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Abstract. Fuzzy Description Logics (DLs) are a formalism for the rep-
resentation of structured knowledge affected by imprecision or vagueness.
In the setting of fuzzy DLs, restricting to a finite set of degrees of truth
has proved to be useful. In this paper, we propose finite fuzzy DLs as a
generalization of existing approaches. We assume a finite totally ordered
set of linguistic terms or labels, which is very useful in practice since
expert knowledge is usually expressed using linguistic terms. Then, we
consider any smooth t-norm defined over this set of degrees of truth. In
particular, we focus on the finite fuzzy DL ALCH, studying some logi-
cal properties, and showing the decidability of the logic by presenting a
reasoning preserving reduction to the non-fuzzy case.

1 Introduction

It has been widely pointed out that classical ontologies are not appropriate
to deal with imprecise and vague knowledge, which is inherent to several real-
world domains. Since fuzzy logic is a suitable formalism to handle these types
of knowledge, there has been an important interest in generalize the formalism
of Description Logics (DLs) [1] to the fuzzy case [2].

It is well known that different families of fuzzy operators (or fuzzy logics)
lead to fuzzy DLs with different properties [2]. For example, Gödel and Zadeh
fuzzy logics have an idempotent conjunction, whereas  Lukasiewicz and Product
fuzzy logic do not. Clearly, different applications may need different fuzzy logics.

In fuzzy DLs, some fuzzy operators imply logical properties which are usually
undesired. For instance, in Zadeh fuzzy logic concepts and roles do not fully
subsume themselves [3]. Furthermore,  Lukasiewicz logic may not be suitable for
combining information, as the conjunction easily collapses to zero [4]. Hence, the
study of new fuzzy operators is an interesting topic.

Assuming a finite set of degrees of truth is useful in the setting of fuzzy
DLs, [3,5,6]. In the Zadeh case it is interesting for computational reasons [3].
In Gödel logic, it is necessary to show that the logic verifies the Witnessed
Model Property [7]. In  Lukasiewicz logic, it is necessary to obtain a non-fuzzy
representation of the fuzzy ontology [6]. A question that immediately arise is
whether this assumption is possible when different fuzzy logics are considered.



There is a recent promising line of research that tries to fill the gap between
mathematical fuzzy logic and fuzzy DLs [7,8,9]. Following this path, we build on
the previous research on finite fuzzy logics [10,11,12] and propose a generalization
of the different fuzzy DLs under finite degrees of truth that have been proposed,
as we consider any smooth t-norm defined over a chain of degrees of truth.

Instead of dealing with degrees of truth in [0, 1], as usual in fuzzy DLs, we will
assume a finite (totally ordered) set of linguistic terms or labels. For instance,
N = {false, closeToFalse, neutral, closeToTrue, true}. This makes possible
to abstract from the numerical interpretations of these labels.

The use of linguistic labels as degrees in fuzzy DLs has already been pro-
posed. U. Straccia proposed to take the degrees from an uncertainty lattice [13].
To guarantee soundness and completeness of the reasoning, the set of labels is
assume to be finite. A recent extension of this work by other authors considers
Zadeh SHIN [14]. Nowadays, finite chains are receiving more attention, since
they are one of the building blocks of the first order t-norm based logic L∗∼(S)∀,
which can be used to define several related fuzzy DLs [8,9].

The benefits of this paper are two-fold: firstly, since experts’ knowledge is
usually expressed using a set of linguistic terms [11], the process of knowledge
acquisition is easier. Secondly, we make possible to use new fuzzy operators in
the setting of fuzzy DLs for the first time.

The remainder is organized as follows. Section 2 includes some preliminaries
on finite fuzzy logics. Then, Section 3 defines a fuzzy extension of the DL ALCH
based on finite fuzzy logics and discusses some logical properties. Section 4 shows
the decidability of the logic by providing a reduction of fuzzy ALCH into crisp
ALCH. Finally, Section 5 sets out some conclusions and ideas for future research.

2 Finite Fuzzy Logics

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [15] to manage
imprecise and vague knowledge. Here, statements are not either true or false,
but they are a matter of degree.

Let X be a set of elements called the reference set, and let S be a totally
ordered scale with e as minimum element and u as maximum. A fuzzy subset
A of X is defined by a membership function A(x) : X → S which assigns any
x ∈ X to a value in S. Similarly as in the classical case, e means no-membership
and u full membership, but now a value between them represents to which extent
x can be considered as an element of X.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication are performed by a t-norm function, a t-conorm
function, a negation function, and an implication function, respectively.

In the following, we consider finite chains of degrees of truth [10,11,12]. A
finite chain of degrees of truth is a totally ordered set N = {0 = γ0 < γ1 < · · · <
γp = 1}, where p ≥ 1. For our purposes all finite chains with the same number
of elements are equivalent. N can be understood as a set of linguistic terms or
labels. For example, {false, closeToFalse, neutral, closeToTrue, true}.



Table 1. Popular fuzzy logics over a finite chain

Family γi ⊗ γj γi ⊕ γj 	γi γi ⇒ γj
Zadeh min{γi, γj} max{γi, γj} γp−i max{γp−i, γj}

Gödel min{γi, γj} max{γi, γj}
{
γp, γi = 0
γ0, γi > 0

{
γp, γi ≤ γj
γj , γi > γj

 Lukasiewicz γmax{i+j−p,0} γmin{i+j,p} γp−i γmin{p−i+j,p}

In the rest of the paper, we will use the following notion: N+ = N \ {γ0},
+γi = γi+1, −γi = γi−1. Let us also denote by [γi, γj ] the finite chain given by
the subinterval of all γk ∈ N such that i ≤ k ≤ j.

T-norms, t-conorms, negations and implications can be restricted to finite
chains. Table 1 shows some popular examples: Zadeh, Gödel, and  Lukasiewicz.

The smoothness condition is a discrete counterpart of continuity on [0, 1].
A function f : N → N is smooth iff it satisfies the following condition for all
i ∈ N+ f(γi) = γj implies that f(γi−1) = γk with j − 1 ≤ k ≤ j + 1. A binary
operator is smooth when it is smooth in each place.

A t-norm on N is a function ⊗ : N 2 → N satisfying commutativity, asso-
ciativity, monotonicity, and some boundary conditions. Smoothness for t-norms
is equivalent to the divisibility condition in [0, 1], i.e., γi ≤ γj if and only if
there exists γk ∈ N such that γj ⊗ γk = γi. A t-norm ⊗ is Archimedean iff
∀γ1, γ2 ∈ N \ {γ0, γp} there is n ∈ N such that γ1 ⊗ γ1 · · · ⊗ γ1 (n times) < γ2.

Proposition 1. There is one and only one Archimedean smooth t-norm on N
given by γi ⊗ γj = γmax{0,i+j−p}. Moreover, given any subset J of N containing
γ0, γp, there is one and only one smooth t-norm ⊗J on N that has J as the set
of idempotent elements. In fact, if J is the set J = {0 = γi0 < γi1 < · · · <
γim−1 < γim = 1} such a t-norm is given by:

γi ⊗J γj =
{
γmax{ik,i+j−ik+1} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γmin{i,j} otherwise

Note that the Archimedean smooth t-norm happens with J = {γ0, γp}, and
that the minimum happens with J = N . It is worth to note that, as a conse-
quence of Proposition 1, a finite smooth product t-norm is not possible.

Example 1. Given the finite chain N = {γ0, γ1, γ2, γ3, γ4, γ5} and the set J =
{γ0, γ3, γ5}, ⊗J is defined as:

γ0 γ1 γ2 γ3 γ4 γ5
γ0 γ0 γ0 γ0 γ0 γ0 γ0
γ1 γ0 γ0 γ0 γ1 γ1 γ1
γ2 γ0 γ0 γ1 γ2 γ2 γ2
γ3 γ0 γ1 γ2 γ3 γ3 γ3
γ4 γ0 γ1 γ2 γ3 γ3 γ4
γ5 γ0 γ1 γ2 γ3 γ4 γ5

A negation function 	 on N is strong if it verifies 	(	γ) = γ,∀γ ∈ N . There
is only one strong negation on N and it is given by 	γi = γp−i

Given a smooth t-norm ⊗ and the strong negation 	, we can define the dual
t-conorm ⊕⊗, as the function satisfying γi ⊕⊗ γj = 	((	γi)⊗ (	γj)).



Proposition 2. There is one and only one Archimedean smooth t-conorm on
N given by γi⊕ γj = γmin{p,i+j}. Moreover, given any subset J of N containing
γ0, γp, there is one and only one smooth t-conorm ⊕J on N that has J as the
set of idempotent elements. In fact, if J is the set J = {0 = γi0 < γi1 < · · · <
γim−1 < γim = 1} such a t-conorm is given by:

γi ⊕J γj =
{
γmin{ik+1,i+j−ik} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γmax{i,j} otherwise

Note that the Archimedean smooth t-conorm happens with J = {γ0, γp},
and that the maximum happens with J = N .

A binary operator ⇒: N 2 → N is said to be an implication, if it is non-
increasing in the first place, non-decreasing in the second place, and satisfies
some boundary conditions.

Given a smooth t-norm ⊗ and the strong negation 	, an S-implication ⇒s⊗
is the function satisfying γi ⇒s⊗ γj = 	(γi ⊗ (	γj)) = (	γi)⊕ γj .

Proposition 3. Let ⊗J : N 2 → N be a smooth t-norm with J = {0 = γi0 <
γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒s⊗ is given by:

γi ⇒s⊗ γj =
{
γmin{p−ik,ik+1+j−i} if ∃γik ∈ J such that γik ≤ γi, γp−j ≤ γik+1

γmax{p−i,j} otherwise

The Kleene-Dienes implication happens with the minimum t-norm, and the
 Lukasiewicz implication happens with the Archimedean t-norm.

Given a smooth t-norm ⊗, an R-implication ⇒r⊗ can be defined as γi ⇒r⊗
γj = max{γk ∈ N|(γi ⊗ γk) ≤ γj}, for all γi, γj ∈ N .

Proposition 4. Let ⊗J : N 2 → N be a smooth t-norm with J = {0 = γi0 <
γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒r⊗ is given by:

γi ⇒r⊗ γj =

γp if γi ≤ γj
γik+1+j−i if ∃γik ∈ J such that γik ≤ γj < γi ≤ γik+1

γj otherwise

Example 2. Given the t-norm in Example 1, ⇒r⊗ is defined as follows, where
the first column is the antecedent and the first row is the consequent:

γ0 γ1 γ2 γ3 γ4 γ5
γ0 γ5 γ5 γ5 γ5 γ5 γ5
γ1 γ2 γ5 γ5 γ5 γ5 γ5
γ2 γ1 γ2 γ5 γ5 γ5 γ5
γ3 γ0 γ1 γ2 γ5 γ5 γ5
γ4 γ0 γ1 γ2 γ4 γ5 γ5
γ5 γ0 γ1 γ2 γ3 γ4 γ5

Gödel implication happens with the minimum t-norm, and the  Lukasiewicz
implication happens with the Archimedean t-norm.

A QL-implication is an implication verifying γi ⇒ γj = (	γi)⊕ (γi ⊗ γj).



Proposition 5. Let ⊗ : N 2 → N be a smooth t-norm. The operator γi ⇒
γj = (	γi) ⊕ (γi ⊗ γj) is a QL-implication iff ⊕ is the Archimedean smooth
t-conorm. Moreover, in this case, γi ⇒ql⊗ γj = γp−i+z for all γi, γj ∈ N , where
γz = γi ⊗ γj.

Proposition 6. Let ⊗J : N ×J N → N be a smooth t-norm with J = {0 =
γi0 < γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒ql⊗ is given by:

γi ⇒ql⊗ γj =

γmax{p−i+ik,p+j−ik+1} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γp−i+j if γj ≤ ik ≤ γi for some ik ∈ J
γp otherwise

The  Lukasiewicz implication happens with the minimum t-norm, and the
KleeneDienes implication happens with the Archimedean t-norm (note the dif-
ference with respect to S-implications).

Interestingly, ⇒s⊗ and ⇒ql⊗ are smooth if and only if so is ⊗, but the
smoothness condition is not preserved in general for R-implications.

Finally, we can also define D-implications. The name is due to the equivalence
to the Dishkant arrow in orthomodular lattices. Note that D-implication are
sometimes called NQL-implication. A D-implication is an implication satisfying
γi ⇒ γj = ((	γi)⊗ (	γj))⊕γj for all γi, γj ∈ N . However, QL-implications and
D-implications on N actually coincide. Given a set J and J̄ = {γp−x|γx ∈ J},
then ⇒ql⊗J is equivalent to ⇒d⊗J̄ .

The notions of fuzzy relation, inverse relation, composition of relations, re-
flexivity, symmetry and transitivity can trivially be restricted to N .

3 Finite Fuzzy ALCH

In this section we define fuzzy ALCH, a fuzzy extension of ALCH where:

– Concepts denote fuzzy sets of individuals.
– Roles denote fuzzy binary relations.
– Degrees of truth are taking from a finite chain N .
– Axioms have a degree of truth associated.
– The fuzzy connectives used are a smooth t-norm ⊗ onN , the strong negation
	 on N , the dual t-conorm ⊕, and the implications ⇒s⊗,⇒r⊗,⇒ql⊗.

In this paper, we will assume the reader to be familiar with classical DLs (for
details, we refer to [1]).

3.1 Definition

Notation. In the rest of this paper, C,D are (possibly complex) concepts, A is an
atomic concept, R is a role, a, b are individuals, ./ ∈ {≥, <,≤, >}, C ∈ {≥, >},
B ∈ {≤, <}. We will also use ≡ to denote semantical equivalence, and we will
not write ⊗ in the subscripts of the implications.



Syntax. Finite fuzzy ALCH assumes three alphabets of symbols, for concepts,
roles and individuals. A Fuzzy Knowledge Base (KB) contains a finite set of
axioms organized in a fuzzy ABox A (axioms about individuals), a fuzzy TBox
T (axioms about concepts), and a fuzzy RBox T (axioms about roles).

The syntax of fuzzy concept, roles, and axioms are shown in Table 2. Note
that in fuzzy ALCH, all fuzzy roles are atomic.

Remark 1. As opposed to the crisp case, there are three types of universal re-
strictions, fuzzy GCIs, and fuzzy RIAs. In fact, the different subscripts s, r, and
ql denote an S-implication, R-implication, and QL-implication, respectively.

Semantics. A fuzzy interpretation I is a pair (∆I , ·I) where ∆I is a non empty
set (the interpretation domain) and ·I is a fuzzy interpretation function mapping
(i) every individual a onto an element aI of ∆I , (ii) every concept C onto a
function CI : ∆I → N , and (iii) every role R onto a function RI : ∆I ×∆I →
N . The fuzzy interpretation function is extended to fuzzy complex concepts and
axioms as shown in Table 2.

CI denotes the membership function of the fuzzy concept C with respect to
the fuzzy interpretation I. CI(x) gives us the degree of being x an element of
the fuzzy concept C under I. Similarly, RI denotes the membership function of
the fuzzy role R with respect to I. RI(x, y) gives us the degree of being (x, y)
an element of the fuzzy role R.

Remark 2. Note an important difference with previous work in fuzzy DLs. Usu-
ally, ·I maps every concept C onto a function CI : ∆I → [0, 1], and every
role R onto RI : ∆I × ∆I → [0, 1]. Consequently, a fuzzy KB {〈a : C >
0.5〉, 〈a : C < 0.75} is satisfiable, by taking CI(a) ∈ (0.5, 0.75). But now,
given N = {false, closeToFalse, neutral, closeToTrue, true}, a fuzzy KB
{〈a : C > closeToFalse〉, 〈a : C < neutral} is not satisfiable, since CI(a) ∈ N .

Witnessed models. In order to correctly manage infima and suprema in the
reasoning, we need to define the notion of witnessed interpretations [7]. A fuzzy
interpretation I is witnessed iff, for every formula, the infimum corresponds
to the minimum and the supremum corresponds to the maximum. Our logic
also enjoys the Witnessed Model Property (WMP) (all models are witnessed),
because the number of degrees of truth in the models of the logic is finite [7].

Reasoning tasks. We will define the most important reasoning tasks and show
that all of them can be reduced to fuzzy KB satisfiability.

– Fuzzy KB satisfiability. A fuzzy interpretation I satisfies (is a model of) a
fuzzy KB K = 〈A, T ,R〉 iff it satisfies each element in A, T and R.

– Concept satisfiability. C is α-satisfiable w.r.t. a fuzzy KB K iff K∪ {〈a :C ≥
α〉} is satisfiable, where a is a new individual, which does not appear in K.

– Entailment. A fuzzy concept assertion 〈a : C ./ α〉 is entailed by a fuzzy
KB K (denoted K |= 〈a : C ./ α〉) iff K ∪ {〈a : C ¬ ./ α〉} is unsatisfiable.
Furthermore, K |= 〈(a, b) :R ≥ α〉 iff K ∪ {〈b : B ≥ γp〉} |= 〈a : ∃R.B ≥ α〉,
where B is a new concept.



Table 2. Syntax and semantics of finite fuzzy ALCH

Element Syntax Semantics
Concepts > γp

⊥ γ0

A AI(x)

C uD CI(x)⊗DI(x)

C tD CI(x)⊕DI(x)

¬C 	CI(x)

∀sR.C infy∈∆I {R
I(x, y)⇒s C

I(y)}
∀rR.C infy∈∆I {R

I(x, y)⇒r C
I(y)}

∀qlR.C infy∈∆I {R
I(x, y)⇒ql C

I(y)}
∃R.C supy∈∆I {R

I(x, y)⊗ CI(y)}
Roles R RI(x, y)

ABox axioms 〈a :C ./ γ〉 CI(aI) ./ γ

〈(a, b) :R ./ γ〉 RI(aI , bI) ./ γ

TBox axioms 〈C vs D B γ〉 infx∈∆I {C
I(x)⇒s D

I(x)}B γ

〈C vr D B γ〉 infx∈∆I {C
I(x)⇒r D

I(x)}B γ

〈C vql D B γ〉 infx∈∆I {C
I(x)⇒ql D

I(x)}B γ

RBox axioms 〈R1 vs R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒s R

I
2 (x)}B γ

〈R1 vr R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒r R

I
2 (x)}B γ

〈R1 vql R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒ql R

I
2 (x)}B γ

– Greatest lower bound. The greatest lower bound of a concept or role assertion
τ is defined as the sup{α : K |= 〈τ ≥ α〉}. It can be computed performing at
most log |N | entailment tests [16].

– Concept subsumption: Under an S-implication, D subsumes C with degree α
(C vs D ≥ α) w.r.t. a fuzzy KB K iff K ∪ {a :¬C tD < α} is unsatisfiable,
where a is a new individual. Under an R-implication, D subsumes C (C vr
D) w.r.t. a fuzzy KB K iff, for every α ∈ N , K ∪ {a :C ≥ α} ∪ {a :D < α}
is unsatisfiable, where a is a new individual. Under a QL-implication, D
subsumes C with degree α (C vql D ≥ α) w.r.t. a fuzzy KB K iff K ∪ {a :
¬C t (C uD) < α} is unsatisfiable, where a is a new individual.

3.2 Logical Properties

It can be easily shown that finite fuzzy ALCH is a sound extension of crisp
ALCH, because fuzzy interpretations coincide with crisp interpretations if we
restrict the membership degrees to {γ0 = 0, γp = 1}.

Proposition 7. Finite fuzzy ALCH interpretations coincide with crisp inter-
pretations if we restrict the membership degrees to {γ0 = 0, γp = 1}.

The following properties are extensions to a finite chain N of properties for
Zadeh fuzzy DLs [3] and  Lukasiewicz fuzzy DLs [6].

1. Concept simplification: C u > ≡ C, C t ⊥ ≡ C,C u ⊥ ≡ ⊥, C t > ≡ >,
∃R.⊥ ≡ ⊥, ∀sR.> ≡ >, ∀rR.> ≡ >, ∀qlR.> ≡ >.

2. Involutive negation: ¬¬C ≡ C,
3. Excluded middle and contradiction: In general, C t ¬C 6≡ >, C u ¬C 6≡ ⊥,
4. Idempotence of conjunction/disjunction: In general, C uC 6≡ C, C tC 6≡ C.



5. De Morgan laws: ¬(C tD) ≡ ¬C u ¬D, ¬(C uD) ≡ ¬C t ¬D,
6. Inter-definability of concepts: ⊥ ≡ ¬>, > ≡ ¬⊥, C u D ≡ ¬(¬C u ¬D),
C tD ≡ ¬(¬C t ¬D), ∀sR.C ≡ ¬∃R.(¬C), ∃R.C ≡ ¬∀sR.(¬C). However,
in general, CuD 6≡ ¬(¬Ct¬D), CtD 6≡ ¬(¬Cu¬D), ∀rR.C 6≡ ¬∃R.(¬C),
∃R.C 6≡ ¬∀rR.(¬C), ∀qlR.C 6≡ ¬∃R.(¬C), ∃R.C 6≡ ¬∀qlR.(¬C).

7. Inter-definability of axioms: 〈τ > β〉 ≡ 〈τ > +β〉, 〈τ < α〉 ≡ 〈τ ≤ −α〉.
8. Contrapositive symmetry : C vs D ≡ ¬D vs ¬C. However, in general, C vr
D 6≡ ¬D vr ¬sC,C vql D 6≡ ¬D vql ¬sC.

9. Modus ponens: 〈a : C B γ1〉 and 〈C vr D B γ2〉 imply 〈a : D B γ1 ⊗ γ2〉,
〈(a, b) :RB γ1〉 and 〈R vr R′ B γ2〉 imply 〈(a, b) :R′ B γ1 ⊗ γ2〉.

10. Self-subsumption: (C vr C)I = γp, (R vr R)I = γp. However, in general,
(C vs C)I 6= γp, (R vs R)I 6= γp, and (C vql C)I 6= γp, (R vql R)I 6= γp.

Remark 3. Inter-definability of axioms makes it possible to restrict to fuzzy ax-
ioms of the forms 〈τ ≥ α〉 and 〈τ ≤ β〉.

4 A Crisp Representation for Finite Fuzzy ALCH

In this section we show how to reduce a fuzzy KB into a crisp KB. The pro-
cedure is satisfiability-preserving, so existing DL reasoners could be applied to
the resulting KB. The basic idea is to create some new crisp concepts and roles,
representing the α-cuts of the fuzzy concepts and relations, and to rely on them.
Next, some new axioms are added to preserve their semantics and finally every
axiom in the ABox, the TBox and the RBox is represented, independently from
other axioms, using these new crisp elements.

Before proceeding formally, we will illustrate this idea with an example.

Example 3. Consider the smooth t-norm on N used in Example 1, and let us
compute some α-cuts of the fuzzy concept A1 uA2 (denoted ρ(A1 uA2,≥ α)).

To begin with, let us consider α = γ2. By definition, this set includes the
elements of the domain x satisfying AI1 (x)⊗AI2 (x) ≥ γ2. There are two possibili-
ties: (i) AI1 (x) ≥ γ2 and AI2 (x) ≥ γ3, or (ii) AI1 (x) ≥ γ3 and AI2 (x) ≥ γ2. Hence,
ρ(A1 uA2,≥ γ2) =

(
ρ(A1,≥ γ2) u ρ(A2,≥ γ3)

)
t
(
ρ(A1,≥ γ3) u ρ(A2,≥ γ2)

)
.

Now, let us consider α = γ3. Now, there is only one possibility: AI1 (aI) ≥ γ3

and AI2 (aI) ≥ γ3. Hence, ρ(A1 uA2,≥ γ3) = ρ(A1,≥ γ3) u ρ(A2,≥ γ3).

Observe that for idempotent degrees (α ∈ J) the case is the same as in finite
Zadeh and Gödel fuzzy logics [3,5], whereas for non-idempotent degrees the case
is similar as in finite  Lukasiewicz fuzzy logic [6].

4.1 Adding New Elements

Let A be the set of atomic fuzzy concepts and R the set of atomic fuzzy roles in
a fuzzy KB K = 〈A, T ,R〉, respectively. For each α∈N+, for each A ∈ A, a new
atomic concepts A≥α is introduced. A≥α represents the crisp set of individuals
which are instance of A with degree higher or equal than α i.e the α-cut of A.
Similarly, for each R ∈ R, a new atomic role R≥α is created.



Remark 4. The atomic elements A≥γ0 and R≥γ0 are not considered because they
are always equivalent to the> concept. Also, as opposite to previous works [3,5,6]
we are not introducing elements of the forms A>β and R>β (for each β ∈N \
{γp}), since now A>γi is equivalent to A≥γi+1 , and R>γi is equivalent to R≥γi+1 .

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ p − 1 and
for each A ∈ A, T (N ) is the smallest terminology containing these axioms:
A≥γi+1 v A≥γi . Similarly, for each RA ∈ R, R(N ) is the smallest terminology
containing these axioms: R≥γi+1 v R≥γi .

Remark 5. Again, note that the number of new axioms needed here is less than
the number needed in similar works [3,5,6], since we do not need to deal with
elements of the forms A>β and R>β .

4.2 Mapping Fuzzy Concepts, Roles and Axioms

Fuzzy concept and role expressions are reduced using mapping ρ, as shown in the
top part of Table 3. Given a fuzzy concept C, ρ(C,≥ α) is a crisp set containing
all the elements which belong to C with a degree greater or equal than α. The
other cases ρ(C, ./ γ) are similar. ρ is defined in a similar way for fuzzy roles.
Furthermore, axioms are reduced as in the bottom part of Table 3, where κ(τ)
maps a fuzzy axiom τ in finite fuzzy ALCH into a set of crisp axioms in ALCH.

The reduction of the conjunction considers every pair γx, γy ∈ (γik , γik+1 ]
such that α ∈ (γik , γik+1 ], and x + y = ik+1 + z, with α = γz. Note that the
reduction does not consider a closed internal of the form [γik , γik+1 ]. The reason is
that, if α is idempotent and we set γik+1 = α, the result is correct (γx = γy = α).
However, setting γik = α would yield an incorrect result. Similarly, the reduction
of the disjunction also considers a closed interval.

When dealing with R-implications and QL-implications, we consider optimal
pairs of elements, to get efficient representation that avoids superfluous elements.

Definition 1. Let ⇒ be an implication in N , and let γx, γy ∈ N+. (γx, γy) is
a (⇒≥α)-optimal pair iff (i) γx ⇒ γy ≥ α, (ii) there are no γ′x, γ

′
y ∈ N+ such

that γ′x ⇒ γ′y ≥ α, and such that either γ′x < γx or γ′y < γy.

Definition 2. Let⇒ be an implication in N , and let γx ∈ N+, γy ∈ N . (γx, γy)
is a (⇒≤β)-optimal pair iff (i) γx ⇒ γy ≤ β, (ii) there are no γ′x, γ

′
y ∈ N+ such

that γ′x ⇒ γ′y ≤ β, and such that either γ′x < γx or γ′y > γy.

Example 4. Given the R-implication in Example 2, the (⇒≥γ3)-optimal pairs are
(γ3, γ3), (γ2, γ2), and (γ1, γ1); and the (⇒≤γ3)-optimal pairs are (γ5, γ3), (γ3, γ2),
(γ2, γ1), and (γ1, γ0).

Note that R-implications are, in general, non smooth (see Example 2). Hence,
a pair of elements γ1, γy such that γx ⇒r γy = α might not exist, and thus we
have to consider an inequality of the form γx ⇒r γy ≥ α. In QL-implications,
due to the optimality condition, = and ≥ yield the same result.



Table 3. Mapping of concepts, roles, and axioms

ρ(>,≥ α) >
ρ(>,≤ β) ⊥
ρ(⊥,≥ α) ⊥
ρ(⊥,≤ β) >
ρ(A,≥ α) A≥α
ρ(A,≤ β) ¬A≥+β

ρ(¬C, ./ γ) ρ(C, ./− 	γ)

ρ(C uD,≥ α) tγx,γy{ρ(C,≥ γx) u ρ(D,≥ γy)} for every pair γx, γy such that

α, γx, γy ∈ (γik , γik+1 ], and x+ y = ik+1 + z, with γz = α

ρ(C uD,≤ β) ρ(¬C t ¬D,≥ 	β)

ρ(C tD,≥ α) ρ(C,≥ α) t ρ(D,≥ α)tγx,γy{ρ(C,≥ γx) u ρ(D,≥ γy)} for every pair γx, γy
such that α, γx, γy ∈ (γik , γik+1 ], and x+ y = ik + z, with γz = α

ρ(C tD,≤ β) ρ(¬C u ¬D,≥ 	β)

ρ(∃R.C,≥ α) tγx,γy{∃ρ(R,≥ γx).ρ(C,≥ γy)} for every pair γx, γy ∈ (γik , γik+1 ] such that

γ ∈ (γik , γik+1 ], and x+ y = ik+1 + z, with γz = α

ρ(∃R.C,≤ β) ρ(∀sR.(¬C),≥ 	β)

ρ(∀sR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − i = z − ik+1, with γz = α

ρ(∀sR.C,≤ β) ρ(∃R.(¬C),≥ 	β)

ρ(∀rR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)}
for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

ρ(∀rR.C,≤ β) tγx,γy{∃ρ(R,≥ γx).ρ(C,≤ γy)}
for every pair γx ∈ N+, γy ∈ N such that γx, γy are (⇒r ≤β)-optimal

ρ(∀qlR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)}
for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal

ρ(∀qlR.C,≤ β) tγx,γy{∃ρ(R,≥ γx).ρ(C,≤ γy)}
for every pair γx ∈ N+, γy ∈ N such that γx, γy are (⇒ql ≤β)-optimal

ρ(R,≥ α) R≥α
ρ(R,≤ β) ¬R≥+β

κ(〈a :C ./ γ〉) {a :ρ(C, ./ γ)}
κ(〈(a, b) :R ./ γ〉) {(a, b) :ρ(R, ./ γ)}
κ(〈C vs D ≥ α〉)

⋃
{ρ(C,≥ γx) v ρ(D,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − γi = z − γik+1 , with γz = α

κ(〈C vr D ≥ α〉)
⋃
{ρ(C,≥ γx) v ρ(D,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

κ(〈C vql D ≥ α〉)
⋃
{∀ρ(C,≥ γx) v ρ(D,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal

κ(〈R1 vs R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − γi = z − γik+1 , with γz = α

κ(〈R1 vr R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

κ(〈R1 vql R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal



κ(A) (resp. κ(T ), κ(R)) denotes the union of the reductions of every axiom in
A (resp. T , R). crisp(K) denotes the reduction of a fuzzy KB K. A fuzzy KB K =
〈A, T ,R〉 is reduced into a KB crisp(K) = 〈κ(A), T (N ) ∪ κ(T ), R(N ) ∪ κ(R)〉.

4.3 Properties of the Reduction

Correctness. The following theorem, showing the logic is decidable and that the
reductions preserves reasoning, can be shown.

Theorem 1. The satisfiability problem in finite fuzzy ALCH is decidable. Fur-
thermore, a finite fuzzy ALCH fuzzy KB K is satisfiable iff crisp(K) is.

Complexity. In general, the size of crisp(K) is O(|K| · |N |k), being k the maximal
depth of the concepts appearing in K. In the particular case of finite Zadeh fuzzy
logic, the size of crisp(K) is O(|K| · |N |) [3]. For other fuzzy operators the case is
more complex because we cannot infer the exact values of the degrees of truth, so
we need to build disjunctions or conjunctions over all possible degrees of truth.

Modularity. The reduction of an ontology can be reused when adding new axioms
if they do not introduce new atomic concepts and roles. In this case, it remains
to add the reduction of the new axioms. This allows to compute the reduction
of the ontology off-line and update crisp(K) incrementally. The assumption that
the basic vocabulary is fully expressed in the ontology is reasonable because
ontologies do not usually change once that their development has finished.

5 Conclusions and Future Work

This paper has set a general framework for fuzzy DLs with a finite chain of
degrees of truth N . N can be seen as a finite totally ordered set of linguistic
terms or labels. This is very useful in practice, since expert knowledge is usually
expressed using linguistic terms and avoiding their numerical interpretations.

Starting from a smooth finite t-norm on N , we define the syntax and seman-
tics of fuzzy ALCH. The negation function and the t-conorm are imposed by the
choice of the t-norm, but there are different options for the implication function.
For this reason, whenever this is possible (i.e., in universal restriction concepts
and in inclusion axioms), the language allows to use three different implications.
We have studies some of the logical properties of the logic. This will help the
ontology developers to use the implication that better suit their needs.

The decidability of the logic has been shown by presenting a reasoning pre-
serving reduction to the crisp case. Providing a crisp representation for a fuzzy
ontology allows reusing current crisp ontology languages and reasoners, among
other related resources. The complexity of the crisp representation is higher than
in finite Zadeh fuzzy DLs, because it is necessary to build disjunctions or con-
junctions over all possible degrees of truth. However, Zadeh fuzzy DLs have some
logical problems [3] which may not be acceptable in some applications, where
alternative operators such as those introduced in this paper could be used.



As future work we will study more expressive logics than ALCH, applying the
ideas in the previous work DLs [3,5,6], with the aim of providing the theoretical
basis of a fuzzy extension of OWL 2 under finite chain of degrees of truth.
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3. Bobillo, F., Delgado, M., Gómez-Romero, J.: Crisp representations and reason-
ing for fuzzy ontologies. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 17(4) (2009) 501–530

4. Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-
valued product logic. Proceedings of the 12th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2010) 203–213

5. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics
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