users. The RCC relations can simplify the creation of sensor compositions
through RCC reasoning, but this is not explored in this paper. The complex-
ity of RCC can be varied by using more or fewer relations to describe spatial



Fig. 3. The spatial semantics in the sensor ontology.

properties [17]. These advantages and the OWL integration makes RCC ideal to
describe spatial properties of sensors.

3.4 Temporal Semantics

Sensors operate over one or more time intervals that can be described qualita-
tively using the thirteen exhaustive relations of Allen’s Interval Algebra (AIA) [18].
The temporal semantics, Figure 4, are modelled after the AIA relations in the
OWL-Time ontology [5] with some minor differences. The AIA relations are also
determined externally and then asserted into the ontology. The advantages of
using AIA are similar to the RCC advantages.

Fig. 4. The temporal semantics in the sensor ontology.



3.5 Sensor Semantics

Sensors are the focus, which is reflected in Figure 5 showing the sensor semantics
in the sensor ontology. The AtomicSensor concept is described by the semantics
above. The CompositeSensor concept connects the sensors and defines the order
of execution and data flow.

Fig. 5. The sensor semantics in the sensor ontology.

3.6 Goal Semantics

Goals specify the desired results and constraints that the composition system
must try to satisfy. The semantics shown in Figure 6 are modelled after the
Sensor concept in a similar way that Lin et al. [19] specifies the goal ontology
for OWL-S. Only atomic goals are discussed in this paper, but composite goals
can be extended to specify the order goals need to be satisfied.

The changeStream data property is used in the composition system to de-
termine if the most general data type of Stream should be instantiated. Instan-
tiating Stream to a more specific type allows sensors that can forward data to
forward it directly to sensors that can take that specific type. This allows for
sensors not required in the goal to be used and so extend the length of composi-
tions. The sensingRegionOverlap data property indicates whether the sensing
regions of the sensors must overlap.

4 Semantic Sensor Composition System

A conceptual model of the composition system, with the flow of information, is
given in Figure 7. This section covers the parts of the system surrounding the



Fig. 6. The goal semantics in the sensor ontology.

sensor ontology. Syntactic descriptions of sensors and goals can be easily created
or generated. The composition system extracts semantics from these syntactic
descriptions and populates the sensor ontology. The following tools used are not
discussed: OWL 1.14, Pellet 2.0.0 RC75, and OWL API6.

Fig. 7. Overview of the composition system.

4 http://www.w3.org/Submission/owl11-overview/
5 http://clarkparsia.com/pellet/
6 Version that came with Pellet 2.0 RC7 was used. http://owlapi.sourceforge.net/

http://www.w3.org/Submission/owl11-overview/
http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/


4.1 Matching Sensors

Matching sensors is filtering the required sensors based on user goals and then
filtering on sensor properties as compositions are created. Filtering sensor types
matching the goal is a simple query. Filtering on spatial and temporal properties
is made simpler by the asserted RCC and AIA relations. The canSendDataTo
relation in the sensor ontology is derived from the RCC and AIA relations to
suggest sensors in range and that operate in the same time frames of each other.

For sensor processes, the matching is based on their inputs and outputs. The
ontology allows determining the degree of match of the concept(s) of the out-
puts to the concept(s) of the inputs. There are four degrees of matches: exact
(outputClass ≡ inputClass), subsumed by (outputClass v inputClass), sub-
sumes (outputClass w inputClass) and fail [10,14]. The sensors with processes
with inputs and outputs matching goal are filtered and the OWL reasoner is
invoked to determine the degree of match in the composition process.

Creating new matches is performed by a matchmaking algorithm. The algo-
rithm creates a set of possible matches from the current working set of sensors
for the composition algorithm. The matches are recorded based on the Binding
concept with the structure of the properties of the concept. The composition al-
gorithm creates a new set of composite sensors on each iteration and the match-
making process is repeated on these new composite sensors.

4.2 Composing Sensors

The composition algorithm takes the bindings created by the matchmaking algo-
rithm and builds a binary tree of processes and sensors to create new composite
sensors. Base stations are defined as sensors having a process marked to be a data
collector. Composition is directed towards these sensors and all compositions end
with a base station.

New composite sensors are checked against the goal requirements. If the new
composite sensors satisfy the goal, the system stops and adds the new sensors
into the sensor ontology; otherwise, the composite sensors are added to the
set of working sensors and the process repeats. The new composite sensors are
compared to the old sensors to reduce the number of comparisons. Circular
compositions resulting from composite processes on the same sensors or in a
chain of compositions are checked against the current composition trees.

For experiments, the composition system is split into the “Initialisation Phase”,
encapsulating the creation and extraction of semantics from syntactic descrip-
tions (left half of Figure 7), and “Composition Phase” (right half of Figure 7),
encapsulating the composition system. Data collection and ontology consistency
checks of the ontology are performed at the start, middle, and end of the two
phases of the system. The data collected are summarised in next section.

5 Experiments

Experiments were conducted to evaluate the system for performance based on au-
tomatically generated random syntactic sensor descriptions. The evaluation uses



randomly generated location, sensing and communication regions, and operation
intervals. The same properties are also randomised in the goal descriptions. Data
points were recorded after three data points had been generated to “warm-up”
the Just-In-Time compiler [20]. Three experiments are presented: the first two
compare the effects of density of sensors, and the last looks at the combinatorial
problem when a message forwarding process is introduced with freedom of input
and output.

5.1 Experiment Scenario

A scenario was created and varied according to the experiments. Let n ∈ {10, 15,
20, 25}, then the scenario conditions for Experiment 1 are:

– 1000× 1000 two dimensional grid
– For Experiment 2 only: change the above grid to a 50n×50n two dimensional

grid
– n Wind Sensors with

• Wind Speed Process
∗ Outputs wind speed

• For Experiment 3 only: additional Message Forwarding Process
∗ Input is a generic stream of data and output is also a stream

– n Temperature Sensors with
• Temperature Process (outputs the ambient temperature)
• Wind Chill Temperature Process

∗ Inputs of wind speed and temperature
∗ Output of wind chill temperature

• For Experiment 3 only: additional Message Forwarding Process
∗ Input is a generic stream of data and output is also a stream

– 2× n/5 Base Stations with
• Capture Messages Process

– Randomising
• Location
• Sensing Region

∗ Maximum size: 100× 100
• Communication

∗ Maximum size: 200× 200
• Operation Interval

∗ Operation times varies over the same day

The number of wind and temperature sensors remains the same, and the
number of base stations is in proportion to the other sensors in a ratio of
(number of windsensors + number of temperature sensors) : 1 basestation.
The ratio ensures that satisfiable compositions are likely to be found. The re-
sults for the three experiments are summarised in Figures 8 and 9 for the average
time over 50 iterations of the algorithm, and Figures 10 and 11 for the number of
individuals created for each part of the algorithm. The key of the results figures
means windSensors temperatureSensors baseStations (e.g. 10 10 4 means 10
Wind Sensors, 10 Temperature Sensors, and 4 Base Stations were used in the
experiment).



Fig. 8. Average execution times of experiments 1, 2 and 3 for compositions
satisfying the goal.

Fig. 9. Average execution times of experiments 1, 2 and 3 for compositions not
satisfying the goal.

5.2 Experiment 1: Increasing Density

This experiment looks at the performance of the composition system as more
sensors are added to a fixed region. As the density increases, it is expected that
the likelihood of compositions satisfying the goal is higher, but more sensors may
need to be checked in a targeted region. This experiment tests the composition
system as the breadth of the composition trees increases.

Results The results show an increase in the execution time of all parts of
the algorithm as more sensors are added. The Initialisation Phase dominates



Fig. 10. Number of Individuals generated in the ontology for experiments 1, 2
and 3 for compositions satisfying the goal. The rightmost set of results is not
the number of individuals.

Fig. 11. Number of Individuals generated in the ontology for experiments 1, 2
and 3 for compositions not satisfying the goal. The rightmost set of results is not
the number of individuals. No individuals are created for an unsatisfied goal.

the execution time and the reasoner takes the least time. Comparing the two
cases for the goal, the composer takes less time in the unsatisfiable case, the
Initialisation Phase remains about the same, and the reasoner takes less time.
For the unsatisfiable case, the composer does not add more individuals to the
ontology as there are no suitable sensors, hence the reasoner takes less time.

The increasing number of individuals with the increasing number of sen-
sors is observed. The size of the ontology and the number of individuals natu-
rally affects the reasoner’s capabilities to check for consistency and answering
queries [21]. The reasoner remains efficient when the number of individuals is
around a thousand. The number of individuals required for the composite sensors
are comparatively small compared to the initialisation.

The small number of individuals for composite sensors is ideal as more com-
positions are likely to be added, but initialisation only needs to be performed



once (or partially when new sensors are added). This experiment shows compos-
ite sensors do not make the ontology unreasonable complex and that most of the
time taken is in the initialisation and composition phase. The number of com-
posite sensors increases, suggesting more sensors evaluated in the composition
phase and the likelihood of finding a satisfying composite sensor decreases.

5.3 Experiment 2: Constant Density

This experiment looks at the performance of the system as more sensors are
added to a region of space that increases in ratio with the number of sensors.
Since the density remains constant, it is expected that the likelihood of composi-
tions satisfying the goals in any region remains the same and similarly with the
running time. This experiment tests the filtering capabilities of the composition
system to remove irrelevant sensors.

Results The execution times have no significant difference to Experiment 1 for
both cases (paired 2-tailed student’s t-test value is between 0.45 and 1.00 for each
time component). The composition part has some differences in the execution
time, performing slightly better with more sensors (i.e. less time) and slightly
worst with fewer sensors (i.e. more time). The number of individuals created by
composition reflects the changes in execution time.

The area where the sensors are placed seems to have an effect on the number
of sensors created. Smaller areas means sensors are likely to be closer, so there
more sensors for the composition system to check. The time taken by the com-
position system seems to be dependent on the number of sensors instead of the
sensors required to measure the goal sensing region. Another possibility is the
goal region covers an area common to many sensors. The density of sensors does
not seem to have a significant difference in the performance of the composition
system.

5.4 Experiment 3: Message Forwarding Sensors

This experiment investigates the complexity of the compositions by adding a
simple message forwarding process to each sensor type. The process has one
input and one output, where both has the most general type Stream and unit of
measurement measureAny. This process simply takes any input and forwards
the message to another sensor (not at the same sensor). This experiment tests
the composition system as the sensor network becomes more complex, requiring
longer chains of compositions.

Some problems were encountered in this experiment, which revealed limita-
tions of the system for future work. The problems come from the vast number
of composite sensors created in the composition algorithm. An upper limit on
the time taken is placed at 400 composite sensors. The results presented in this
section are only for compositions not satisfying the goal and when the algorithm
terminates because of a large set of composite sensors.



Results The number of compositions is low compared to the number of com-
posite sensors created as seen in Table 1. When the algorithm creates more than
400 composite sensors the average size of the set of sensors is shown in the last
column of Table 1, which can be very large. The large set of sensors in the last
column for a small starting set of atomic sensors results from the composition
system check for many more possible composite sensors, resulting in complex
compositions.

Table 1. Message Forwarding Sensors – Results: Satisfied Goal, Number of
Individuals ±1 standard deviation

Sensors Initialisation Composition Total
Number of Average Number of
Composite Composite Sensors

Sensors (stop when > 400)

10 10 4 484 ± 14 37 ± 34 522 ± 36 160 ± 109 3730 ± 5200
15 15 6 705 ± 15 43 ± 35 748 ± 39 243 ± 136 2711 ± 5088
20 20 8 928 ± 17 48 ± 41 976 ± 50 280 ± 159 1224 ± 1065

25 25 10 1151 ± 18 23 ± 11 1174 ± 20 98 ± 87 1955 ± 1346

6 Evaluation

The experiments show the feasibility of applying semantics to sensors and of
automatically creating compositions. From the execution times for experiments
1 and 2, the reasoner performed efficiently and showing only small increases
with more sensors and many more individuals in the ontology. Comparing to
the initialisation phase, in the composition phase few number of individuals for
composite sensors are created when the goal can be satisfied. Experiment 3 shows
a wide variation of execution times over 50 iterations, which is only partially seen
in the figures. However, the number of composite sensors and individuals are also
low, but higher than experiments 1 and 2 in some cases.

Table 1 shows the crippling number of sensors created in the last column
for experiment 3. The creation of long compositions required many sensors to
be created, which vary greatly on each iteration, similarly with the time taken
in the composition phase. However, checking consistency and reasoning on the
ontology are performed quickly, similar to experiments 1 and 2. So, the semantic
overhead in searching for composition do not contribute greatly to the overall
execution times.

Experiments 1 and 2 have very similar execution times and resulting number
of individuals. This suggests the number of surrounding sensors and number of
sensors does not affect the composition system significantly. The composition
system stops early when the goals cannot be satisfied, suggesting the system can
quickly determine unsatisfiable goals. The execution time of the initialisation
phase and checking of consistency by the reasoner are similar across all three
experiments.



The number of individuals created in the initialisation phase is numerous
because the quantitative values for the regions and intervals. The values do not
affect the reasoner, but can be removed to reduce the size of the ontology. Despite
the large number of composite sensors created in experiment 3, the number of
individuals representing compositions remains low (in the case of satisfied goal).
This suggests the composite sensors have many common constituent sensors.

These experiments show that the composition system works well on wide
composition trees, but struggles on deep composition trees. The number of in-
dividuals in the ontology do not affect the reasoning time. Comparatively few
individuals are created in the composition phase than the initialisation phase.
Semantic sensor composition is achieved with a sensor ontology and a compo-
sition system, but some weaknesses are apparent that limits the application of
composition system to large and complex sensor networks.

7 Conclusion

This paper describes two contributions: a sensor ontology and a composition
system. The ontology covers semantics of the sensor types, process semantics,
spatial semantics, temporal semantics, sensor semantics, and goal semantics. The
spatial and temporal semantics are a novel addition, providing semantic diver-
sity and capabilities beyond OWL. The composition system provides automated
and goal directed composition of sensors using the ontology. Experiments show
the feasibility of the sensor ontology in describing sensors and sensor composi-
tions, and the limitations of the composition approach. From the experiments,
future work includes looking at pruning methods and AI search approaches that
exploits semantic information. The sensor ontology and composition system pro-
vide semantic interoperability, semantic diversity, and automation, which allows
users to query, interact, and extract knowledge directly from any sensor network.
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