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Abstract. In this paper, we introduce the tractable pf -EL++ logic, a paracon-
sistent version of the fuzzy logic f -EL++. Within pf -EL++, it is possible to
tolerate contradictions under incomplete and vague knowledge. pf -EL++ ex-
tends the f -EL++ language with a paraconsistent negation in order to represent
contradictions. This paraconsistent negation is defined under Belnap’s bilattices.
It is important to observe that pf -EL++ is a conservative extension of f -EL++,
thus assuring that the polynomial-time reasoning algorithm used in f -EL++ can
also be used in pf -EL++.

1 Introduction

A difficult task in a knowledge base that aims to formalise a real world application is to
deal with incomplete, imprecise and contradictory information. Hence, it is unreason-
able to expect that a knowledge base which allows realistic reasoning based on partial
knowledge must always be kept logically consistent. In this sense, in the last century,
the paraconsistent logics were designed to handle inconsistencies without deriving any-
thing from a contradiction. Here, we are particularly interested in the paraconsistent
logic introduced by Belnap [3]. In addition, there are some logical approaches that at-
tempt to formalise reasoning under incomplete and imprecise knowledge as the fuzzy
logic introduced by Zadeh [10].

Although expressive enough to deal with incomplete, imprecise and contradictory
information, the satisfiability problem for paraconsistent and fuzzy logics is undecid-
able. Since real world applications demand efficient inference systems, a family of log-
ics, the Description Logics (DLs) [1], have been proposed. DLs are decidable fragments
of classical first-order logic, and they have been customarily used in the definition of
ontologies and applications for the Semantic Web.

In [7], a fuzzy logic f -EL++ with a polynomial-time subsumption algorithm was
specially defined to deal with imprecise and vague knowledge. Unfortunately, this logic
cannot express negative information. In fact, it was proved that the introduction of the
classical negation in DLs leads to undecidability [2].

In this paper, we introduce the tractable pf -EL++ logic, a paraconsistent version of
f -EL++ that is able to tolerate contradiction under incomplete and vague knowledge.
It extends the f -EL++ language with a paraconsistent negation in order to represent
contradictions.



2 Bilattices

In [3] Belnap introduced a logic intended to deal with inconsistent and incomplete in-
formation. This logic is capable of representing four truth values: t (true), f (false), >̈
(overdefined) and ⊥̈ (underdefined). The underdefined value represents the total lack
of knowledge, while the overdefined one represents the excess of knowledge (conflicts
between information). Belnap’s logic was generalized by Ginsberg [4], who introduced
the notion of bilattices, which are algebraic structures containing an arbitrary number
of truth values simultaneously arranged in two partial orders. In the sequel, we will
show the definition of bilattices and introduce the particular billatice employed in the
representation of fuzzy truth-values in our proposal:

Definition 1 (Complete Bilattice) Given two complete lattices1〈C,≤1〉 and 〈D,≤2〉,
the structureB(C,D)=〈C×D,≤k,≤t,¬〉 is a complete bilattice, in which: 〈c1, d1〉 ≤k

〈c2, d2〉 if c1 ≤1 c2 and d1 ≤2 d2, 〈c1, d1〉 ≤t 〈c2, d2〉 if c1 ≤1 c2 and d2 ≤2 d1.
Furthermore, ¬ : C ×D → D × C is a negation operation such that: (1) a ≤k b ⇒
¬a ≤k ¬b, (2) a ≤t b⇒ ¬b ≤t ¬a, (3) ¬¬a = a.
B2 = 〈[0, 1]× [0, 1],≤t,≤k,¬〉 is a complete bilattice where¬ 〈x1, x2〉 = 〈x2, x1〉.

In an element x = 〈x1, x2〉 in [0, 1] × [0, 1], x1 and x2 represent, respectively, the
membership and non-membership degrees of x in [0, 1]. This means that x2 can be any
value in [0, 1] and not necessarily 1−x1 as one would expect in the classical case. It is a
very important distinction because it will allow us to identify contradictory truth-values.
A truth-value x = 〈x1, x2〉 is contradictory whenever x1 + x2 > 1.

3 The pf -EL++ Logic

Here we propose a new Description Logic, pf -EL++, by extending f -EL++ [7] with
the negation operator ¬. Motivated by [6,5], we will employ a bilattice of truth-values
to represent the degree of inclusion and non-inclusion of an individual to a concept.
The differences between the syntax of pf -EL++ and f -EL++ concepts is that in our
proposal we introduce the negation in the alphabet andt and ∃ are replaced respectively
by ⊗k and ∃k. Now it is also possible to use negation to concepts and atomic roles:

Definition 2 (Concept Semantics) The semantics of pf -EL++ individuals and atomic
concepts/roles is given by I = (∆I , .I ), where the domain ∆I is a nonempty set of
elements and .I is a mapping function defined by: each individual a ∈ NI is mapped to
aI ∈ ∆I ; each atomic concept name A ∈ NC is mapped to AI : ∆I → [0, 1]× [0, 1];
each atomic role name R ∈ NR is mapped to RI : ∆I ×∆I → [0, 1]× [0, 1].

Each atomic concept/role C is mapped to a pair 〈P,N〉, where P,N ∈ [0, 1]. Intu-
itively, P denotes the degree in which an element belongs toC, whileN denotes the de-
gree in which it does not belong toC. Note that P+N is not necessarily equal to 1 as in
the classical case. We define the functions proj+ 〈P,N〉 = P and proj− 〈P,N〉 = N .
Concepts can be interpreted inductively as follows, where for all x ∈ ∆I :

1 Let L be a nonempty set and ≤ a partial order on L. The pair 〈L,≤〉 is a complete lattice if
every subset of L has both a least upper bound and a greatest lower bound according to ≤.



Syntax Semantics
> >I(x) = 〈1, 0〉
⊥ ⊥I(x) = 〈0, 1〉
¬C (¬C)I(x) = 〈N,P 〉, if CI(x) = 〈P,N〉

{a} {a}I(x) =
{
〈1, 0〉 if x = aI

〈0, 1〉 otherwise
C ⊗k D (C ⊗k D)I(x) = 〈min(P1, P2),min(N1, N2)〉 ,

if CI(x) = 〈P1, N1〉 and DI(x) = 〈P2, N2〉
∃kR.C (∃kR.C)I(x) = 〈 sup

y∈∆I

(min(proj+(RI(x, y)), proj+(CI(y)))),

sup
y∈∆I

(min(proj+(RI(x, y)), proj−(CI(y)))) 〉

The controversial part refers to ⊗k and ∃k, which were designed in a way that
¬(C ⊗k D)I(x) = (¬C ⊗k ¬D)I(x) and ¬(∃kR.C)I(x) = (∃kR.¬C)I(x). Roughly
speaking we can understand them as the counterpart in ≤k of conjunction (u) and role
restriction (∃) respectively. In fact, we can simulate u and ∃ presented in f -EL++

respectively as (C uD)I(x) ≡ (C ⊗k D ⊗k >)I(x) and (∃R.C)I(x) ≡ (∃kR.C ⊗k

>)I(x). The problem is that we cannot introduce them in pf -EL++ language because
¬(C uD)I(x) = (¬C t ¬D)I(x) and ¬(∃R.C)I(x) = (∀R.¬C)I(x). Then, since our
aim is to present a tractable paraconsistent fuzzy extension for EL++, the inclusions
of disjunction (t) and universal restriction (∀) in EL++ are not allowed. Otherwise, as
proved in [2], the algorithm of decidibility will grow exponentially!

We define the notions of Terminological Box (TBox), Assertional Box (ABox) and
ontology in pf -EL++. For now on, consider T1, . . . , Tk, T refer to atomic roles or the
negation of them. The semantics of negation of roles is similar to negation of concepts.

Definition 3 (TBox/ABox) A paraconsistent fuzzy TBox in pf -EL++ is a finite set of
internal fuzzy inclusion axioms (C @n D), strong fuzzy inclusion axioms (C →n D),
internal role inclusion axioms (T1 ◦ . . . ◦ Tk @ T ) and strong role inclusion axioms
(T1 ◦ . . . ◦ Tk → T ). A paraconsistent fuzzy ABox in pf -EL++ consists of a finite set
of assertion axioms of the form C(a) ≥ n and T (a, b) ≥ n, where n ∈ [0, 1].

Definition 4 (Ontology) An ontology or knowledge base in pf -EL++ is a set com-
posed by a paraconsistent fuzzy TBox and a paraconsistent fuzzy ABox.

The semantics of both paraconsistent fuzzy general concept inclusions, role inclu-
sions, concept assertion and role assertion is given as follows, where for all x, y ∈ ∆I :

Axiom Name Syntax Semantics
Internal f-GCI C1 @n C2 min(proj+(CI1 (x)), n) ≤ proj+(CI2 (x))
Strong f-GCI C1 →n C2 min(proj+(CI1 (x)), n) ≤ proj+(CI2 (x)),

min(proj−(CI2 (x)), n) ≤ proj−(CI1 (x))

Internal RIA T1 ◦ . . . ◦ Tk @ T proj+([T I1 ◦t . . . ◦t T Ik ](x, y)) ≤ proj+(T I(x, y))
Strong RIA T1 ◦ . . . ◦ Tk → T proj+([T I1 ◦t . . . ◦t T Ik ](x, y)) ≤ proj+(T I(x, y)),

proj−(T I(x, y)) ≤ proj−([T I1 ◦t . . . ◦t T Ik ](x, y))
Concept assertion C(a) ≥ n proj+(CI(aI)) ≥ n

Role assertion T (a, b) ≥ n proj+(T I(aI , bI)) ≥ n

Finally, we show the notions of satisfiability and logical consequence in pf -EL++:



Definition 5 (Satisfiability) The satisfiability of an axiom α by a fuzzy interpretation
I , denoted I |= α, is defined as I |= C1 vn C2 iff ∀x ∈ ∆I ,min(proj+(CI

1 (x)), n) ≤
proj+(CI

2 (x)). The notion is similarly applied to the other axioms shown in the table
above. I is a model of an ontology O iff I satisfies each axiom of O.

Definition 6 (Logical Consequence) An axiom α is a logical consequence of an on-
tology O, denoted by O |= α, iff every model of O satisfies α.

Paraconsistency comes to deal with the principle that α,¬α 6` ⊥, where α is an
axiom. Note that in pf -EL++, ⊥ is not logical consequence of α and ¬α. For example,
consider the axioms (C(a) ≥ 0), (¬C(a) ≥ 0) and (⊥(a) ≥ 1). We have that (C(a) ≥
0), (¬C(a) ≥ 0) 6` (⊥(a) ≥ 1), because there is an interpretation I (say CI(aI) =
〈0, 0〉) such that (C(a) ≥ 0)I and (¬C(a) ≥ 0)I are true and (⊥(a) ≥ 1)I is false.

4 Conclusions and Future Works

In this paper, we introduced pf -EL++, a paraconsistent extension of the fuzzy descrip-
tion logic f -EL++, that deals with negation on concepts and roles. Inspired in [6], we
can show how to translate pf -EL++ into f -EL++, preserving logical consequence, and
under linear time and space in the size of the ontology. Since there is an algorithm for
deciding fuzzy concept subsumptions operating in polynomial time [8], we know that
paraconsistency can be simulated by f -EL++ without the loss of tractability.

Regarding future works, we plan to investigate and extend another approach to fuzzy
EL, presented by Vojtás [9], where conjunction is interpreted as a fuzzy aggregation
function rather than fuzzy intersection. Another line of research is to extend tractable
DLs to deal with probabilistic and possibilistic knowledge.
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