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Foreword

This volume contains the papers presented at the 6th International Work-
shop on Uncertainty Reasoning for the Semantic Web (URSW 2010), held as a
part of the 9th International Semantic Web Conference (ISWC 2010) at Shang-
hai, China, November 7, 2010. It contains 8 technical papers and 4 position
papers, which were selected in a rigorous reviewing process, where each paper
was reviewed by at least four program committee members.

The International Semantic Web Conference is a major international forum
for presenting visionary research on all aspects of the Semantic Web. The Inter-
national Workshop on Uncertainty Reasoning for the Semantic Web is an excit-
ing opportunity for collaboration and cross-fertilization between the uncertainty
reasoning community and the Semantic Web community. Effective methods for
reasoning under uncertainty are vital for realizing many aspects of the Semantic
Web vision, but the ability of current-generation web technology to handle un-
certainty is extremely limited. Recently, there has been a groundswell of demand
for uncertainty reasoning technology among Semantic Web researchers and de-
velopers. This surge of interest creates a unique opening to bring together two
communities with a clear commonality of interest but little history of interac-
tion. By capitalizing on this opportunity, URSW could spark dramatic progress
toward realizing the Semantic Web vision.

Audience: The intended audience for this workshop includes the following:

– researchers in uncertainty reasoning technologies with interest in Semantic
Web and Web-related technologies;

– Semantic Web developers and researchers;
– people in the knowledge representation community with interest in the Se-

mantic Web;
– ontology researchers and ontological engineers;
– Web services researchers and developers with interest in the Semantic Web;

and
– developers of tools designed to support Semantic Web implementation, e.g.,

Jena, Protégé, and Protégé-OWL developers.

Topics: We intended to have an open discussion on any topic relevant to the
general subject of uncertainty in the Semantic Web (including fuzzy theory,
probability theory, and other approaches). Therefore, the following list should
be just an initial guide:

– syntax and semantics for extensions to Semantic Web languages to enable
representation of uncertainty;

– logical formalisms to support uncertainty in Semantic Web languages;



– probability theory as a means of assessing the likelihood that terms in dif-
ferent ontologies refer to the same or similar concepts;

– architectures for applying plausible reasoning to the problem of ontology
mapping;

– using fuzzy approaches to deal with imprecise concepts within ontologies;
– the concept of a probabilistic ontology and its relevance to the Semantic

Web;
– best practices for representing uncertain, incomplete, ambiguous, or contro-

versial information in the Semantic Web;
– the role of uncertainty as it relates to Web services;
– interface protocols with support for uncertainty as a means to improve in-

teroperability among Web services;
– uncertainty reasoning techniques applied to trust issues in the Semantic Web;
– existing implementations of uncertainty reasoning tools in the context of the

Semantic Web;
– issues and techniques for integrating tools for representing and reasoning

with uncertainty; and
– the future of uncertainty reasoning for the Semantic Web.

We wish to thank all authors who submitted papers and all workshop par-
ticipants for fruitful discussions. We would like to thank the program committee
members and external referees for their timely expertise in carefully reviewing
the submissions.
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Abstract. Description Logics (DLs) are a family of knowledge representation 
languages that have gained considerable attention the last 20 years. It is well-
known that the interpretation domain of classical DLs is a classical set. 
However, in Science and in the ordinary life the situation is not at all like this. 
In order to handle these types of knowledge in DLs, in this paper we present a 
DL framework based on multiset theory. Concretely, we present the DL over 
multisets ALCmsets which is a semantic extension of the classical DL ALC. The 
syntax and semantics of ALCmsets are presented. Moreover, we investigate the 
logical properties of ALCmsets and provide a sound and terminating reasoning 
algorithm for satisfiability problem of ALCmsets. 

Keywords: Classical Description Logics; Extended Description Logics; 
Multisets; Satisfiability 

1   Introduction 

In the last 20 years a substantial amount of work has been carried out in the 
context of Description Logics (DLs for short) [1][20]. DLs are a family of logic-based 
knowledge representation formalisms that are tailored towards representing the 
terminological knowledge of an application domain in a structured and formally well-
understood way. DLs have been applied to numerous problems in computer science 
such as information integration, databases, software engineering and soft sets. Recent 
interest in DLs has been spurred by their application in the Semantic Web [2]: the DL 
SHOIN(D) provides the logical underpinning for the Web Ontology Language (OWL), 
and the DL SROIQ(D) is used in OWL 2 [6][11][15][16]. A main point is that DLs are 
considered as to be attractive logics in knowledge based applications as they are a 
good compromise between expressive power and computational complexity. 

From the semantics of DLs [1] we know that the interpretation domain of 
classical DLs is a classical set (Zermelo-Fraenkel set) [12]. That is to say, the 
interpretation of classical DLs is based on classical set theory from a semantics point 
of view. It is well-known that classical set theory states that a given element can 
appear only once in a set, it assumes that all mathematical objects occur without 
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repetition. However, in Science and in the ordinary life the situation is not at all like 
this. In the physical world it is observed that there is an enormous repetition [7]. 

As a matter of fact, in order to process the collections with repetition, multi-set 
theory (MST for short) has been presented and several operations as the addition, the 
union and the intersection of multisets have been defined and their properties 
investigated in several papers [3][27][28]. Intuitively, multisets (sometimes also 
called bags[13][28]) are set-like structures where an element can appear more than 
once [3]. Thus, a multiset differs from a set in that each element has a multiplicity, 
which is a natural number indicating (lossely speaking) how many times it is a 
member of the multiset [7]. We must note that the word multiset was coined by N. G. 
de Bruijin [18], but the first person that actually used multisets was Richard Dedekind 
in his well-known paper “Was sind und was sollen die Zahlen?” (“The nature and 
meaning of numbers”) [4]. This paper was published in 1888 [27]. More concretely, a 
multiset is a collection of objects in which repetition of elements is significant [9]. We 
confront a number of situations in life when we have to deal with collections of 
elements in which duplicates are significant. An example may be cited to prove this 
point. While handling a collection of employees’ ages or details of salary in a 
company, we need to handle entries bearing repetitions and consequently our interest 
may be diverted to the distribution of elements. In such situations the classical 
definition of set proves inadequate for the situation presented [9]. Thus, from a 
practical point of view multisets are very useful structures as they arise in many areas 
of mathematics and computer science [8][9][19][22][23][27]. A complete survey of 
the development of multi-set theory can be found in [3]. 

Naturally, a problem is raised: how we can interpret the concepts and the roles 
of DLs using multi-set theory? Furthermore, what are the benefits of doing so? After 
careful thought, we find that it is feasible to interpret the concepts and the roles of 
DLs using multi-set theory. Moreover, it is a more accurate interpretation for the 
concepts and the roles of DLs. For example, when we interpret the concept 
commended-students (students who are commended), we can say that Zhangsan, Lisi 
and Wangwu are the instances of the concept commended-students. More formally, 
we can say commended-studentsI={Zhangsan, Lisi, Wangwu} in classical DLs. 
However, if we consider more accurate situation, e.g., Zhangsan is commended three 
times, Lisi is commended twice, and Wangwu is commended once, obviously, the 
classical interpretation of DLs cannot process this situation. Here we can interpret the 
concept commended-students using multi-set theory. Formally, commended-
studentsMI={Zhangsan, Zhangsan, Zhangsan, Lisi, Lisi, Wangwu}, where {Zhangsan, 
Zhangsan, Zhangsan, Lisi, Lisi, Wangwu} is a multiset. 

In this paper we extend DLs allow to express that interpretation of a concept 
(resp., a role) is not a subset of classical set (traditional interpretation domain DI) 
(resp., a subset of DI´DI) like in classical DLs, but a subset of multisets (resp., a subset 
of Cartesian product of multisets). That is, we will extend the interpretation domain of 
DLs to multisets. More concretely, we will present the DL ALCmsets, which is a 
semantic extension of the DL ALC [10][14][17][24][26] based on multiset theoretic 
operations presented in [5][9][13]. Moreover, we will provide a sound and incomplete 
reasoning algorithm for the satisfiability reasoning problem of the DL ALCmsets. It is 
worth noting that classical set is a special case of multisets [9], hence, the DL ALC [10] 
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[14][17][24][26] is a special case of the DL ALCmsets presented in this paper from a 
semantics point of view. 

2   Multisets 

The current section provides some background on multisets. 
A naive concept of multiset was formalized by Blizard [5]. It has the following 

properties: (i) a multiset is a collection of elements in which certain elements may 
occur more than once; (ii) occurrences of a particular element in a multiset are 
indistinguishable; (iii) each occurrence of an element in a multiset contributes to the 
cardinality of the multiset; (iv) the number of occurrences of a particular element in a 
multiset is a (finite) positive integer; (v) the number of distinguishable (distinct) 
elements in a multiset need not be finite; and (vi) a multiset is completely determined 
if we know the elements that belong to it and the number of times each element 
belongs to it [9]. In the following, we introduce the basic definitions and notations of 
multisets [5][9][13]. 

A collection of elements containing duplicates is called a multiset. Formally, if 
X is a set of elements, a multiset M drawn from the set X is represented by a function 
count M or CM: X®N where N represents the set of non-negative integers. For each 
xÎX, CM(x) is the characteristic value of x in M and indicates the number of 
occurrences of the element x in M. A multiset M is a set if "xÎX, CM(x)=0 or 1. 

The word “multiset” often shortened to “mset” abbreviates the term “multiple 
membership set”. 

Let M1 and M2 be two msets drawn from a set X. M1 is a sub mset of M2 (M1ÍM2) 
if "xÎX, CM1(x)£CM2(x). M1 is a proper sub mset of M2 (M1ÌM2) if CM1(x)£CM2(x) 
"xÎX and there exists at least one "xÎX such that CM1(x)<CM2(x). Two msets M1 and 
M2 are equal (M1=M2) if M1ÍM2 and M2ÍM1. An mset M is empty if "xÎX, CM(x)=0. 
The cardinality of an mset M drawn from a set X is Card M=SxÎXCM(x). It is also 
denoted by |M|. 

The insertion of an element x into an mset M results in a new mset M¢ denoted 
by M¢=MÅx such that CM¢(x)=CM(x)+1 and CM¢(y)=CM(y) "y¹x. Addition of two msets 
M1 and M2 drawn from a set X results in a new mset M=M1ÅM2 such that "xÎX, 
CM(x)=CM1(x)+CM2(x). The removal of an element x from an mset M results in a new 
mset M¢ denoted by M¢=MQx such that CM¢(x)= max{CM(x)-1, 0} and CM¢(y)=CM(y) 
"y¹x. Subtraction of two msets M1 and M2 drawn from a set X results in a new mset 
M=M1QM2 such that "xÎX, CM(x)=max{CM1(x)-CM2(x), 0}. The union of two msets 
M1 and M2 drawn from a set X is an mset M denoted by M=M1ÈM2 such that "xÎX, 
CM(x)=max{CM1(x), CM2(x)}. The intersection of two msets M1 and M2 drawn from a 
set X is an mset M denoted by M=M1ÇM2 such that "xÎX, CM(x)=min{CM1(x), 
CM2(x)}. 

Let M be an mset from X with x appearing n times in M. It is denoted by xÎnM. 
M={k1/x1, k2/x2, …, kn/xn} where M is an mset with x1 appearing k1 times, x2 appearing 
k2 times and so on. [M]x denotes that the element x belongs to the mset M and |[M]x| 
denotes the cardinality of an element x in M. The entry of the form (m/x, n/y)/k 
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denotes that x is repeated m times, y is repeated n times and the pair (x, y) is repeated 
k times. C1(x, y) denotes the count of the first co-ordinate in the ordered pair (x, y) and 
C2(x, y) denotes the count of the second co-ordinate in the ordered pair (x, y). 

The mset space Xn is the set of all msets whose elements are in X such that no 
element in the mset occurs more than n times. The set X¥ is the set of all msets over a 
domain X such that there is no limit to the number of occurrences of an element in an 
mset. If X={x1, x2, …, xk} then Xn= {{n1/x1, n2/x2, …, nn/xn} | for i=1, 2, …, k; niÎ{0, 1, 
2, …, n}}. 

Let X be a support set and Xn be the mset space defined over X. Then for any 
mset MÎXn, the complement Mc of M in Xn is an element of Xn such that "xÎX, 
CMc(x)=n-CM(x). 

Let M1 and M2 be two msets drawn from a set X, then the Cartesian product of 
M1 and M2 is defined as M1´M2={(m/x, n/y)/mn | xÎmM1, yÎnM2}. The Cartesian 
product of three or more nonempty msets can be defined by generalizing the 
definition of the Cartesian product of two msets. Thus the Cartesian product 
M1´M2´…´Mn of the nonempty msets M1, M2, …, Mn is the mset of all ordered n-
tuples (m1, m2, …, mn) where miÎ

riMi, i=1, 2, …, n and (m1, m2, …, mn)Î
p 

M1´M2´…´Mn with p=Õri, where ri=CMi(mi), and i=1, 2, …, n. 
A sub mset R of M´M is said to be an mset relation on M if every member (m/x, 

n/y) of R has a count C1(x, y).C2(x, y). We denote m/x related to n/y by m/xRn/y. 
The domain and range of the mset relation R on M is defined as follows: Dom 

R={xÎrM | $yÎsM such that r/xRs/y} where CDomR(x)=sup{C1(x, y) | xÎrM}, Ran 
R={yÎsM | $xÎrM such that r/xRs/y} where CRanR(y)=sup{C2(x, y) | yÎsM}. 

3   The ALCmsets DL 

In the current section we will present the description logic over multisets ALCmsets, 
which is a semantic extension of the ALC [1][24]. Concretely, we first define its 
syntax and semantics. Then, we discuss its logical properties. 

3.1   Syntax and Semantics 

As usual, we consider an alphabet of distinct concept names (C), role names (R) 
and individual names (I). The abstract syntax of ALCmsets-concepts and ALCmsets-roles is 
the same as that of ALC [1][24]; however, their semantics is based on interpretations 
on multisets (msets interpretations for short) (see below). Similarly, ALCmsets keeps the 
same syntax of terminological axioms (concept inclusions and concept equations) as 
that of ALC. Interestingly, ALCmsets extends ALC assertions (concept assertions and role 
assertions) into mset assertions, where individuals containing duplicates can appear. 

In the following, we give the semantics of ALCmsets-concepts and ALCmsets-roles 
formally. 

An mset interpretation is a pair MI = (ΔMI, ·MI), where ΔMI is a non-empty mset 
(the interpretation domain), and ·MI is an interpretation function that assigns each 
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atomic concept (concept name) AÎC to a set AMIÍΔMI, each atomic role (role name) 
RÎR (note that in ALCmsets roles are always atomic) to a binary relation RMIÍΔMI´ΔMI, 
and each individual name m/aÎI to an element aMIÎmΔMI. This interpretation function 
is extended to ALCmsets concept descriptions as follows: 

l ⊤MI=ΔMI; 
l ⊥MI=f; 
l (ØC)MI=ΔMIQCMI; 
l (C⊓D)MI=CMIÇDMI; 
l (C⊔D)MI=CMIÈDMI; 
l ($R.C)MI={aÎmΔMI| $bÎnΔMI, (m/a, n/b)ÎmnRMI Ù bÎnCMI}; 
l ("R.C)MI={aÎmΔMI| "bÎnΔMI, (m/a, n/b)ÎmnRMI ® bÎnCMI}. 

Note that in this paper we restrict the interpretation domain to be finite. This is 
not a severe limitation as it is hard to imagine an application involving infinite 
interpretation domains. 

An ALCmsets knowledge base KB is also composed of a TBox and an ABox. A 
TBox T is a finite, possibly empty, set of terminological axioms that could be a 
combination of concept inclusions of the form áC⊑Dñ and concept equations of the 
form áCºDñ, where C and D are concept descriptions. An mset interpretation MI 
satisfies áC⊑Dñ if CMIÍDMI, and it satisfies áCºDñ if CMI=DMI (i.e., CMIÍDMI and 
DMIÍCMI). An mset interpretation MI satisfies a TBox T iff MI satisfies every axiom 
in T; in this case, we say that MI is a model of T. 

An ABox A includes of a set of mset assertions that could be a combination of 
concept assertions of the form ám/a:Cñ and role assertions of the form á(m/a, n/b):Rñ, 
where a and b are individuals, C is a concept, and R is a role. An mset interpretation 
MI satisfies ám/a:Cñ if aMIÎmCMI, and it satisfies á(m/a, n/b):Rñ if (m/aMI, n/bMI)ÎmnRMI. 
An mset interpretation MI satisfies an ABox A iff MI satisfies every mset assertion in 
A w.r.t. a TBox T; in this case, we say that MI is a model of A w.r.t. T. 

An mset interpretation MI satisfies (or is a model of) a knowledge base KB=áT, 
Añ (denoted MI⊨KB), iff it satisfies both components of KB; in this case, we say that 
MI is a model of KB. The knowledge base KB is consistent if there exists an mset 
interpretation MI that satisfies KB. We say KB is inconsistent otherwise. 

Description logics over multisets should provide their users with reasoning 
capabilities that allow them to derive implicit knowledge from the one explicitly 
represented. In the following we will define the most important reasoning problems of 
the ALCmsets DL. 

Let T be a TBox, A an ABox, C, D concept descriptions, and a an individual 
name. The definitions of the main reasoning problems of the ALCmsets DL are as 
follows: 

l C is subsumed by D w.r.t. T (áC⊑TDñ) iff CMIÍDMI for all models MI of T; 
l C is equivalent to D w.r.t. T (áCºTDñ) iff CMI=DMI for all models MI of T; 
l C is satisfiable w.r.t. T iff CMI¹f for some model MI of T; 
l A is consistent w.r.t. T iff it has a model that is also a model of T; 
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l m/a is an instance of C w.r.t. A and T (A⊨Tám/a:Cñ) iff aMIÎmCMI for all 
models MI of T and A. 

One might think that, in order to realize the reasoning component of an ALCmsets 
system, one need to design and implement five algorithms, each solving one of the 
above reasoning problems. Fortunately, this is not the case since there exist some 
polynomial time reductions (see Section 3.2). 

3.2   Logical Properties 

It can be easily shown that ALCmsets is a sound extension of ALC, in the sense that 
the mset interpretations coincide with the traditional interpretations if we restrict the 
interpretation domain ΔMI to a classical set. However, since ALCmsets is based on 
multiset theory, some properties which are different from ALC are obtained. Of course, 
some properties are the same as that of ALC. In the following, we will discuss these 
properties. 

The first ones are straightforward: áØ⊤º⊥ñ, áØ⊥º⊤ñ, áC⊓⊤ºCñ, áC⊔⊥ºCñ, 
áC⊓⊥º⊥ñ, áC⊔⊤º⊤ñ and á$R.⊥º⊥ñ, where C is a concept, R is a role. 

The following properties show that some interesting equivalences hold in 
ALCmsets. 

Proposition 1. Let C, C1, C2, C3 and D be five concepts. Then 

(1) áØØCºCñ, áC⊓CºCñ, áC⊔CºCñ; 
(2) áØ(C⊓D)ºØC⊔ØDñ, áØ(C⊔D)ºØC⊓ØDñ; 
(3) áC1⊔(C2⊓C3)º(C1⊔C2)⊓(C1⊔C3)ñ, áC1⊓(C2⊔C3)º(C1⊓C2)⊔(C1⊓C3)ñ. 

Note 1. Please note that the following properties are satisfied in ALC, however, 
these properties are not satisfied in ALCmsets: 

á(C⊓ØC)º⊥ñ, á(C⊔ØC)º⊤ñ, á"R.⊤º⊤ñ, áØ("R.C)º$R.ØCñ, áØ($R.C)º 
"R.ØCñ, á($R.C)⊔ ($R.D)º$R.(C⊔D)ñ, and á("R.C)⊓("R.D)º"R.(C⊓D)ñ. 

There are two interesting remarks here. Firstly, in ALC, we can assume concepts 
to be in negation normal form (NNF), i.e., negation signs occur immediately in front 
of concept names only. However, in ALCmsets, we cannot do this translation due to 
áØ("R.C)≢$R.ØCñ and áØ($R.C) ≢"R.ØCñ. Secondly, in ALC, an ABox A contains 
a clash iff {A(a), ØA(a)}ÍA for some individual name a and some concept name A. 
However, in ALCmsets, we cannot use this definition due to á(C⊓ØC)≢⊥ñ and 
á(C⊔ØC)≢⊤ñ. For example, let ΔMI={6/a, 8/b} and {á3/a:Cñ, á4/b:Cñ}ÍA. Since 
á3/a:Cñ and á4/b:Cñ, then we have á3/a:ØCñ, á4/b:ØCñÎA. That is, {á3/a:Cñ, á3/a:ØCñ, 
á4/b:Cñ, á4/b:ØCñ}ÍA. 

The properties of the polynomial time reductions for reasoning problems are as 
follows. 

Proposition 2. Let T be a TBox, A an ABox, C, D concept descriptions, and a an 
individual name. Then 
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(1) áC⊑TDñ iff áC⊓DºTCñ; 
(2) áCºTDñ iff áC⊑TDñ and áD⊑TCñ; 
(3) C is satisfiable w.r.t. T iff not áC⊑T⊥ñ; 
(4) C is satisfiable w.r.t. T iff there exist m>0 and individual a such that 

{ám/a:Cñ} is consistent w.r.t. T; 
(5) A is consistent w.r.t. T iff A⊭Tám/a:⊥ñ for any m>0 and individual a. 

Note 2. It needs to be noted that the polynomial time reductions for instance 
problem to (in)consistency (i.e., A⊨Tám/a:Cñ iff AÈ{ám/a:ØCñ} is inconsistent w.r.t. T) 
and subsumption problem to (un)satisfiability (i.e., áC⊑TDñ iff C⊓ØD is unsatisfiable 
w.r.t. T), are satisfied in ALC, however, these reductions are not satisfied in ALCmsets. 

Lastly, we have to point out that in the rest of this paper we only consider 
unfoldable TBoxes. More concretely, a concept definition is of the form áAºCñ where 
A is a concept name and C is a concept description. Given a set T of concept 
definitions, we say that the concept name A directly uses the concept name B if T 
contains a concept definition áAºCñ such that B occurs in C. Let uses be the transitive 
closure of the relation “directly uses”. We say that T is cyclic if there is a concept 
name A that uses itself, and acyclic otherwise. A TBox T is a finite, possibly empty, 
set of terminological axioms of the form áA⊑Cñ, called inclusion introductions, and of 
the form áAºCñ, called equivalence introductions. A TBox is unfoldable if it contains 
no cycles and contains only unique introductions, i.e., terminological axioms with 
only concept names appearing on the left hand side and, for each concept name A, 
there is at most one axiom in T of which A appears on the left side. 

In classical DLs [1], a knowledge base with an unfoldable TBox can be 
transformed into an equivalent one with an empty TBox by a transformation called 
unfolding or expansion [21][25]: Concept inclusion introductions áA⊑Cñ are replaced 
by concept equivalence introductions áAºA¢⊓Cñ, where A¢ is a new concept name, 
which stands for the qualities that distinguish the elements of A from the other 
elements of C. Subsequently, if C is a complex concept expression, which is defined 
in terms of concept names, defined in the TBox, we replace their definitions in C. It 
has been proved that the initial TBox with the expanded one are equivalent. 

In DLs over msets such as ALCmsets presented in this paper, we also can prove 
that a knowledge base with an unfoldable TBox can be transformed into an equivalent 
one with an empty TBox. 

Firstly, we can transform an ALCmsets-TBox T into a regular ALCmsets-TBox T¢, 
containing equivalence introductions only, such that T¢ is equivalent to T in a sense 
that will be specified below. We obtain T¢ from T by choosing for every concept 
inclusion introduction áA⊑Cñ in T a new concept name A¢ and by replacing the 
inclusion introduction áA⊑Cñ with the equivalence introduction áAºA¢⊓Cñ. The TBox 
T¢ is the normalization of T. 

Now we show that T and T¢ are equivalent. 

Proposition 3. Let T be a TBox and T¢ its normalization. Then 
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(1) Every model of T¢ is a model of T. 
(2) For every model MI of T there is a model MI¢ of T¢ that has the same domain 

as MI and agrees with MI on the concept names and roles in T. 

Thus, in theory, inclusion introductions do not add to the expressivity of TBoxes. 
However, in practice, they are a convenient means to introduce concepts into a TBox 
that cannot be defined completely. In fact, this case is the same as classical DLs [1]. 

Now we show that, if T is an unfoldable TBox, we can always reduce reasoning 
problems w.r.t. T to problems w.r.t. the empty TBox. Instead of saying “w.r.t. f” one 
usually says “without a TBox”, and omits the index T for subsumption, equivalence, 
and instance, i.e., writes º, ⊑, ⊨ instead of ºT, ⊑T, and ⊨T. As we have seen in 
Proposition 3, T is equivalent to its expansion T¢. Recall that in the expansion every 
equivalence introduction áAºDñ such that D contains only concept names, but no 
concept descriptions. Now, for each concept description C we define the expansion of 
C w.r.t. T as the concept description C² that is obtained from C by replacing each 
occurrence of a concept name A in C by the concept description D, where áAºDñ is 
the equivalence introduction of A in T¢, the expansion of T. 

Proposition 4. Let T be an unfoldable TBox, C, D concept descriptions, C² 
expansion of C, and D² expansion of D. Then 

(1) áCºTC²ñ; 
(2) C is satisfiable w.r.t. T iff C² is satisfiable; 
(3) áC⊑TDñ iff áC²⊑D²ñ; 
(4) áCºTDñ iff áC²ºD²ñ. 

4   Reasoning in ALCmsets 

In this section, we will provide a detailed presentation of the reasoning 
algorithm for the ALCmsets-satisfiability problem and the properties for the termination 
and soundness of the procedure. There is one point we have to point out here. Since 
we restrict the maximal number of occurrences of an element (i.e., an individual) in a 
multiset (i.e., subset of interpretation domain), it is obvious to know that the 
satisfiability reasoning algorithm (see below) is incomplete. 

In the following, we will present a tableau algorithm for testing satisfiability of 
an ALCmsets-concept. Before we can describe the tableau-based satisfiability algorithm 
for ALCmsets more formally, we need to introduce some basic notions firstly. 

A constraint (denoted by a) is an expression of the form ám/a:Cñ, or á(m/a, 
n/b):Rñ, where a and b are individuals, C is a concept, and R is a role. Our calculus, 
determining whether a finite set S of constraints or not, is based on a set of constraint 
propagation rules transforming a set S of constraints into “simpler” satisfiability 
preserving sets Si until either all Si contain a clash (indicating that from all the Si no 
model of S can be build) or some Si is completed and clash-free, that is, no rule can 
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further be applied to Si and Si contains no clash (indicating that from Si a model of S 
can be build). A set of constraints S contains a clash iff {ám/a:Cñ, á0/a:Cñ}ÍS for 
some m>0, individual a, and concept description C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Transformation rules of the satisfiability algorithm 

The tableau-based satisfiability algorithm for ALCmsets works as follows. Let C by 
an ALCmsets-concept. In order to test satisfiability of C, the algorithm starts with a finite 
set of constraints {S1, S2, …, Snmax}, and applies satisfiability preserving 
transformation rules (see Figure 1) (in arbitrary order) to the set of constraints Si 
(1£i£nmax) until no more rules apply, where S1={á1/a:Cñ}, S2={á2/a:Cñ}, …, Snmax= 
{nmax/a:C}. If the “complete” constraint obtained this way does not contain an 

The ®Ø-rule 
Condition: Si contains ám/a:ØCñ, but it does not contain á1/a:Cñ, á2/a:Cñ, …, or 

ánmax-m/a:Cñ. 
Action: Si,1=SiÈ{á1/a:Cñ}, Si,2=SiÈ{á2/a:Cñ}, …, Si,nmax-m=SiÈ{ánmax-m/a:Cñ}. 

The ®⊓-rule 

Condition: Si contains ám/a:C1⊓C2ñ, but neither {ám/a:C1ñ, áj/a:C2ñ} nor {ám/a:C2ñ, 

áj/a:C1ñ}, where m£j£nmax. 
Action: Si,1¢=SiÈ{ám/a:C1ñ, ám/a:C2ñ}, Si,2¢=SiÈ{ám/a:C1ñ, ám+1/a:C2ñ}, ..., Si,nmax+1¢ 

=SiÈ{ám/a:C1ñ, ánmax/a:C2ñ}, Si,1²=SiÈ{ám/a:C2ñ, ám/a:C1ñ}, Si,2²=SiÈ 
{ám/a:C2ñ, ám+1/a: C1ñ}, ..., Si,nmax+1²=SiÈ{ám/a:C2ñ, ánmax/a:C1ñ}. 

The ®⊔-rule 

Condition: Si contains ám/a:C1⊔C2ñ, but neither {ám/a:C1ñ, áj/a:C2ñ} nor {ám/a:C2ñ, 

áj/a:C1ñ}, where 1£j£m. 
Action: Si,1¢=SiÈ{ám/a:C1ñ, ám/a:C2ñ}, Si,2¢=SiÈ{ám/a:C1ñ, ám-1/a:C2ñ}, ..., Si,m¢= 

SiÈ{ám/a:C1ñ, á1/a:C2ñ}, Si,1²=SiÈ{ám/a:C2ñ, ám/a:C1ñ}, Si,2²=SiÈ{ám/a: 
C2ñ, ám-1/a:C1ñ}, ..., Si,m²= SiÈ{ám/a:C2ñ, á1/a:C1ñ}. 

The ®$-rule 
Condition: Si contains ám/a:$R.Cñ, but there are no individuals 1/b, 2/b, …, 

nmax/b such that á1/b:Cñ and á(m/a, 1/b):Rñ, á2/b:Cñ and á(m/a, 2/b): 
Rñ, …, or ánmax/b:Cñ and á(m/a, nmax/b):Rñ are in Si. 

Action: Si,1=SiÈ{á1/b:Cñ, á(m/a, 1/b):Rñ}, Si,2=SiÈ{á2/b:Cñ, á(m/a, 2/b):Rñ}, …, 
Si,nmax=SiÈ {ánmax/b:Cñ, á(m/a, nmax/b):Rñ}, where 1/b, 2/b, ..., nmax/b 
are individuals not occurring in Si. 

The ®"-rule 
Condition: Si contains ám/a:"R.Cñ and á(m/a, n/b):Rñ, but it does not contain 

án/b:Cñ. 
Action: Si¢=SiÈ{án/b:Cñ}. 
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obvious contradiction (called clash), then S is consistent (and thus C is satisfiable), 
and inconsistent (unsatisfiable) otherwise. The transformation rules that handle 
negation, conjunction, disjunction, and exists restrictions are non-deterministic in the 
sense that a given set of constraints is transformed into finitely many new sets of 
constraints such that the original set of constraints is consistent iff one of the new sets 
of constraints is so. For this reason we will consider finite sets of constraints S={S1, 
S2, …, Sk} instead of the original set of constraints {S1, S2, …, Snmax}, where k³nmax. 
Such a set is consistent iff there is some i, 1£i£k, such that Si is consistent. A rule of 
Figure 1 is applied to a given finite set of constraints S as follows: it takes an element 
Si of S, and replaces it by one set of constraints Si¢, by two sets of constraints Si¢ and 
Si², or by finitely many sets of constraints Si,j. 

Termination and soundness of the procedures can be shown. 

Proposition 5 (Termination). Let C be an ALCmsets-concept. There cannot be 
some infinite sequences of rule applications 

    {áj/a:Cñ}®S1®S2®…, where 1£j£nmax. 

Proof. The main reasons for this proposition to hold are the following. 

(1) The original sets of constraints {áj/a:Cñ} is finite. Namely, there exist nmax 
original sets of constraints {á1/a:Cñ}, {á2/a:Cñ}, …, {ánmax/a:Cñ}. 

(2) Without loss of generality, we consider the original set of constraints 
{áj/a:Cñ}. Let S¢ be a set of constraints contained in Si for some i³1. For every 
individual m/b¹j/a occurring in S¢, there is a unique sequence R1, …, Rk (k³1) of role 
names and a unique sequence of individuals of the form 1/b1, 1/b2, …, 1/bk-1, or 1/b1, 
1/b2, …, 2/bk-1, …, or 1/b1, 1/b2, …, nmax/bk-1, …, or nmax/b1, nmax/b2, …, 
nmax/bk-1, such that {á(j/a, 1/b1):R1ñ, á(1/b1, 1/b2):R2ñ, …, á(1/bk-1, m/b):Rkñ}ÍS¢, {á(j/a, 
1/b1):R1ñ, á(1/b1, 1/b2):R2ñ, …, á(2/bk-1, m/b):Rkñ}ÍS¢, …, or {á(j/a, nmax/b1):R1ñ, 
á(nmax/b1, nmax/b2):R2ñ, …, á(nmax/bk-1, m/b):Rkñ}ÍS¢. In this case, we say that m/b 
occurs on the level k in S¢. 

(3) If ám/b:C¢ñÎS¢ for an individual m/b on level k, then the maximal role depth 
of C¢ (i.e., the maximal nesting of constructors involving roles) is bounded by the 
maximal role depth of C minus k. Consequently, the level of any individual in S¢ is 
bounded by the maximal role depth of C. 

(4) If ám/b:C¢ñÎS¢, then C¢ is a subdescription of C. Consequently, the number of 
different concept assertions on m/b is bounded by the size of C. 

(5) The number of different role successors of m/b in S¢ (i.e., individuals l/c such 
that á(m/b, l/c):RñÎS¢ for a role name R) is bounded by the number of different 
existential restrictions in C.   

Proposition 6 (Soundness). Assume that S¢ is obtained from the finite set of 
constraints S by application of a transformation rule. If S is consistent, then S¢ is 
consistent. 
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Proof. [Sketch] Given the termination property (see Proposition 5), it is easily 
verified, by case analysis, that the transformation rules of the satisfiability algorithm 
are sound. For example, the ®Ø-rule: Assume that MI is an mset interpretation 
satisfying ám/a:ØCñ, where 0<m£nmax. Let us show that MI satisfies á1/a:Cñ, 
á2/a:Cñ, …, or ánmax-m/a:Cñ. Since MI satisfies ám/a:ØCñ, by the semantics of ØC 
we have that aÎm(ØC)MI=ΔMIQCMI. Since the maximal number of occurrences of a in 
ΔMI is nmax, thus, by the definition of subtraction of two msets, we know that the 
number of occurrences of a in CMI is 1, 2, …, or nmax-m. That is, aÎ1CMI, aÎ2CMI, …, 
or aÎnmax-mCMI. Therefore, MI satisfies á1/a:Cñ, á2/a:Cñ, …, or ánmax-m/a:Cñ.   

5   Conclusion 

We present a DL framework based on multiset theory. Our main feature is that 
we extend classical DLs allow to express that interpretation of a concept (resp., a role) 
is not a subset of classical set (resp., a subset of Cartesian product of sets) like in 
classical DLs, but a subset of multisets (resp., a subset of Cartesian product of 
multisets). To the best of our knowledge, this is the first attempt in this direction. 

Current research effort is to implement the reasoning algorithm and to perform 
an empirical evaluation in real scenarios. An interesting topic of future research is to 
study the complexity and optimization techniques of reasoning in DLs over multisets 
such as ALCmsets. Furthermore, additional research effort can be focused on the 
reasoning algorithms for the (very) expressive DLs over multisets such as SROIQmsets. 
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Transforming Fuzzy Description Logic ALCFL
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Classical Description Logic ALCH

Yining Wu

University of Luxembourg, Luxembourg

Abstract. In this paper, we present a satisfiability preserving transfor-
mation of the fuzzy Description Logic ALCFL into the classical Descrip-
tion Logic ALCH. We can use the already existing DL systems to do the
reasoning of ALCFL by applying the result of this paper. This work is
inspired by Straccia, who has transformed the fuzzy Description Logic
fALCH into the classical Description Logic ALCH.

1 Introduction

The Semantic Web is a vision for the future of the Web in which informa-
tion is given explicit meaning, making it easier for machines to automatically
process and integrate information available on the Web. While as a basic com-
ponent of the Semantic Web, an ontology is a collection of information and is
a document or file that formally defines the relations among terms. OWL1 is
a Web Ontology Language and is intended to provide a language that can be
used to describe the classes and relations between them that are inherent in
Web documents and applications. The OWL language provides three increas-
ingly expressive sublanguages: OWL Lite, OWL DL, OWL Full. OWL DL is so
named due to its correspondence with description logics. OWL DL was designed
to support the existing Description Logic business segment and has desirable
computational properties for reasoning systems. According to the corresponding
relation between axioms of OWL ontology and terms of Description Logic, we
can represent the knowledge base contained in the ontology in syntax of DLs.

Description Logics (DLs) [1] have been studied and applied successfully in a
lot of fields. The concepts in classical DLs are usually interpreted as crisp sets,
i.e., an individual either belongs to the set or not. In the real world, the answers to
some questions are often not only yes or no, rather we may say that an individual
is an instance of a concept only to some certain degree. We often say linguistic
terms such as “Very”, “More or Less” etc. to distinguish, e.g. between a young
person and a very young person. In 1970s, the theory of approximate reasoning
based on the notions of linguistic variable and fuzzy logic was introduced and
developed by Zadeh [19–21]. Adverbs as “Very”, “More or Less” and “Possibly”

1 Please visit http://www.w3.org/TR/owl-guide/ for more details.



are called hedges in fuzzy DLs. Some approaches to handling uncertainty and
vagueness in DL for the Semantic Web are described in [10].

A well known feature of DLs is the emphasis on reasoning as a central ser-
vice. Some reasoning procedures for fuzzy DLs have been proposed in [16]. A
transformation of fALCH into ALCH has been presented in [17]. This approach,
however, only works for DLs where modifier concepts are not allowed.

In this paper we consider the fuzzy linguistic description logic ALCFL [7]
which is an instance of the description logic framework L − ALC with the cer-
tainty lattice characterized by a hedge algebra and allows the modification by
hedges. Because the certainty lattice is characterized by a HA, the modifica-
tion by hedges becomes more natural than that in ALCFH [8] and ALCFLH [14]
which extend fuzzy ALC by allowing the modification by hedges of HAs. We will
present a satisfiability preserving transformation of ALCFL into ALCH which
makes the reuse of the technical results of classical Dls for ALCFL feasible.

The remaining part of this paper is organized in the following way. First we
state some preliminaries on ALCH, hedge algebra and ALCFL. Then we present
the transformation of ALCFL into ALCH. Finally we discuss the main result of
the paper and identify some possibilities for further work.

2 Preliminaries

ALCH

We consider the language ALCH (Attributive Language with Complement and
role Hierarchy). In abstract notation, we use the letters A and B for concept
names, the letter R for role names, and the letters C and D for concept terms.

Definition 1. Let NR and NC be disjoint sets of role names and concept names.
Let A ∈ NC and R ∈ NR. Concept terms in ALCH are formed according to the
following syntax rule:

A|⊤|⊥|C ⊓ D|C ⊔ D|¬C|∀R.C|∃R.C

The semantics of concept terms are defined formally by interpretations.

Definition 2. An interpretation I is a pair (∆I , ·I), where ∆I is a nonempty
set ( interpretation domain) and ·I is an interpretation function which assigns to
each concept name A a set AI ⊆ ∆I and to each role name R a binary relation
RI ⊆ ∆I × ∆I . The interpretation of complex concept terms is extended by the
following inductive definitions:

⊤I = ∆I

⊥I = ∅
(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I \ CI

(∀R.C)I = {d ∈ ∆I | ∀d′.(d, d′) /∈ RI or d′ ∈ CI}
(∃R.C)I = {d ∈ ∆I | ∃d′.(d, d′) ∈ RI and d′ ∈ CI}



A concept term C is satisfiable iff there exists an interpretation I such that
CI 6= ∅, denoted by I |= C. Two concept terms C and D are equivalent (denoted
by C ≡ D) iff CI = DI for all interpretation I.

We have seen how we can form complex descriptions of concepts to describe
classes of objects. Now, we introduce terminological axioms, which make state-
ments about how concept terms and roles are related to each other respectively.

In the most general case, terminological axiom have the form C ⊑ D or R ⊑
S, where C, D are concept terms, R, S are role names. This kind of terminological
axioms are also called inclusions. A set of axioms of the form R ⊑ S is called
role hierarchy. An interpretation I satisfies an inclusion C ⊑ D (R ⊑ S) iff
CI ⊆ DI (RI ⊆ SI), denoted by I |= C ⊑ D (I |= R ⊑ S).

A terminology, i.e., TBox, is a finite set of terminological axioms. An inter-
pretation I satisfies (is a model of) a terminology T iff I satisfies each element
in T , denoted by I |= T .

Assertions define how individuals relate with each other and how individuals
relate with concept terms. Let NI be a set of individual names which is disjoint
to NR and NC . An assertion α is an expression of the form a : C or (a, b) : R,
where a, b ∈ NI , R ∈ NR and C ∈ NC . A finite set of assertions is called ABox.
An interpretation I satisfies a concept assertion a : C iff aI ∈ CI , denoted by
I |= a : C. I satisfies a role assertion (a, b) : R iff (aI , bI) ∈ RI , denoted by
I |= (a, b) : R. An interpretation I satisfies (is a model of) an ABox A iff I
satisfies each assertion in A, denoted by I |= A.

A knowledge base is of the form 〈T ,A〉 where T is a TBox and A is an ABox.
An interpretation I satisfies (is a model of, denoted by I |= K) a knowledge base
K = 〈T ,A〉 iff I satisfies both T and A. We say that a knowledge base K entails
an assertion α, denoted K |= α iff each model of K satisfies α. Furthermore, let
T be a TBox and let C, D be two concept terms. We say that D subsumes C
with respect to T (denoted by C ⊑T D) iff for each model of T , I |= CI ⊆ DI .

The problem of determining whether K |= α is called entailment problem; the
problem of determining whether C ⊑T D is called subsumption problem; and the
problem of determining whether K is satisfiable is called satisfiability problem.
Entailment problem and subsumption problem can be reduced to satisfiability
problem.

Linear symmetric Hedge Algebra

In this section, we introduce linear symmetric Hedge Algebras (HAs). For general
HAs, please refer to [12, 11, 13].

Let us consider a linguistic variable TRUTH with the domain dom(TRUTH ) =
{True,False,VeryTrue,VeryFalse,MoreTrue,MoreFalse,PossiblyTrue, . . .}. This
domain is an infinite partially ordered set, with a natural ordering a < b mean-
ing that b describes a larger degree of truth if we consider True > False. This
set is generated from the basic elements (generators) G = {True,False} by us-
ing hedges, i.e., unary operations from a finite set H = {Very,Possibly,More}.
The dom(TRUTH ) which is a set of linguistic values can be represented as



X = {δc | c ∈ G, δ ∈ H∗} where H∗ is the Kleene star of H , From the alge-
braic point of view, the truth domain can be described as an abstract algebra
AX = (X, G, H, >).

To define relations between hedges, we introduce some notations first. We
define that H(x) = {σx | σ ∈ H∗} for all x ∈ X . Let I be the identity hedge,
i.e., ∀x ∈ X.Ix = x. The identity I is the least element. Each element of H is
an ordering operation, i.e., ∀h ∈ H , ∀x ∈ X , either hx > x or hx < x.

Definition 3. [12] Let h, k ∈ H be two hedges, for all x ∈ X we define:

– h, k are converse if hx < x iff kx > x;
– h, k are compatible if hx < x iff kx < x;
– h modifies terms stronger or equal than k, denoted by h ≥ k if hx ≤ kx ≤ x

or hx ≥ kx ≥ x;
– h > k if h ≥ k and h 6= k;
– h is positive wrt k if hkx < kx < x or hkx > kx > x;
– h is negative wrt k if kx < hkx < x or kx > hkx > x.

ALCFL only considers symmetric HAs, i.e., there are exactly two generators
as in the example G = {True,False}. Let G = {c+, c−} where c+ > c−. c+ and
c− are called positive and negative generators respectively. Because there are
only two generators, the relations presented in Definition 3 divides the set H
into two subsets H+ = {h ∈ H | hc+ > c+} and H− = {h ∈ H | hc+ < c+}, i.e.,
every operation in H+ is converse w.r.t. any operation in H− and vice-versa,
and the operations in the same subset are compatible with each other.

Definition 4. [7] An abstract algebra AX = (X, G, H, >), where H 6= ∅, G =
{c+, c−} and X = {σc | c ∈ G, σ ∈ H∗} is called a linear symmetric hedge
algebra if it satisfies the properties (A1)-(A5).

(A1) Every hedge in H+ is a converse operation of all operations in H−.
(A2) Each hedge operation is either positive or negative w.r.t. the others, in-

cluding itself.
(A3) The sets H+ ∪ {I} and H− ∪ {I} are linearly ordered with the I.
(A4) If h 6= k and hx < kx then h′hx < k′kx, for all h, k, h′, k′ ∈ H and x ∈ X .
(A5) If u /∈ H(v) and u ≤ v (u ≥ v) then u ≤ hv (u ≥ hv), for any hedge h

and u, v ∈ X .

Let AX = (X, G, H, >) be a linear symmetric hedge algebra and c ∈ G. We
define that, c̄ = c+ if c = c− and c̄ = c− if c = c+. Let x ∈ X and x = σc, where
σ ∈ H∗. The contradictory element to x is y = σc̄ written y = −x.

[12] gave us the following proposition to compare elements in X.

Proposition 5 Let AX = (X, G, H, >) be a linear symmetric HA, x = hn · · ·h1u
and y = km · · · k1u are two elements of X where u ∈ X. Then there exists an
index j ≤ min{n, m} + 1 such that hi = ki for all i < j, and

(i) x < y iff hjxj < kjxj , where xj = hj−1 · · ·h1u;



(ii) x = y iff n = m = j and hjxj = kjxj.

In order to define the semantics of the hedge modification, we only consider
monotonic HAs defined in [7] which also extended the order relation on H+∪{I}
and H− ∪{I} to one on H ∪{I}. We will use “hedge algebra” instead of “linear
symmetric hedge algebra” in the rest of this paper.

Inverse mapping of hedges

Fuzzy description logics represent the assessment “It is true that Tom is very
old” by

(VeryOld)I(Tom)I = True. (1)

In a fuzzy linguistic logic [19–21], the assessment “It is true that Tom is very
old” and the assessment “It is very true that Tom is old” are equivalent, which
means

(Old)I(Tom)I = VeryTrue, (2)

and (1) has the same meaning. This signifies that the modifier can be moved
from concept term to truth value and vice versa. For any h ∈ H and for any
σ ∈ H∗, the rules of moving hedges [11] are as follows,

RT 1 : (hC)I(d) = σc → (C)I(d) = σhc
RT 2 : (C)I(d) = σhc → (hC)I(d) = σc.

where C is a concept term and d ∈ ∆I .

Definition 6. [7] Consider a monotonic HA AX = (X, {c+, c−}, H, >) and a
h ∈ H. A mapping h− : X → X is called an inverse mapping of h iff it satisfies
the following two properties,

1. h−(σhc) = σc.
2. σ1c1 > σ2c2 ⇔ h−(σ1c1) > h−(σ2c2).

where c, c1, c2 ∈ G, h ∈ H and σ1, σ2 ∈ H∗.

ALCFL

ALCFL is a Description Logic in which the truth domain of interpretations is
represented by a hedge algebra. The syntax of ALCFL is similar to that of ALCH
except that ALCFL allows concept modifiers and does not include role hierarchy.

Definition 7. Let H be a set of hedges. Let A be a concept name and R a role,
complex concept terms denoted by C, D in ALCFL are formed according to the
following syntax rule:

A|⊤|⊥|C ⊓ D|C ⊔ D|¬C|δC|∀R.C|∃R.C

where δ ∈ H∗.



In [13], HAs are extended by adding two artificial hedges inf and sup defined
as inf(x) = infimum(H(x)), sup(x) = supremum(H(x)). If H = ∅, H(c+) and
H(c−) are infinite, according to [13] inf(c+) = sup(c−). Let W = inf (True) =
sup (False) and let sup(True) and inf(False) be the greatest and the least ele-
ments of X respectively.

The semantics is based on the notion of interpretations.

Definition 8. Let AX be a monotonic HA such that AX = (X, {True,False}, H, >
). A fuzzy interpretation (f-interpretation) I for ALCFL is a pair (∆I , ·I), where
∆I is a nonempty set and ·I is an interpretation function mapping:

– individuals to elements in ∆I ;
– a concept C into a function CI : ∆I → X;
– a role R into a function RI : ∆I × ∆I → X.

For all d ∈ ∆I the interpretation function satisfies the following equations

⊤I(d) = sup(True),
⊥I(d) = inf(False),

(¬C)I(d) = −CI(d),
(C ⊓ D)I(d) = min(CI(d), DI(d)),
(C ⊔ D)I(d) = max(CI(d), DI(d)),

(δC)I(d) = δ−(CI(d)),
(∀R.C)I(d) = infd′∈∆I{max(−RI(d, d′), CI(d′))},
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))},

where −x is the contradictory element of x, and δ− is the inverse of the hedge
chain δ.

Definition 9. A fuzzy assertion (fassertion) is an expression of the form 〈α ⊲⊳
σc〉 where α is of the form a : C or (a, b) : R, ⊲⊳ ∈ {≥, >,≤, <} and σc ∈ X.

Formally, an f-interpretation I satisfies a fuzzy assertion 〈a : C ≥ σc〉 (re-
spectively 〈(a, b) : R ≥ σc〉) iff CI(aI) ≥ σc (respectively RI(aI , bI) ≥ σc).
An f-interpretation I satisfies a fuzzy assertion 〈a : C ≤ σc〉 (respectively
〈(a, b) : R ≤ σc〉) iff CI(aI) ≤ σc (respectively RI(aI , bI) ≤ σc). Similarly
for > and <.

Concerning terminological axioms, an ALCFL terminology axiom is of the
form C ⊑ D, where C and D are ALCFL concept terms. From a semantics
point of view, a f-interpretation I satisfies a fuzzy concept inclusion C ⊑ D iff
∀d ∈ ∆I .CI(d) ≤ DI(d). Two concept terms C, D are said to be equivalent,
denoted by C ≡ D iff CI = DI for all f-interpretations I. Some properties
concerning the hedge modification are showed in the following proposition [7].

Proposition 10 We have the following semantical equivalence:

δ(C ⊓ D) ≡ δ(C) ⊓ δ(D)
δ(C ⊔ D) ≡ δ(C) ⊔ δ(D)
δ1(δ2C) ≡ (δ1δ2)C.



A fuzzy knowledge base (fKB) is 〈T ,A〉, where T and A are finite sets of termi-
nological axioms and fassertions respectively.

Example 11 A fKB fK = 〈{A ⊑ ∀R.¬B}, {a : ∀R.C ≥ VeryTrue}〉.

An f-interpretation I satisfies (is a model of) a TBox T iff I satisfies each
element in T . I satisfies (is a model of) an ABox A iff I satisfies each element
in A. I satisfies (is a model of) a fKB fK = 〈T ,A〉 iff I satisfies both A and T .
Given a fKB fK and a fassertion fα. We say that fK entails fα (denoted fK |= fα)
iff each model of fK satisfies fα.

3 Transforming ALCFL into ALCH

We will introduce a satisfiability preserving transformation from ALCFL into
ALCH in this section. First, we illustrate the basic idea which is similar to the
one in [17] which is the first efforts in this direction. There is also other more
efficient representation in [3].

Consider a monotonic HA AX = (X, {True,False}, H, >). In the following,
we assume that c ∈ {c+, c−} where c+ = True, c− = False, σ ∈ H∗, σc ∈
X and ⊲⊳ ∈ {≥, >,≤, <}. Assume we have an ALCFL knowledge base, fK =
〈T ,A〉, where A = {fα1, fα2, fα3, fα4} and fα1 = 〈a : A ≥ True〉, fα2 = 〈b :
A ≥ VeryTrue〉, fα3 = 〈a : B ≤ False〉, and fα4 = 〈b : B ≤ VeryFalse〉
where A, B are concept names. We introduce four new concept names: A≥True ,
A≥VeryTrue , B≤False and B≤VeryFalse . The concept name A≥True represents the
set of individuals that are instances of A with degree greater and equal to True.
The concept name B≤VeryFalse represents the set of individuals that are instances
of B with degree less and equal to VeryFalse. We can map the fuzzy assertions
into classical assertions:

〈a : A ≥ True〉 → 〈a : A≥True〉,
〈b : A ≥ VeryTrue〉 → 〈b : A≥VeryTrue〉,
〈a : B ≤ False〉 → 〈a : B≤False〉,
〈b : B ≤ VeryFalse〉 → 〈b : B≤VeryFalse〉.

We also need to consider the relationships among the newly introduced concept
names. Because VeryTrue > True, it is easy to get if a truth value σc ≥ VeryTrue
then σc ≥ True. Thus, we obtain a new inclusion A≥VeryTrue ⊑ A≥True . Sim-
ilarly for B, because VeryFalse < False, a truth value σc ≤ VeryFalse implies
σc ≤ False too. Then the inclusion B≤VeryFalse ⊑ B≤False is obtained.

Now, let us proceed with the mappings. Let fK = 〈T ,A〉 be an ALCFL

knowledge base. We are going to transform fK into an ALCH knowledge base
K. We assume σc ∈ [inf(False), sup(True)] and ⊲⊳ ∈ {≥, >,≤, <}.

The transformation of ABox

In order to transform A, we define two mappings θ and ρ to map all the assertions
in A into classical assertions. Notice that we do not allow assertions of the forms



(a, b) : R < σc and (a, b) : R ≤ σc although they are legal forms of assertions
in ALCFL because they related to ‘negated role’ which is not part of classical
ALCH.

We use the mapping ρ to encode the basic idea we present at the beginning
of this section. The mapping ρ combines the ALCFL concept term, the ⊲⊳ and
the fuzzy value σc together into one ALCH concept term.

Let A be a concept name, C, D be concept terms and R be a role name. For
roles we have simply

ρ(R, ⊲⊳ σc) = R⊲⊳σc.

For concept terms, the mapping ρ is inductively defined on the structures of
concept terms:
For ⊤,

ρ(⊤, ⊲⊳ σc) =































⊤ if ⊲⊳ σc = ≥ σc
⊤ if ⊲⊳ σc = > σc, σc < sup(c+)
⊥ if ⊲⊳ σc = > sup(c+)
⊤ if ⊲⊳ σc = ≤ sup(c+)
⊥ if ⊲⊳ σc = ≤ σc, σc < sup(c+)
⊥ if ⊲⊳ σc = < σc.

For ⊥,

ρ(⊥, ⊲⊳ σc) =































⊤ if ⊲⊳ σc = ≥ inf(c−)
⊥ if ⊲⊳ σc = ≥ σc, σc > inf(c−)
⊥ if ⊲⊳ σc = > σc
⊤ if ⊲⊳ σc = ≤ σc
⊤ if ⊲⊳ σc = < σc, σc > inf(c−)
⊥ if ⊲⊳ σc = < inf(c−).

For concept name A,

ρ(A, ⊲⊳ σc) = A⊲⊳σc.

For concept conjunction C ⊓ D,

ρ(C ⊓ D, ⊲⊳ σc) =

{

ρ(C, ⊲⊳ σc) ⊓ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
ρ(C, ⊲⊳ σc) ⊔ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <}.

For concept disjunction C ⊔ D,

ρ(C ⊔ D, ⊲⊳ σc) =

{

ρ(C, ⊲⊳ σc) ⊔ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
ρ(C, ⊲⊳ σc) ⊓ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <}.

For concept negation ¬C,

ρ(¬C, ⊲⊳ σc) = ρ(C,¬ ⊲⊳ σc̄),

where ¬ ≥ = ≤,¬ > = <,¬ ≤ = ≥, ¬ < = >.

For modifier concept δC,



ρ(δC, ⊲⊳ σc) = ρ(C, ⊲⊳ σδc).

For existential quantification ∃R.C,

ρ(∃R.C, ⊲⊳ σc) =

{

∃ρ(R, ⊲⊳ σc).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
∀ρ(R,− ⊲⊳ σc).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <},

where − ≤ = > and − < = ≥.

For universal quantification ∀R.C,

ρ(∀R.C, ⊲⊳ σc) =

{

∀ρ(R, + ⊲⊳ σc̄).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
∃ρ(R,¬ ⊲⊳ σc̄).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <},

where + ≥ = > and + > = ≥.
θ maps fuzzy assertions into classical assertions using ρ. Let fα be a fassertion

in A, we define it as follows.

θ(fα) =

{

a : ρ(C, ⊲⊳ σc) if fα = 〈a : C ⊲⊳ σc〉
(a, b) : ρ(R, ⊲⊳ σc) if fα = 〈(a, b) : R ⊲⊳ σc〉.

Example 12 Let fα = 〈a : V ery(A ⊓ B) ≤ LessFalse〉, then

θ(fα) = a : ρ(V ery(A ⊓ B),≤ LessFalse)
= a : ρ((A ⊓ B),≤ LessV eryFalse)
= a : ρ(A,≤ LessV eryFalse) ⊔ ρ(B,≤ LessV eryFalse)
= a : A≤LessV eryFalse ⊔ B≤LessV eryFalse.

We extend θ to a set of fassertions A point-wise,

θ(A) = {θ(fα) | fα ∈ A}.

According to the rules above, we can see that |θ(A)| is linearly bounded by |A|.

4 The transformation of TBox

The new TBox is a union of two terminologies. One is the newly introduced TBox
(denoted by T (N fK) which is the terminology relating to the newly introduced
concept names and role names. The other one is κ(fK, T ) which is reduced by a
mapping κ from the TBox of an ALCFL knowledge base.

The newly introduced TBox

Many new concept names and new role names are introduced when we transform
an ABox. We need a set of terminological axioms to define the relationships
among those new names.

We need to collect all the linguist terms σc that might be the subscript of a
concept name or a role name. It means that not only the set of linguistic terms
that appears in the original ABox but also the set of new linguist terms which



are produced by applying the ρ for modifier concepts should be included. Let A
be a concept name, R be a role name.

X fK = {σc | 〈α ⊲⊳ σc〉 ∈ A} ∪ {σδc | ρ(δC, ⊲⊳ σc) = ρ(C, ⊲⊳ σδc)}.

such that δC occurs in fK.
We define a sorted set of linguistic terms,

N fK = {inf (False), W, sup (True)} ∪ X fK ∪ {σc̄ | σc ∈ X fK} = {n1, . . . , n|NfK|}

where ni < ni+1 for 1 ≤ i ≤ |N fK|−1 and n1 = inf (False), n|NfK| = sup (True).

Let T (N fK) be the set of terminological axioms relating to the newly intro-
duced concept names and role names.

Definition 13. Let AfK and RfK be the sets of concept names and role names
occurring in fK respectively. For each A ∈ AfK, for each R ∈ RfK, for each
1 ≤ i ≤ |N fK | − 1 and for each 2 ≤ j ≤ |N fK |, T (N fK) contains

A≥ni+1
⊑A>ni

, A>ni
⊑A≥ni

,
A<nj

⊑A≤nj
, A≤ni

⊑A<ni+1
,

A≥nj
⊓ A<nj

⊑⊥ , ⊤⊑A≥nj
⊔ A<nj

,
A>ni

⊓ A≤ni
⊑⊥ , ⊤⊑A>ni

⊔ A≤ni
,

R≥ni+1
⊑R>ni

, R>ni
⊑R≥ni

.

where n ∈ N fK.

ni+1 > ni because N fK is a sorted set. Then if an individual is an instance
of a concept name with degree ≥ ni+1 then the degree is also > ni. The first
terminological axiom shows that if an individual is an instance of A≥ni+1

then
it is an instance of A>ni

as well. Similarly, if an individual is an instance of
a concept name with degree ≤ ni then the degree is also < ni+1. The third
terminological axiom shows that if an individual is an instance of A≤ni

then it
is also an instance of A<ni+1

. A≥nj
⊓ A<nj

⊑ ⊥ because there is no individual
such that it is an instance of a concept name with degree ≥ nj and with degree
< nj at the same time.

T (N fK) contains 8|AfK|(|N fK| − 1) plus 2|RfK|(|N fK| − 1) terminological
axioms.

The mapping κ

κ maps the fuzzy TBox into the classical TBox.

Definition 14. Let C, D be two concept terms and C ⊑ D ∈ T . For all n ∈ N fK

κ(fK, C ⊑ D) =
⋃

n∈NfK,⊲⊳∈{≥,>}{ρ(C, ⊲⊳ n) ⊑ ρ(D, ⊲⊳ n)}
⋃

n∈NfK,⊲⊳∈{≤,<}{ρ(D, ⊲⊳ n) ⊑ ρ(C, ⊲⊳ n)}
(3)

We extend κ to a terminology T point-wise. For all τ ∈ T

κ(fK, T ) = ∪τ∈T κ(fK, τ).



The satisfiability preserving theorem

Now we can define the reduction of fK into an ALCH knowledge base, denoted
K(fK),

K(fK) = 〈T (N fK) ∪ κ(fK, T ), θ(A)〉.

The transformation can be done in polynomial time. The soundness and com-
pleteness of the algorithm is guaranteed by the following satisfiability preserving
theorem.

Theorem 15 Let fK be an ALCFL knowledge base. Then fK is satisfiable iff
the ALCH knowledge base K(fK) is satisfiable.

Proof. Please refer to my thesis [18] which can be download from my homepage.2

5 Discussion

In this paper, we have presented a satisfiability preserving transformation of
ALCFL into ALCH which is with general TBox and role hierarchy. Since all
other reasoning tasks such as entailment problem and subsumption problem
can be reduced to satisfiability problem, this result allows for algorithms and
complexity results that were found for ALCH to be applied to ALCFL.

As for the complexity of the transformation, we know the fact that |θ(A)| is
linearly bounded by |A|, |T (N fK)| = 8|AfK|(|N fK| − 1) + 2|RfK|(|N fK| − 1) and
κ(fK, T ) contains at most 4|T ||N fK|. Therefore, the resulted classical knowledge
base (at most polynomial size) can be constructed in polynomial time.

There exist some reasoners for fuzzy DLs, e.g. FiRE [15], GURDL [5], De-
Lorean [2], GERDS [6], YADLR [9] and fuzzyDL [4]. Among them, fuzzyDL
allows modifiers defined in terms of linear hedges and triangular functions and
DeLorean supports triangularly-modified concept. So if we can transform variety
of fuzzy DLs into classical DLs then we can use the already existing DL systems
to do the reasoning of fuzzy DLs.
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Abstract. Formalizing an ontology for a domain manually is well-known
as a tedious and cumbersome process. It is constrained by the knowledge
acquisition bottleneck. Therefore, researchers developed algorithms and
systems that can help to automatize the process. Among them are sys-
tems that include text corpora for the acquisition. Our idea is also based
on vast amount of text corpora. Here, we provide a novel unsupervised
bottom-up ontology generation method. It is based on lexico-semantic
structures and Bayesian reasoning to expedite the ontology generation
process. We provide a quantitative and two qualitative results illustrat-
ing our approach using a high throughput screening assay corpus and
two custom text corpora. This process could also provide evidence for
domain experts to build ontologies based on top-down approaches.

Keywords: Ontology Modeling, Ontology Learning, Probabilistic Meth-
ods

1 Introduction

An ontology is a formal, explicit specification of a shared conceptualization [10],
[22]. Formalizing an ontology for a given domain with the supervision of domain
experts is a tedious and cumbersome process. The identification of the struc-
tures and the characteristics of the domain knowledge through an ontology is a
demanding task. This problem is known as the knowledge acquisition bottleneck
(KAB) and a suitable solution presently does not exist.

There exists a large number of text corpora available from different domains
(e.g., the BioAssay high throughput screening assays4) that need to be classified
into ontologies to faciliate the discovery of new knowledge. A domain of discourse

4 http://bioassayontology.org/



(i.e., sequential number of sentences) shows characteristics such as 1) redundancy
2) structured and unstructured text 3) noisy and uncertain data that provide a
degree of belief 4) lexical disambiguity, and 5) semantic heterogeneity problems.
We discuss in depth the importance of these characteristics in section 3. Our
goal in this research is to provide a novel method to construct an ontology from
the evidence collected from the corpus. In order to achieve our goal, we use the
lexico-semantic features of the lexicon and probabilistic reasoning to handle the
uncertainty of features. Since our method is applied to build an ontology for
a corpus without domain experts, this method can be seen as an unsupervised
learning technique. Since the method starts from the evidence present in the
corpus, it is can be seen as a reverse engineering technique. We use WordNet5 to
handle lexico-semantic structures, and the Bayesian reasoning to handle degree
of belief of an uncertain event. We implement a Java based application to serialize
the learned conceptualization to OWL DL6 format.

The rest of the paper is organized as follows: section 2 provides a broad inves-
tigation of the related work. Section 3 provides details of our research approach.
Section 4 provides a detail description of the experiments based on three dif-
ferent text corpora and the discussion. Finally, section 5 provides the summary
and the future work.

2 Related Work

The problem of learning a conceptualization from a corpus has been studied in
many disciplines such as machine learning, text mining, information retrieval,
natural language processing, and Semantic Web. Table 1 shows the pros and cons
of different techniques to solve the problem of ontology learning. Each method
covers some portion of the problem and each method learns the conceptualization
from terms, and present it as taxonomies and axioms to an ontology. On the other
hand, most of the methods use a top-down approach, i.e., an initial classification
of an ontology is given. The uncertainty inherited from the domain is usually
dealt with by a domain expert, and the conceptualization is normally defined
using predefined rules or templates. These methods show the characteristics of
a semi-supervised and a semi-automated learning paradigm.

3 Approach

Our research focuses on an unsupervised method to quantify the degree of belief
that a grouping of words in the corpus will provide a substantial conceptual-
ization of the domain of interest. The degree of belief in world states influences
the uncertainty of the conceptualization. The uncertainty arises from partial
observability, non-determinism, laziness and theoretical and practical ignorance
[19]. The partial observability arises from the size of the corpus. Even though

5 http://wordnet.princeton.edu/
6 http://www.w3.org/TR/owl-guide/



Table 1. The summary of the related work. Probabilistic learning (PR), never end-
ing language learning (NELL), discovery and aggregation of relations in text (DART),
recognizing textual entailment (RTE), automated theorem proving (ATP), natural lan-
guage understanding (NLU), formal concept analysis (FCA), and ontology population
(OP).

Work Purpose T-Box A-Box Method

PR [9], [12], [14] and [17] reasoning available available prob. theory

NELL [3] 24× 7 learning fixed dynamic ML techniques

DART [7] world knowledge × × semi-automated

RTE [2], and [13] entailment × × ATP

NLU [20] commonsense rules × × semi-supervised

Text2Onto [6] ontology learning
√ √

semi-supervised

LexO [24] complex classes
√

× semi-supervised

FCA [5] taxonomy
√

× FCA

OP [4], and [23] ontology population available available semi-/supervised

a corpus many be large, it might not contain all the necessary evidence of an
event of interest. A corpus contains ambiguous statements about an event that
leads to a non-determinism of the state of the event. The laziness arises from
the too much work that needs to be done in order to learn exceptionless rules
and it is too hard to learn such rules. The theoretical and practical ignorance
arises from lack of complete evidence and it is not possible to conduct all the
necessary tests to learn a particular event. Hence, the domain knowledge, and
in our case the domain conceptualization, can at best provide only a degree of
belief of the relevant groups of words. We use probability theory to deal with the
degrees of belief. As mentioned in [19], the probability theory has the same onto-
logical commitment as the formal logic, though the epistemological commitment
differs. The process of learning and presenting a probabilistic conceptualization
is divided into four phases as shown in Figure 1. They are, 1) pre-processing
2) syntactic analysis 3) semantic analysis, and 4) representation.

3.1 Pre-processing

A corpus contains a plethora of structured and unstructured sentences. A lexicon
of a language is its vocabulary built from lexemes [11], [15]. A lexicon contains
words belonging to a language and in our work individual words from the corpus.
In pure form, the lexicon may contain words that appear frequently in the corpus
but have little value in formalizing a meaningful criterion. These words are called
stop words or in our terminology: negated lexicon, and they are excluded from the
vocabulary. We, first, part-of-speech tagged the corpus with the Penn Treebank
English POS tag set [16]. We use the subset of tagset NN, NNP, NNS, NNPS, JJ,
JJR, JJS, VB, VBD, VBG, VBN, VBP, and VBZ. The word length WL above
some threshold WLT

is also considered. The length of a word, with respect to



POS context, is the sequence of characters or symbols that made up the word.
By default, we consider that a word with WL > 2 sufficiently formalizes to some
criterion.

Fig. 1. Overall process: process categorizes into four phases; pre-processing, syntactic
analysis, semantic analysis & representation

The pure form of the lexicon might contain words that need to be further
purified according to some criterion. We use regular expressions for this task.
Then we normalize and case-fold the words [15]. In addition to this there are
families of derivationally related words with similar meanings. We use stemming
and lemmatization to reduce the inflectional forms and derivational forms of a
word to a common base form [15]. We achieve this with the aid of WordNets’
stemming algorithms. We couple the knowledge of POS tag of the word to get
the correct context when finding the common base form.

3.2 Syntactic Analysis

The primary focus on this phase is to look at the structure of the sentences and
learn the associations among the vocabulary. We assume that each sentence of
the corpus follows the POS pattern 1. 1,

(SubjectNounPhrase+)(V erb+)(ObjectNounPhrase+) (1)

We hypothesize that the associations learned from this phase provides the po-
tential candidates for concepts and relations of the ontology. But the vocabulary
itself does not provide sufficient ontology concepts. We use a notion of grouping
of consecutive sequence of words to form an OWL concept. This grouping is done
using an appropriate N-gram model [1]. We illustrate this idea using Figure 2.



Fig. 2. An example three-gram model

The group w1 ◦ w2 forms a potential concept in the conceptualization. We
use the notation x ◦ y to show that the word y is appended to the word x. The
groups w2◦w3, w3◦w4 etc. form other potential concepts in the conceptualization.
Word w3 comes after group w1◦w2. According to the Bayes viewpoint, we collect
information to estimate the probability P (w3|{w1 ◦ w2}), which will be used to
form IS-A relationships, w1 ◦ w2 v w3 using an independent Bayesian network
with conditional probability P ({w1 ◦ w2}|w3). In addition to this, we count the
groups appear in the left hand side and the right hand side of the expression 1
and the association of of these groups given the verbs. These counts are used in
the third phase to create the relations among concepts.

3.3 Semantic Analysis

This phase conducts the semantic analysis with probabilistic reasoning, which
constitutes the most important operation of our work. This phase determines the
conceptualization of the domain using a probability distribution for IS-A rela-
tions and relations among the concepts. Our main definition of concept learning
is given in Definition 1.

Definition 1. The set W = {w1, . . . , wn} represents words of the vocabulary
and each wi has a prior probability θi > τ . τ is a prior threshold, which is known
as the knowlege factor. The set G = {g1, . . . , gm} represents N-gram groups
learned from the corpus and each gj has a prior probability ηj. When w ∈ W
and g ∈ G, P (w|g) is the likelihood probability π learned from the corpus. The
entities w and g represent the potential concepts of the conceptualization and
the set W provide the potential super-concepts of the conceptualization. Within
this environment, an IS-A relationship between w and g is given by the posterior
probability P (g|w) and this is represented with a Bayesian network having two
nodes w and g and is modeled by the equation,

P (g|w) = π × η
∑

i p(w|gi)× p(gi)
. (2)

Using the Definition 1, the probabilistic conceptualization of a domain is
defined as follows.

Definition 2. The probabilistic conceptualization of the domain is represented
by an n-number of independent Bayesian networks sharing groups.



Fig. 3. w1, w2, w3, w4 and w5 are super-concepts. g1, g2, g3 and g4 are candidate sub-
concepts. There are 5 independent Bayesian networks. Bayesian networks 2 and 5 share
the group g2 when representing the concepts of the conceptualization

Figure 3 shows a simple example of the Definition 2. The interpretation of
Definition 2 is: Let a set G contains an n-number of finite random variables
{g1, . . . , gn}. There exist a group gi, which is shared by m words {w1, . . . , wm}.
Then, with respect to the Bayesian framework, BNi of P (gi|wi) is calculated and
max(P (gi|mi)) is selected for the construction of the ontology. This means that if
there exists two Bayesian networks and the Bayesian network one is given by the
pair w1, g1 and the Bayesian network two is given by the pair {w2, g1} then the
Bayesian network that has the most substantial IS-A relationship is obtained
through maxBNi(P (g1|w1)) and this network is retained and other Bayesian
networks will be ignored when building the ontology. If all P (g1|w1) remains
equal, then the Bayesian network with the highest super-concept probability
will be retained. These two conditions will resolve any naming issues.

The next step is to induce the relationships to complete the conceptualiza-
tion. In order to do this, we need to find semantics associated with each verb.
We hypothesize that relations are generated by the verbs and the definition is
as follows.

Definition 3. The relationships of the conceptualization are learned from the
syntactic structure model by the expression 1 and the semantic structure model
by the lambda expression λobj.λsub.V erb(sub, obj), where β-reduction is applied
for obj and sub of the expression 1. If there exists a verb V between two groups
of concepts C1 and C2, the relationship of the triple (V,C1, C2) is written as
V (C1, C2) and model with conditional probability P (C1, C2|V ). The Bayesian



network for relationship is and the model semantic relationship is given by,

P (C1, C2|V ) = p(C1|V )p(C2|V ) → V (C1, C2)

Fig. 4. Bayesian networks for relations modeling. C1 and C2 are groups and V is a
verb

The relations learned from Defintions 3 needs to be subjected to a lower
bound. The lower bound is known as the relations factor. When the corpus is
substantially large, the number of relations is proportional to the number of
verbs. Not all relations may relevant and the factor is used as the threashold. A
verb may have antonyms. If a verb is associated with some concepts and these
concepts happen to be associated with a antonym, the verb with the highest
Bayesian probability value is selected for the relations map and the other rela-
tionship will be removed. Finally, the probabilistic conceptualization is serialized
as an OWL DL ontology in the representation phase.

Our implementation of the above phases is based on Java 6 and it is named
as PrOntoLearn (Probabilistic Ontology Learning).

4 Experiments

We have conducted experiments on three main data corpora, 1) the PCAssay, of
the BioAssay Ontology (BAO) project, Department of Molecular and Cellular
Pharmacology University of Miami, School of Medicine 2) a sample collection of
38 PDF files from ISWC 2009 proceedings, and 3) a substantial portion of the
web pages extracted from the University of Miami, Department of Computer
Science7 domain . We have constructed ontologies for all three corpora with
different parameter settings.

The first corpus contains high throughput screening assays performed on
various screening centers. This corpus grows rapidly each month. We specifi-
cally limited our dataset to assays available on the 1st of January 2010. Table
2 provides the statistics of the corpus. We extract the vocabulary generated

7 http://www.cs.miami.edu



from [a-zA-Z]+[- ]?\w* regular expression, and normalized them to create the
vocabulary.

Table 2. The PCAssay (the BioAssay Ontology project) corpus statistics

Title Statistics Description

Documents
All documents are XHTML

1,759 formated with a given template

Unique ConceptWords
Normalized candidate concept words from

13,017 NN, NNP, NNS, JJ, JJR & JJS
using [a-zA-Z]+[- ]?\w*

Unique V erbs
Normalized verbs from

1,337 VB, VBD, VBG, VBN, VBP & VBZ
using [a-zA-Z]+[- ]?\w*

Total ConceptWords 631,623

Total V erbs 109,421

Total Lexicon 741,044 Lexicon = ConceptWords
⋂

V erbs

Total Groups 631,623

The average file size of the corpus is approximately 6 Kb. We conducted
these experiments in a Genuine Intel(R) CPU 585 @ 2.16GHz, 32 bits, 2 Gb
Toshiba laptop. It is found that the time required to build the conceptualiza-
tion grows linearly. We use precision, recall and F1 measures to evaluate the
ontology and recommendations from domain experts, specially to get comments
on the generated bioassay ontology. The ontology that is generated is too large
to show in here.Instead, we provide a few distinct snapshots of the ontology
with the help of Protégé OWLViz plugin. Figures 5 and 6 show snapshots of
the ontology created from the BioAssay Ontology corpus for input parameters
KF = 0.5, N-gram = 3, and RF = 0.9. Figure 5 shows the IS-A relationships
and Figure 6 shows the binary relationships.

According to experts, the ontology contains rich set of vocabulary, which is
very useful for top-down ontology construction. The experts also mentioned that
the ontology has good enough structure. The www.cs.miami.edu corpus is used
to calculate quantitative measurements. The gold standard based approaches
such as precision (P ) and recall (R) and F-measure (F1) are used to evaluate
ontologies [8]. We use a slightly modified version of [21] as our reference ontology.
Table 3 shows the results. The average precision of the constructed ontology is
approximately 42%. It is to be noted that we use only one reference ontology. If
we use another reference ontology the precision values varies. This means that
the precision value depends on the available ground truth.

The results show that our method creates an ontology for any given domain
with acceptable results. This is shown in the precision value, if the ground truth



Fig. 5. An example snapshot of the BioAssay Ontology corpus with IS-A relations

Fig. 6. An example snapshot of the BioAssay Ontology corpus with binary relations

Table 3. Precision, recall and F1 measurement for N -gram=4 and RF=1 using ex-
tended reference ontology

KF Precision Recall F1

0.1 0.424 1 0.596

0.2 0.388 1 0.559

0.3 0.445 1 0.616

0.4 0.438 1 0.609

0.5 0.438 1 0.609

0.6 0.424 1 0.595

0.7 0.415 1 0.587

0.8 0.412 1 0.583

0.9 0.405 1 0.576

1.0 0.309 1 0.472



is available. On the other hand, if the domain does not have ground truth the
results are subject to domain expert evaluation of the ontology. One of the po-
tential problems we have seen in our approach is search space. Since our method
is unsupervised, it tends to search the entire space for results, which is computa-
tionally costly. We thus need a better method to prune the search space so that
out method provide better results. According to domain experts, our method
extracts good vocabulary but provides a flat structure. They have proposed a
sort of a semi-supervised approach to correct this problem, by combining the
knowledge from domain experts and results produced by our system. We left the
detailed investigation for future work.

Since our method is based on the Bayesian reasoning (which uses N-gram
probabilities), it is paramount that the corpus contains enough evidence of the re-
dundant information. This condition requires that the corpus to be large enough
so that we can hypothesize that the corpus provides enough evidence to build
the ontology.

We hypothesize that a sentence of the corpus would generally be subjected to
the grammar rule given in expression 1. This constituent is the main factor that
uses to build the relationships among concepts. In NLP, there are many other
finer grained grammar rules that specifically fit for given sentences. If these
grammar rules are used, we believe we can build a better relationship model.
We have left this for future work.

At the moment our system does not distinguish between concepts and the
individuals of the concepts. The learned A-Box primarily consists of the proba-
bilities of each concepts. This is one area where we are eager to work on. Using
the state-of-the art NLP techniques, we plan to fill this gap in a future work.
Since our method has the potential to be used in any corpus, it could be seen
that the lemmatizing and stemming algorithms that are available in WordNet
would not recognize some of the words. Specially in the BioAssay corpus, we
observe that some of the domain specific words are not recognized by WordNet.
We use the Porter stemming algorithm [18] to get the word form and it shows
that this algorithm constructs peculiar word forms. Therefore, we deliberately
remove it from the processing pipeline.

The complexity of our algorithms is as follows. The bootstrapping algorithm
available in the syntactic layer has a worst case running time of O(M×max(sj)×
max(wk)), where M is the number of documents, sj is a the number of sentences
in a document, and wk is the number of words in a sentence. The probabilistic
reasoning algorithm has the worst case running time ofO(|L|×|SuperConcepts|),
where |L| is the size of the lexicon and |SuperConcepts| is the size of the su-
per concepts set. The ontologies generated from the system are consistent with
Pellet8 and FaCT++9 reasoners.

Finally, our method provides a process to create a lexico-semantic ontology
for any domain. For our knowledge, this is a very first research on this line of

8 http://clarkparsia.com/pellet
9 http://owl.man.ac.uk/factplusplus/



work. So we continue our research along this line and to provide better results
for future use.

5 Conclusion

We have introduced a novel process to generate an ontology for any random text
corpus. We have shown that our process constructs a flexible ontology. It is also
shown that in order to achieve high precision, it is paramount that the corpus
should be large enough to extract important evidence. Our research has also
shown that probabilistic reasoning on lexico-semantic structures is a powerful
solution to overcome or at least mitigate the knowledge acquisition bottleneck.
Our method also provides evidence to domain experts to build ontologies us-
ing a top-down approach. Though we have introduced a powerful technique to
construct ontologies, we believe that there is a lot of work that can be done to
improve the performance of our system. One of the areas our method lacks is the
separation between concepts and individuals. We would like to use the generated
ontology as a seed ontology to generate instances for the concepts and extract
the individuals already classified as concepts. Finally, we would like to increase
the lexicon of the system with more tags available from the Penn Treebank tag
set. We believe that if we introduce more tags into the system, our system can
be trained to construct human readable (friendly) concepts and relations names.
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Abstract. The web of linked data represents a globally distributed
dataspace which can be queried using the SPARQL query language. How-
ever, with the growth in size and complexity of the web of linked data, it
becomes impractical for the user to know enough about its structure and
semantics for the user queries to produce enough answers. This problem
is addressed in the paper by making use of ontologies available on the web
of linked data to produce approximate results. The existing approach,
which generates multiple relaxed queries and executes them sequentially
one by one, is improved by integrating the approximation steps with the
query execution itself. Thus, by performing query relaxation on-the-fly at
runtime, the shared data between relaxed queries are not fetched repeat-
edly, resulting in significant performance benefits. Further opportunities
for optimization during query execution are identified and are used to
prune relaxation steps which do not produce results. The implementation
of our approach demonstrates its efficacy.

1 Introduction

The traditional World Wide Web has allowed sharing of documents among users
on a global scale. The documents are generally represented in HTML, XML
formats and are accessed using URL and HTTP protocols creating a global
information space. However, in the recent years the web has evolved towards a
web of data [1] as the conventional web’s data representation sacrifices much
of its structure and semantics [2] and the links between documents are not
expressive enough to establish the relationship between them. This has lead
to the emergence of the global data space known as Linked Data[2].

Linked data basically interconnects pieces of data from different sources uti-
lizing the existing web infrastructure. The data published is machine readable
that means it is explicitly defined. Instead of using HTML, linked data uses
RDF format to represent data. The connection between data is made by typed
statements in RDF which clearly defines the relationship between them resulting
in a web of data.

Berners-Lee outlined a set of Linked Data Principles for publishing data on
the Web [3] in a way that all published data becomes part of a single global data
space:



2 Lecture Notes in Computer Science: Authors’ Instructions

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names
3. When someone looks up a URI, provide useful information, using the stan-
dards(RDF, SPARQL)
4. Include links to other URIs, so that they can discover more things

The RDF model describes data in the form of subject, predicate and object
triples. The subject and object of a triple can be both URIs that each identify
an entity, or a URI and a string value respectively. The predicate denotes the
relationship between the subject and object, and is also represented by a URI.
SPARQL is the query language proposed by W3C recommendation to query
RDF data [4]. A SPARQL query basically consists of a set of triple patterns.
It can have variables in the subject,object or predicate positions in each of the
triple pattern. The solution consists of binding these variables to entities which
are related with each other in the RDF model according to the query structure.

There have been a number of approaches proposed to query the web of linked
data. One direction has been to crawl the web by following RDF links and build
an index of discovered data. The queries are then executed against these indexes.
This approach is followed by Sindice[5], Swoogle[6]. Another approach has been
to follow the federated query processing concepts [7], as in DARQ[8], which de-
composes a SPARQL query in subqueries, forwards these subqueries to multiple,
distributed query services, and, finally, integrates the results of the subqueries.
Another execution approach for evaluating SPARQL queries on linked data is
proposed in [9]. It is basically a run-time approach which executes the query
by asynchronously traversing RDF links to discover data sources at run-time.
SPARQL query execution takes place by iteratively dereferencing URIs to fetch
their RDF descriptions from the web and building solutions from the retrieved
data. The SPARQL query execution according to [9] is explained with an exam-
ple below.

Fig. 1. Example SPARQL query

Example. The SPARQL query shown in Figure 1 searches for Professors
employed by the university who have authored a publication. The query execu-
tion begins by fetching the RDF description of the university by dereferencing its
URI. The fetched RDF description is then parsed to gather a list of all of its pub-
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lications. Parsing is done by looking for triples that match the first pattern in the
query. The object URIs in the matched triples form the list of publications in the
university. Lets say <http://site1/publ1.rdf>, <http://site2/publ2.rdf>,
<http://publ3/Mary.rdf> were found to be the papers. The query execution
proceeds by fetching the RDF descriptions corresponding to the three publica-
tions. Lets say first publ1’s graph is retrieved. It is parsed to check for triples
matching the second query pattern and it is found that publ1 was authored by
John <http://site4/John.rdf>. John’s details are again fetched and the third
triple pattern in the query is searched in the graph to see whether he is of type
Professor and if he is, the result of query is formed and displayed as output.
Publ1’s and Publ2’s graphs and their author details would also be retrieved and
the query execution proceeded in a way similar to Publ1’s.

Consider the situation where the retrieved list publications authored by the
professors may not meet the requirements of the user in which case query con-
ditions can be relaxed to produce more results. For example, instead of looking
for only Professors, the query can be generalized by searching for all types of
people including lectures,graduate students etc. The algorithm presented in [10]
generates relaxed SPARQL queries and executes them sequentially one after an-
other to generate approximate answers. The algorithm was designed to work on
centralized RDF repositories and the approach is extended to the web of linked
data in this paper. The relaxed SPARQL queries formed share many query con-
ditions in common, which are not utilized to optimize the queries. Especially in a
distributed environment, like the web of linked data, avoiding repeated fetching
of data shared across the queries results in significant performance benefits.

Fig. 2. Relaxed SPARQL query

Example. Figure 2 gives the two similar queries formed after the query term
Professor is replaced by Faculty and Person terms using RDFS ontology, which
are then executed sequentially. However, the first two predicates are common
between the two queries, therefore to achieve efficiency the information corre-
sponding to them can be fetched once. Hence, instead of generating the two
queries the execution of the original query can continue by dereferencing the
URIs corresponding to Publ1 and its author and retrieving their RDF descrip-
tions, and the check performed by the third predicate to see whether the author
is a Professor or not is only replaced by Faculty and Person at the last step.



4 Lecture Notes in Computer Science: Authors’ Instructions

This allows the retrieval of the shared data only once instead of twice had the
existing approach been followed.

The goal of this paper is to perform approximate SPARQL querying of the
web of linked data. This paper extends the approach presented in [10] for relaxed
querying of centralized RDF repositories to the context of web of linked data and
along with the execution approach presented in [9] takes into account different
namespaces being used. The idea of delaying query relaxation to run-time is
introduced in order to optimize the query performance and the various other
optimization opportunities present are also recognized and used.

2 Similarity Measures

In [10] the similarity measures were defined to allow ranked approximate answers.
However the measures were designed for centralized RDF repositories and con-
sidered only one ontology. In the context of linked data, each user publishing
data has the freedom to define his own ontology, but according to the principles
of linked data it has to be mapped to existing ontologies, therefore we assume
such mappings exist for the purposes of this paper.

A triple pattern can be replaced by terms in the ontology in a number of ways.
Therefore, there is a need to attach a score to each relaxation which can be used
to rank them to ensure the quality of results. The score given to each relax-
ation measures the similarity of it to the original triple pattern. Highest scoring
relaxation are executed first followed by others in the decreasing order of the sim-
ilarity score. For example, we would rank the relaxation from (?X,type,professor)
to (?X,type,faculty) higher than (?X,type,professor) to (?X,type,person) as the
former is more similar to the original triple pattern. A SPARQL query consists
of a basic graph pattern which in turn consists of triple patterns. Therefore, the
score associated with an answer to a SPARQL query is computed by aggregating
the scores of relaxed triple patterns. Each triple pattern consists of a subject,
predicate and object parts, and each of them can be potentially relaxed. Their
aggregated score gives the score of the triple pattern.

Similarity between nodes In a triple pattern t1, if the subject/object node
belongs to class c1 in the RDFS ontology and is relaxated to class c2 using the
ontology we use the idea of Least Common Ancestor to compute the similarity
of the two triple patterns. The Least Common Ancestor denotes the depth of
the common ancestor superclass of the two classes from the root in the RDFS
ontology.

score(c1, c2) =
2 ∗Depth(LCA(c1, c2))
depth(c1) + depth(c2)

Similarity between predicates In a triple pattern t1, if the predicate
belongs to class p1 in the RDFS ontology and is relaxed to class p2 using the
ontology we use the idea of Least Common Ancestor to compute the similarity of
the two triple patterns similar to that done for subject/object nodes. The Least
Common Ancestor denotes the depth of the common ancestor superproperty of
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the two classes from the root in the RDFS ontology.

score(p1, p2) =
2 ∗Depth(LCA(p1, p2))
depth(p1) + depth(p2)

Similarity between triple patterns If the triple pattern t1-(s1, p1, o1)
is relaxed to t2-(s2, p2, o2) we aggregate the similarity scores of the triple pat-
tern constituents to compute the overall similarity score of relaxed triple pattern.

similarity(t1, t2) = score(s1, s2) + score(p1, p2) + score(o1, o2)

Score of an answer The bindings of the relaxed SPARQL queries form the
answers to the original SPARQL query. Since the original query is relaxed in a
number of ways we need a measure to rank the relevant answers to ensure the
quality of results. Thus, we define the score of each relevant answer as the simi-
larity of its corresponding relaxed SPARQL query from which it is produced to
the original SPARQL query. The similarity between the two queries is obtained
by combining the similarities of the triple patterns in them. Suppose the answer
A is obtained from query Q

′
(t

′

1, t
′

2, t
′

3...t
′

n) which was formed after the original
query Q(t1, t2, t3....tn) was relaxed.

score(A) =
∑n

i=1 similarity(ti, t
′

i)

3 Query Processing Algorithms

[10] presents an approach to generate relaxed SPARQL queries from the orig-
inal SPARQL query using RDFS ontology. It produces many relaxed versions
and assigns scores to them based on the similarity to the original query. The
relaxed queries are then executed one by one sequentially in the descending or-
der of their scores to get ranked approximate answers. However, the SPARQL
queries generated have many query conditions in common. Therefore, the se-
quential execution approach of all the queries involves needlessly fetching the
same data repeatedly. In this section we present an optimized query processing
algorithm where relaxed queries are generated and answered on-the-fly during
query execution resulting in significant performance benefits.

Algorithm 1 describes the approach presented in [10] that can be extended
to produce approximate answers in the web of linked data. Lines 2-7 denote the
steps taken to generate multiple relaxed queries. The relaxation procedure is
described as a graph, called a relaxation graph here. First the given query is put
as a root in the relaxation graph. Then each triple is relaxed one-by-one and the
new query produced as a result is inserted as a child node of the query node
in the relaxation graph that led to it being produced. Each triple relaxation is
accompanied by computing its relaxation score and this score is attached to its
corresponding relaxed query. This process is repeated till all possible relaxed
queries are generated. Lines 11-18 execute the relaxed queries produced earlier
sequentially one by one. To generate ranked approximate results and ensure
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the quality of answers the relaxed queries are executed in the descending order
of their similarity scores with the original query. The relaxed query with the
maximum score is executed first following which the next query to be executed
is chosen with the highest score amongst its children and so on.

Algorithm 1: Existing Approach
Input : :Query Q
Output: :Approximate answers
relaxationGraph = φ1

Insert Q as root in relaxationGraph2

while Q 6= φ do3

foreach Triple ti in Q do4

Relax ti to t
′
i5

compute the score of approximation6

Insert Q
′
i as a succeeding node of Q in relaxationGraph7

Q⇐ QsiblingNode or QsucceedingNode8

Result = φ9

Candidates = φ10

Insert Q’s succeeding nodes from relaxationGraph into Candidates.11

while Candidates > 0 do12

Select Qi with maximum score from Candidates13

Insert Qi succeeding nodes relaxationGraph into Candidates14

R⇐ Execute(Qi)15

Result = Result ∪R16

Add Qi to processed17

Remove Qi from Candidates18

Return Result19

Figure 3 describes the execution of two queries of figure 2. The two queries
are generated from the query of figure 1 as described by algorithm 1. The query
in figure 1 finds the professors in the university who have authored a publication.
To get approximate answers, the query is relaxed by producing two queries in
which the query condition professor is replaced by faculty and persons. The left
box in figure 4 shows the execution of left query in figure 2 and similarly for the
box on the right. As we can see, many of the URIs dereferenced are the same
in both the cases. For both of them, the query execution takes place by first
dereferencing the university’s URI to retrieve its RDF graph. Then the details
of its publications publ1,publ2 and publ3 followed by its authors, John,Peter
and Mary, are fetched. The existing approach repeats this process twice for each
of the relaxed query when instead we can fetch the shared information once and
then perform the relaxation. This motivates us to integrate the approximation
process with the execution of the query and is described in algorithm 2.

Algorithm 2 describes the proposed approach in this paper for efficient ap-
proximate answering. Lines 3-16 repeat for each query predicate in the given
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Fig. 3. Execution with existing approach

query. It begins with the seed, fetching its RDF graph. Then presence of the
query predicate is checked for in the fetched RDF graph. If it is present the
relaxation score for the predicate in the graph is given the maximum value of
1.0. Predicates belonging to different namespaces are assumed to be mapped
in accordance with the linked data principles. Otherwise, using the metrics de-
scribed in the earlier section the similarity score for each predicate in the RDF
graph is computed. The predicates are then sorted in the descending order of
their scores. The query execution proceeds by updating the seed with the object
URIs of the predicates, which are then dereferenced to retrieve their graphs.
Further similarities are computed and this process is repeated till a set of leaf
values are produced. The path from the root to the leaf values in lines 17-19
along the relaxed predicates gives the approximate answers.

Figure 4 shows the query execution with the proposed approach for the query
in figure 1. The query execution takes place by fetching the university’s details,
the details its publications and their authors just once. Once the publication’s
authors details have been retrieved the third predicate checking whether the
person is of type professor can be relaxed to check for all people in the university
like lecturers and graduate students. Thus in effect the relaxation mechanism has
been delayed to be performed on-the-fly at run-time and by doing so the shared
data is not fetched repeatedly which results in significant performance benefits.

4 Optimizations

The query processing described in the last section works by relaxing the query
on-the-fly during query execution. This approach serves well to optimize the
query but there are further opportunities that arise during query execution that
can be exploited to optimize the query. To do so the vocabulary(RDFS/OWL)
describing the resources which gives the domains and ranges of various predicates
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Fig. 4. Execution with proposed approach

as well as the subclass/superclass hierarchy details of all classes is considered.
There are two cases that arise.

Case1: If a predicate p is replaced by p
′

with the subsequent predicate q,
and that range(p

′
) ∩ domain(q) is NULL the current relaxation of p is pruned

as it will not produce results. There may be a situation when the subsequent
predicate q is relaxed to q

′
and range(p

′
) ∩ domain(q

′
) is not NULL in which

case some results are missed. Therefore, a minimum threshold for the score of
relaxation is maintained, and if the intersection of range(p

′
) ∩ domain(q) is

NULL the relaxation is pruned only if the score is below the threshold.

Case2: If an object o is replaced by o
′

with the subsequent predicate q, and
that o

′ ∩ domain(q) is NULL the current relaxation can be pruned as it will not
produce results. There may be a situation when the subsequent predicate q is
relaxed to q

′
and o

′ ∩domain(q
′
) is not NULL in which some results are missed.

Therefore, a minimum threshold is maintained for the score of relaxation, and if
the intersection of o

′ ∩ domain(q) is NULL the relaxation is pruned only if the
score is below the threshold.

Fig. 5. Examples
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Algorithm 2: Proposed Approach
Input : :Query Q
Output: :Approximate answers
let γ be the threshold1

seed = intial set of uris2

foreach queryPredicatek in Q do3

while seed 6= φdo4

foreach seedi do5

Dereference seedi and retrieve its RDF graph R6

Remove seedi from seed7

foreach predicate pj in R do8

if pj matches the corresponding query predicate9

queryPredicatek then
relaxScore(pj) = 110

if pjobject isbound then11

compute relaxScore(pjobject) with queryPredicatekobject12

else13

compute the relaxScore(pj) with queryPredicatek14

Sort all pj in the descending order of their relaxScores.15

foreach pj do16

if relaxScore(pj) > γ then17

if pjobject isnotbound then18

seed⇐ seed ∪ pjobject19

foreach seedi in seed do20

Retrieve the path p from seedi to root21

Return p as the approximate answer22

Figures 5 illustrates the two cases. The figure on the left shows the query
during whose execution the predicate ”worksForUniversity” is relaxed to ”works-
For”. If there is a predicate ”worksForCompany” in the retrieved RDF graph
of the entity and as it is a subproperty of ”worksFor” the query condition is
relaxed to ”worksForCompany”. But the domain of the predicate succeeding it,
that is ”hasNumberOfStudents”, is the class of universities whereas the range
of the predicate ”worksinCompany” is the class of Companies whose intersec-
tion is NULL. Thus this relaxation is pruned. But there is a possibility that the
relaxation of the next predicate is from ”hasNumberofStudents” to ”hasnum-
berofEmployees”. In which case the domain of the new relaxed predicate is the
class of companies whose intersection with the range of earlier relaxed predi-
cate is again the class of companies. Hence, if the first relaxation had not been
discarded results could have been produced. To handle this situation, the score
of relaxation is taken into account. If the score is above a certain predefined
threshold, the relaxation is allowed and the query execution proceeds as usual.
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The figure on the right shows the query during whose execution the object node
”paper” is relaxed to the class of ”books”. However, the next predicate ”pub-
lishedinConference” has the class of papers as it domain. Hence, the relaxation
to class of books produces a NULL set and can be pruned.

Algorithm 3: Optimizations
Input : :Query Q
Output: :Decision on whether to continue with current approximation
let t denote the triple being handled, which is approximated to t

′
1

let q be the predicate succeeding t2

let γ be the threshold on the score of approximation3

if predicate p is relaxed to p
′
then4

if range(p
′
) ∩ domain(q) == NULL then5

if score(t) < γ then6

try different relaxation of p7

if object node o is relaxed to o
′
then8

if o
′
∩ domain(q) == NULL then9

if score(t) < γ then10

try different relaxation of o11

5 Experiments

The experiments were conducted on a Pentium 4 machine running windows XP
with 1 GB main memory. All the programs were written in Java. The synthetic
data used for the simulations was generated with the LUBM benchmark data
generator [11]. The LUBM benchmark is basically an university ontology that
describes all the constituents of a university like its faculty,courses,students etc.
The synthetic data is represented as a web of linked data with 200,890 nodes
denoting entities and 500,595 edges denoting the relationships between them.
The efficacy of the proposed idea was demonstrated by executing a set of queries
in figure 6 used in [10] on the simulated web of linked data of a university and
comparing the results with the existing approach. Each of the query below can be
relaxed in a number of ways and the existing approach generates relaxed queries
and executes them sequentially one by one whereas in contrast the proposed
approach integrates the process of relaxation with the query execution to produce
approximate answers. The time taken to execute the query is proportional to the
number of URIs resolved to fetch their RDF descriptions during the course of
query execution. Therefore, this paper uses the reduction in the number of URIs
fetched as a metric to judge the results as the web of linked data was simulated
on a single machine.
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Fig. 6. Queries

Query 1 searches for the teaching assistants of a particular course who have
a masters degree from a particular university. Approximate answers are gener-
ated by relaxing the constraints step by step on the teaching assistant that is
the teaching assistant can handle any course and have a master’s degree from
any university. Query 2 searches for assistant professors who teach a graduate
course. Approximate answers are produced by relaxing the conditions in steps
to look for all faculty who teach any course. Query 3 looks for assistant professor
advisors who have a particular research interest. The query is again relaxed in
steps by searching for all the people in the university who have any research
interest. Query 4 searches for advisors who are professors and work for a partic-
ular university. Approximate answers are produced by looking for advisors who
can be any type of faculty and who work for any university. Query 5 searches
for professors who have authored a journal article. Approximate answers are
produced step by step by looking for all persons including graduate students
who have authored any type of paper. Figure 7 shows the number of URIs of
entities dereferenced with the existing and the proposed approaches. The query
performance improves by 75% for query 1, 80% for query 2, 83% for query 3,
78% for query 4 and 67% for query 5.

6 Conclusions And Future Work

The paper presented an approach towards allowing approximate querying of the
web of linked data. The proposed idea produces approximate answers by relax-
ing the query conditions on-the-fly during query execution using the ontologies
available on the web of linked data, in contrast with existing approach which
generates multiple relaxed queries and executes them sequentially. The advan-
tage of proposed approach is that it is able to avoid fetching the shared data
between the relaxed queries repeatedly, which results in significant performance
benefits as shown in the experiments. Future work includes investigation of other
schemes, like top-k systems, towards producing approximate answers.
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Fig. 7. Results
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Abstract. This paper presents a novel approach for semantic query ex-
tension using a probabilistic description logic. Concepts that are related
to a keyword-based query are used for finding other concepts and rela-
tions through the use of a relational Bayesian network built using the
probabilistic description logic crALC. Furthermore, probabilistic assess-
ments allow us to rank the information returned by search. Examples
and issues of importance in real world applications are discussed.

1 Introduction

This paper focuses on the use of ontologies to improve keyword-based search.
The concepts of a given ontology are taken as annotations for documents or
text fragments, thus providing background knowledge and enabling intelligent
search and browsing facilities. Hence the ontological knowledge augments un-
structured text with links to relevant concepts. For example, articles “Life of the
probabilistic fish” and “A new kind of aquatic vertebrate with probabilistic pro-
cessing” are all instances of the concept Publication; in a keyword-based search,
the query “Publications about probabilistic fish” would return only the former
paper. However connections amongst concepts are important to indicate further
results. An ontology can then be employed for semantic query extension; that is,
for deriving terms that lead to relevant results for the query. For example, the
concept Publication is related to the concept Author; a semantic query extension
strategy could use this information and reason that the second paper is a valid
result as Professor G. Rouper is an author of both papers.

There is always uncertainty in this sort of reasoning. In particular, it may not
be possible to guarantee that a concept is related to the ones in the query. Thus,
it would be interesting if the semantic query extension system could handle the
probability of a concept conditioned on the concepts mentioned in the query. In
our example, the information about Author is valuable only if the probability of
it influencing the contents of a paper is high.

An ontology can be represented through a description logic [3], which is ty-
pically a decidable fragment of first-order logic that tries to reach a practical



balance between expressivity and complexity. To represent uncertainty, a proba-
bilistic description logic must be contemplated. The literature contains a number
of proposals for probabilistic description logics [10, 11, 25]. In this paper we adopt
a recently proposed probabilistic description logic, called Credal ALC (crALC)
[6], that extends the popular logic ALC [3]. In crALC one can specify sentences
such as P (Professor|Researcher) = 0.4, indicating the probability that an element
of the domain is a Professor given that it is a Researcher. These sentences are
called probabilistic inclusions. Exact and approximate inference algorithms that
deal with probabilistic inclusions have been proposed [6, 7], using ideas inherited
from the theory of relational Bayesian networks [12].

In this paper, we propose an algorithm that receives keyword-based queries
and that takes semantic information about the domain of the application to ob-
tain results that are not possible in standard information retrieval. The idea here
is to obtain all concept instances that are related to a given word even if that
word does not appear with the concept. The system can infer relations through
the probabilistic description logic crALC, finding concepts probabilistically re-
lated to the ones in the query, and making it possible to retrieve concepts that
do not contain any of the specified words. The information related to the cho-
sen concepts is the set of query results, and they are returned ranked by their
probability.

Section 2 reviews relevant elements of information retrieval and the proba-
bilistic description logic crALC. Section 3 presents our proposal information
retrieval system. Section 4 presents some preliminary experiments. Section 5
reviews some related work and Section 6 concludes the paper.

2 Background

In this section, we review keyword-based information retrieval and the probabi-
listic description logic crALC.

2.1 Information Retrieval Models

The field of information retrieval (IR) [14] has been defined as the subject con-
cerned with the representation, storage, organization, and access of information
items. One example of traditional IR technique is the Boolean model [23]. A
document d is then represented by the vector −→x = (x1, ..., xM ) where xt = 1 if
term t is present in document d and xt = 0 otherwise. The procedure searches
for documents that satisfy a query in the form of a Boolean expression of terms.
Thus, if a query such as x1 AND x2 OR x3 is provided, this technique retrieves
documents where x1 = 1 and x2 = 1 simultaneously or x3 = 1.

Another sort of model for IR is based on logical representations [4, 5, 13]. The
task can be described as the extraction, from a given document base, of those
documents d that, given a query q, make the formula d → q valid, where d and q
are formulas of a chosen logic and ”→” denotes logical implication. In this paper,
we are interested in logical representations that consider symbols d and q as



terms (i.e. expressions denoting objects or sets of objects). Different formalisms
have been proposed with these goals. An example is the terminological logic
for IR proposed in [15]. In that logic, documents are represented by individual
constants, whereas a class of documents is represented as a concept, and queries
are described as concepts. Given a query q, the task is to find all those documents
d such that q(d) holds. The evaluation of q(d) uses the set of assertions describing
documents; that is, instead of evaluating whether d is related to q, evaluate if
“individual d is an instance of the class concept q”.

2.2 Probabilistic Description Logics and crALC

A description logic (DL) offers a formal language where one can describe know-
ledge such as “A Professor is a Person who works in an Organization”. To do so, a
DL typically uses a decidable fragment of first-order logic [3], and tries to reach a
practical balance between expressivity and complexity. The last decade has seen
a significant increase in interest in DLs as a vehicle for large-scale knowledge
representation, for instance in the semantic web. Indeed, the language OWL [1],
proposed by the W3 consortium as the data layer of their architecture for the
semantic web, is an XML encoding for quite expressive DLs.

Knowledge in a DL is expressed using individuals, concepts, and roles. The
semantics is given by a domain D and an interpretation ·I . Individuals represent
objects through names from a set of names NI = {a, b, . . .}. Each concept in
the set of concepts NC = {C, D, . . .} is interpreted as a subset of a domain D
(a set of objects). Each role in the set of roles NR = {r, s, . . .} is interpreted as
a binary relation on the domain. Objects correspond to constants, concepts to
unary predicates, and roles to binary predicates in first order logic. Concepts and
roles are combined to form new concepts using a set of constructors. Construc-
tors in the ALC logic are conjunction (C ⊓ D), disjunction (C ⊔ D), negation
(¬C), existential restriction (∃r.C), and value restriction (∀r.C). Concept inclu-
sions/definitions are denoted respectively by C ⊑ D and C ≡ D, where C and
D are concepts. Concept (C ⊔ ¬C) is denoted by ⊤, and concept (C ⊓ ¬C) is
denoted by ⊥.

The probabilistic description logic (PDL) crALC [7] is a probabilistic ex-
tension of the DL ALC that adopts an interpretation-based semantic. It keeps
all constructors of ALC, but only allows concept names in the left hand side of
inclusions/definitions. Additionally, in crALC one can have probabilistic inclu-
sions such as P (C|D) = α, P (r) = β for concepts C and D, and for role r. For
any element of the domain, the probability that this element is in C, given that
it is in D is α. If the interpretation of D is the whole domain, then we simply
write P (C) = α. The semantics of these inclusions is roughly as follows (a formal
definition can be found in [7]):

∀x ∈ D : P (C(x)|D(x)) = α and ∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This assump-
tion allows one to represent any terminology T through a relational Bayesian



network (RBN). A directed acyclic graph, denoted by G(T ), has each concept
name and role name as a node, and if a concept C directly uses concept D, if
C appear in the left and D in the right hand sides of an inclusion/definition,
then D is a parent of C in G(T ). Each existential restriction ∃r.C and value
restriction ∀r.C is added to the graph G(T ) as nodes, with an edge from r to
each restriction directly using it. Each restriction node is a deterministic node
in that its value is completely determined by its parents. Considers the following
example.

Example 1. Consider a terminology T1 with concepts A, B, C, D. Suppose
P (A) = 0.9, B ⊑ A, C ⊑ B ⊔ ∃r.D, P (B|A) = 0.45, P (C|B ⊔ ∃r.D) = 0.5, and
P (D|∀r.A) = 0.6. The last three assessments specify beliefs about partial overlap
among concepts. Suppose also P (D|¬∀r.A) = ǫ ≈ 0 (conveying the existence of
exceptions to the inclusion of D in ∀r.A). Figure 1 depicts G(T ).

Fig. 1. G(T ) for terminology T in Example 1 and its grounding for domain D = {a, b}.

The semantics of crALC is based on probability measures over the space
of interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|E), where
E is a set of evidences, can be computed by propositionalization and proba-
bilistic inference (for exact calculations) or by a first order loopy propagation
algorithm (for approximate calculations) [7]. Considering the domain D = {a, b}
the grounding of G(T ) of Example 1 is shown in Figure 1.

3 Semantic Query Extension with crALC

In the last decade several proposals have been made for semantic information
retrieval. Boolean and vector space procedures, for example, have corresponding
semantic versions [26, 20, 19, 8] and [27, 2, 9] respectively. We refer to [24] for a
more detailed review. Query extension (or query suggestion) is a strategy often
used in search engines to derive queries that are able to return more useful
search results than original queries [14]. Most popular search engines provide
facilities that let users complete, specify, or reformulate their queries. Semantic
query extension is a special type of query extension based on the identification



of semantic concepts contained in user queries [16]. For example, the result for
query “Publications of probabilistic description logic” can be improved when a
system that considers semantics extends the query to consider also the concept
Author instead of only the concept Publication.

In [18] we employed the PDL crALC, combined with traditional IR, to re-
trieve documents relevant to the query when analyzing the terms of the query
separately. In this paper, we claim that the PDL crALC can also be useful for
semantic query extension so as to obtain documents that are related to a given
word even if that word does not appear with the concept. Therefore, a proba-
bilistic ontology to model the domain represented by the documents is created.
This probabilistic ontology is represented through the PDL crALC and can be
learned from data (we refer to [17, 21] for detailed information on how to learn
crALC sentences from data). Then, the documents are linked to this ontology
through indexes. Texts on documents are indexed and these texts are properties
in the corresponding ontology. Therefore, documents and ontology are decou-
pled, but at the same time are related by sharing the same indexed text. The
ontology and the indexed documents are input for our semantic search process.
The semantic search process is divided in three parts: (i) search, (ii) query ex-
tension and (iii) ranking the results according to their relevance. The key design
choices for each task are described as follows.

Search Procedure Given a query as a set of keywords, the concepts and roles
related to it are found through three steps. First, a keyword-based search is per-
formed finding the set of documents related to the keywords provided by the
user. Next, the concepts and roles related to these documents are found through
the corresponding indexes (therefore, the concept properties are also identified).
Finally, a relational Bayesian network propositionalized is built where the con-
cepts selected are evidence in this network. This relational Bayesian network is
the input for the query extension phase.

Query Extension Procedure Expanding a given query involves adding terms
and/or operators to the original query in order to improve results. In our pro-
posal, the ontology provides terms that may be added to the query. Inference is
performed in the relational Bayesian network found during search. The proba-
bility of all concepts that are not evidence in the RBN is inferred. A threshold
is considered and the concepts with a probability higher than this threshold are
selected and provided as input for the ranking results phase.

Ranking Procedure In this phase the documents related to the concepts se-
lected by the query extension step are retrieved and ranked according to their
probability. Then, these documents are shown together with the documents
firstly selected in the search process step. It is worth noting that the docu-
ments selected in the search process are reordered according their probabilities;
that is, a merged ordered list of documents is exhibited to the user.



There are two main drawbacks with this proposal. The first is the size of
ontologies and the second is the amount of instances that are obtained after
propositionalization. In principle, these issues prevent us from performing pro-
babilistic inference on real world domains and therefore limit our framework to
limited size domains. Fortunately, we can resort to variational methods in or-
der to perform approximate inference [7] making possible the application of our
proposal.

4 Preliminary Results

Experiments were performed on a real world dataset: the Lattes Curriculum
Platform3, a public repository containing data about Brazilian researchers in
HTML format. Due its content is quite structured (sections such as name, ad-
dress education, etc. are well defined) it is clearly possible to construct a pro-
babilistic ontology from it. We randomly selected 1964 web documents to this
task, learning the probabilistic terminology from data with the crALC learning
algorithm presented in [21]. The complete probabilistic terminology is given by:

P (Person) = 0.9

P (Publication) = 0.5
P (Board) = 0.33

P (Supervision) = 0.35
P (hasPublication) = 0.85
P (hasSupervision) = 0.6

P (hasParticipation) = 0.78
P (wasAdvised) = 0.15

P (hasSameInstitution) = 0.4
P (sharePublication) = 0.22
P (sameExaminationBoard) = 0.19

Researcher ≡ Person

⊓(∃hasPublication.Publication
⊓∃hasSupervision.Supervision⊓ ∃hasParticipation.Board)

P (NearCollaborator | Researcher ⊓ ∃sharePublication.∃hasSameInstitution.
∃sharePublication.Researcher) = 0.95

FacultyNearCollaborator ≡ NearCollaborator
⊓ ∃sameExaminationBoard.Researcher

P (NullMobilityResearcher | Researcher ⊓ ∃wasAdvised.
∃hasSameInstitution.Researcher) = 0.98

StrongRelatedResearcher ≡ Researcher
⊓ (∃sharePublication.Researcher ⊓
∃wasAdvised.Researcher)

InheritedResearcher ≡ Researcher
⊓ (∃sameExaminationBoard.Researcher ⊓
∃wasAdvised.Researcher)

Text on web documents was indexed according to linked properties on the
ontology. When a keyword occurs within a given property, the keyword brings
evidence about instance of properties for a given concept. The former probabi-
listic terminology acts as template for concept and property instances.

The overall process is detailed as follows. Assume we pose a query on “Bayesian
networks” (the Lucene 4 search engine was used to do so), the system retrieves

3 http://lattes.cnpq.br/.
4 http://lucene.apache.org/



an ordered list of 20 researchers with links to Lattes curriculum as depicted in
Figure 2.

Fig. 2. Traditional query.

Suppose the user intends to follow each link and to inspect where “Bayesian
networks” is located, so as to determine relevance of the document retrieved.
In our setting these 20 results are candidate documents that could be further
extended. Actually, these results are candidate instance concepts in the proba-
bilistic terminology.

Furthermore, because of indexing on text properties, we are able to instan-
tiate specific properties where the query occurs. This step allow us to “propo-
sitionalize” the inherent relational Bayesian network associated with the pro-
babilistic ontology. Furthermore, in this probabilistic setting, each query occur-
rence inside properties denotes evidence on corresponding nodes. For instance,
if Researcher(0) contains the query keyword on a given publication the corres-
ponding node hasPublication(0, 1) is set to true. Some roles also allow us to
state relationships among concept instances (the sharePublication(0, 2) role re-
lates Researcher(0) and Researcher(2) through a shared publication) and there-
fore enforce likelihood of related concepts that leads to extensions of the original
query. The resulting relational Bayesian network after propositionalization is
shown in Figure 3.

Probabilistic inference is performed on the relational Bayesian network to
obtain semantic query extensions; that is, top related concepts and top related
researchers to the query are added to results. The extended results page is de-
picted in Figure 4. Some new entries were added to the former results page (for
instance, the researcher P. E. M. was added because of its strong relationship



Fig. 3. Relational Bayesian network after propositionalization.

with a top researcher on “Bayesian networks”). In addition, the final research list
has extended information with links to specific properties and concepts rather
than uninformative snippet texts.

Probabilistic reasoning also allows us to obtain a probabilistic ranking. In-
tuitively, higher evidence on a given topic gives rise to a better ranking position.
The previous ranking in Figure 2 returned the three following researchers: I.B.
de M., F. T. R. and F. G. C. Conversely, our probabilistic logic setting returns a
modified order: F. G. C., I.B. de M. and A. C. F. O. A relational Bayesian net-
work model allow us to further investigate these results. The higher ranking was
attributed to researcher F. G. C. due to evidence of query topic on publications,
advising works and participations of examination boards (P(Researcher(F.G.C.)
|hasPublication.P, advises.S, participate.B) = α). The rest of the ranking was ob-
tained accordingly.

To evaluate results obtained by our approach, two types of tests were con-
ducted. The first type focuses on searching researchers that best match several
topics (given as keywords). The aim of this test is evaluate whether the seman-
tic search return meaningful results. In order to do so, we have chosen random
topics such as “Bayesian networks”, “probabilistic logic”, “pattern recognition”
and so on with well established research groups in Brazil. Lists of researchers
and related concepts were evaluated qualitatively. All 20 topics evaluated had
positive analysis. Note that the analysis of results for semantic searches is still an
open issue; in fact, there is no standard evaluation benchmarks that contain all
required information to judge the quality of the current semantic search methods
[9].

The second test addresses the ranking problem; that is, are the top re-
searchers listed first for every topic? This issue is linked to probabilistic as-



Fig. 4. Final extended result.

sessments that denote strength of relationships among instances, and give rise
to a 99% positive analysis.

5 Related Work

Our framework for semantic query extension has been influenced by previous
works, which we now briefly review.

The work in [22] describes a semantic search that is based on keywords, but
at the same time uses the semantic information about the domain of interest to
obtain results that are not possible with traditional searches. Differently from
traditional searches, the work obtains all concept instances that are related to
a given word even if that word does not appear inside the concept. The system
can infer relations through a spread activation algorithm, making it possible to
retrieve concepts that do not contain any of the specified words. Given an initial
set of activated concepts and some restrictions, activation flows through the
instance network reaching other concepts which are closely related to the initial
concepts. One of the ideas is to extract knowledge from the ontology and its
instances to obtain a numerical weight for each existing relation instance in the
model. The result is an hybrid instances network, where each relation instance
has both a semantic label and numerical weight. The intuition behind this idea
is that better results in the search process can be achieved using the semantic
information together with the sub-symbolic (numerically encoded) information
extracted from the instances. The present work is different in that it uses a
relational Bayesian network to find other concepts related to the one in the
query. Therefore, it also finds the probability associated to the concepts.



In [16] the most relevant concepts for the full query and for each contigu-
ous sequence of n words of the query are collected; then, a supervised machine
learning method is used to decide which of the retrieved concepts should be
kept and which should be discarded. In order to train the learning algorithm,
queries submitted and manually linked to relevant DBpedia concepts are used
as datasets [28]. The task: given a query (within a session, for a given user),
produce a ranked list of concepts from DBpedia that are mentioned or meant in
the query. These concepts could then be used to suggest contextual information,
such as text snippets from the Wikipedia article. One difference to the present
proposal is that we do handle uncertainty explicitly; also, we do not change the
original query.

Another complete framework was proposed in [9]. Basically, two tasks were
addressed. The first, understanding the natural language user request and re-
trieving an answer in the form of pieces of ontological knowledge. The user’s
query is processed and translated into the terminology of available ontologies,
thus retrieving a list of ontological entities as a response. In the second task,
relevant documents are retrieved and ranked based on the previously retrieved
pieces of ontological knowledge. Just as traditional ranking algorithms are based
on keyword weighting, their approach relies on measuring the relevance of each
individual association between semantic concepts and web documents. This work
is related to ours because it also maintains the search process decoupled (ontol-
ogy and text are explored separately). The difference relies on the consideration
of uncertainty in the present work.

6 Conclusion

We have presented a framework for retrieving information using a mix of web
documents and probabilistic ontologies. The idea is to extract semantic informa-
tion in two steps. In the first step, a probabilistic ontology is constructed based
on a set of documents. The second step searches for instance concepts that best
match a given user query. The algorithm links ontology properties to indexed
documents in such a way that properties are instantiated in response to queries.

By handling properties and concepts we can instantiate related concepts and
therefore obtain a meaningful relational Bayesian network to perform inference
and to obtain a ranking of concepts. Experiments focused on a real-world do-
main (the Lattes scientific repository) suggest that this approach does lead to
improved query results.

Acknowledgements

The first author is supported by CAPES and the third author is partially
supported by CNPq. The work reported here has received substantial support
through FAPESP grant 2008/03995-5.



References

1. G. Antoniou and F. van Harmelen. Semantic Web Primer. MIT Press, 2008.
2. K. Anyanwu, A. Maduko, and A. Sheth. SemRank: ranking complex relation-

ship search results on the semantic web. In Proceedings of the 14th international
conference on World Wide Web, pages 117–127, New York, NY, USA, 2005. ACM.

3. F. Baader and W. Nutt. Basic description logics. In Description Logic Handbook,
pages 47–100. Cambridge University Press, 2002.

4. J. Cornelis and A. van Rljsbergen. New theoretical framework for information
retrieval. In ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pages 194–200, 1986.

5. J. Cornelis and A. van Rljsbergen. A non-classical logic for information retrieval.
The Computer Journal, 29:481–485, 1986.

6. F.G. Cozman and R.B. Polastro. Loopy propagation in a probabilistic descrip-
tion logic. In Sergio Greco and Thomas Lukasiewicz, editors, Second International
Conference on Scalable Uncertainty Management, Lecture Notes in Artificial In-
telligence (LNAI 5291), pages 120–133. Springer, 2008.

7. F.G. Cozman and R.B. Polastro. Complexity analysis and variational inference for
interpretation-based probabilistic description logics. In Conference on Uncertainty
in Artificial Intelligence, pages 1–9, 2009.

8. L. Ding, T. Finin, A. Joshi, Y. Peng, R. Pan, and P. Reddivari. Search on the
semantic web. Computer, 38:62–69, 2005.

9. M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet, E. Motta, and P. Castells.
Semantic search meets the web. In Proceedings of the 2nd IEEE International
Conference on Semantic Computing, pages 253–260, Washington, DC, USA, 2008.
IEEE Computer Society.

10. J. Heinsohn. Probabilistic description logics. In International Conf. on Uncertainty
in Artificial Intelligence, pages 311–318, 1994.

11. M. Jaeger. Probabilistic reasoning in terminological logics. In Principals of Know-
ledge Representation (KR), pages 461–472, 1994.

12. M. Jaeger. Relational Bayesian networks: a survey. Linkoping Electronic Articles
in Computer and Information Science, 6, 2002.

13. M. Lalmas and P. Bruza. The use of logic in information retrieval modelling. The
Knowledge Engineering Review, 13:263–295, 1998.

14. C. Manning, P. Raghavan, and H. Schütze, editors. Introduction to Information
Retrieval. Cambridge, 2008.

15. C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of information
retrieval based on a terminological logic. In Proceedings of the 16th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 298–307, New York, NY, USA, 1993. ACM.

16. E. Meij, M. Bron, B. Huurnink, L. Hollink, and M. de Rijke. Learning semantic
query suggestions. In 8th International Semantic Web Conference, pages 424–440.
Springer, 2009.

17. J. Ochoa-Luna and F.G. Cozman. An algorithm for learning with probabilistic
description logics. In 5th International Workshop on Uncertainty Reasoning for
the Semantic Web (URSW) at the 8th International Semantic Web Conference
(ISWC), pages 63–74, Chantilly, USA, 2009.

18. J. Ochoa-Luna, K. Revoredo, and F.G. Cozman. Semantic query extension using
query contexts and probabilistic description logics. In Proceedings of the 3rd In-
ternational Workshop on Web and Text Intelligence. To appear, 2010.



19. B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov. Kim – a semantic
platform for information extraction and retrieval. Nat. Lang. Eng., 10(3-4):375–
392, 2004.

20. R. Guha R., McCool, and E. Miller. Semantic search. In Proceedings of the 12th
international conference on World Wide Web, pages 700–709, New York, NY, USA,
2003. ACM.

21. K. Revoredo, J. Ochoa-Luna, and F.G. Cozman. Learning terminologies in pro-
babilistic description logics. In Proceedings of the 20th Brazilian Symposium on
Artificial Intelligence. To appear, 2010.

22. C. Rocha, D. Schwabe, and M. Aragao. A hybrid approach for searching in the
semantic web. In Proceedings of the 13th international conference on World Wide
Web, pages 374–383, New York, NY, USA, 2004. ACM.

23. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

24. P. Scheir, V. Pammer, and S. Lindstaedt. Information retrieval on the semantic
web - does it exist? In In LWA 2007, Lernen - Wissensentdeckung - Adaptivität,
24.-26.9. 2007 in Halle/Saale (in this volume, 2007.

25. F. Sebastiani. A probabilistic terminological logic for modelling information re-
trieval. In ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pages 122–130, 1994.

26. A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke. Man-
aging semantic content for the web. IEEE Internet Computing, 6(4):80–87, 2002.

27. N. Stojanovic, N. Studer, and R. Stojanovic. An approach for the ranking of query
results in the semantic web. In Proceedings of the 2nd International Semantic Web
Conference, pages 500–516, 2003.

28. I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.



Finite Fuzzy Description Logics: A Crisp
Representation for Finite Fuzzy ALCH

Fernando Bobillo1 and Umberto Straccia2

1 Dpt. of Computer Science and Systems Engineering, University of Zaragoza, Spain
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

Email: fbobillo@unizar.es, straccia@isti.cnr.it

Abstract. Fuzzy Description Logics (DLs) are a formalism for the rep-
resentation of structured knowledge affected by imprecision or vagueness.
In the setting of fuzzy DLs, restricting to a finite set of degrees of truth
has proved to be useful. In this paper, we propose finite fuzzy DLs as a
generalization of existing approaches. We assume a finite totally ordered
set of linguistic terms or labels, which is very useful in practice since
expert knowledge is usually expressed using linguistic terms. Then, we
consider any smooth t-norm defined over this set of degrees of truth. In
particular, we focus on the finite fuzzy DL ALCH, studying some logi-
cal properties, and showing the decidability of the logic by presenting a
reasoning preserving reduction to the non-fuzzy case.

1 Introduction

It has been widely pointed out that classical ontologies are not appropriate
to deal with imprecise and vague knowledge, which is inherent to several real-
world domains. Since fuzzy logic is a suitable formalism to handle these types
of knowledge, there has been an important interest in generalize the formalism
of Description Logics (DLs) [1] to the fuzzy case [2].

It is well known that different families of fuzzy operators (or fuzzy logics)
lead to fuzzy DLs with different properties [2]. For example, Gödel and Zadeh
fuzzy logics have an idempotent conjunction, whereas  Lukasiewicz and Product
fuzzy logic do not. Clearly, different applications may need different fuzzy logics.

In fuzzy DLs, some fuzzy operators imply logical properties which are usually
undesired. For instance, in Zadeh fuzzy logic concepts and roles do not fully
subsume themselves [3]. Furthermore,  Lukasiewicz logic may not be suitable for
combining information, as the conjunction easily collapses to zero [4]. Hence, the
study of new fuzzy operators is an interesting topic.

Assuming a finite set of degrees of truth is useful in the setting of fuzzy
DLs, [3,5,6]. In the Zadeh case it is interesting for computational reasons [3].
In Gödel logic, it is necessary to show that the logic verifies the Witnessed
Model Property [7]. In  Lukasiewicz logic, it is necessary to obtain a non-fuzzy
representation of the fuzzy ontology [6]. A question that immediately arise is
whether this assumption is possible when different fuzzy logics are considered.



There is a recent promising line of research that tries to fill the gap between
mathematical fuzzy logic and fuzzy DLs [7,8,9]. Following this path, we build on
the previous research on finite fuzzy logics [10,11,12] and propose a generalization
of the different fuzzy DLs under finite degrees of truth that have been proposed,
as we consider any smooth t-norm defined over a chain of degrees of truth.

Instead of dealing with degrees of truth in [0, 1], as usual in fuzzy DLs, we will
assume a finite (totally ordered) set of linguistic terms or labels. For instance,
N = {false, closeToFalse, neutral, closeToTrue, true}. This makes possible
to abstract from the numerical interpretations of these labels.

The use of linguistic labels as degrees in fuzzy DLs has already been pro-
posed. U. Straccia proposed to take the degrees from an uncertainty lattice [13].
To guarantee soundness and completeness of the reasoning, the set of labels is
assume to be finite. A recent extension of this work by other authors considers
Zadeh SHIN [14]. Nowadays, finite chains are receiving more attention, since
they are one of the building blocks of the first order t-norm based logic L∗∼(S)∀,
which can be used to define several related fuzzy DLs [8,9].

The benefits of this paper are two-fold: firstly, since experts’ knowledge is
usually expressed using a set of linguistic terms [11], the process of knowledge
acquisition is easier. Secondly, we make possible to use new fuzzy operators in
the setting of fuzzy DLs for the first time.

The remainder is organized as follows. Section 2 includes some preliminaries
on finite fuzzy logics. Then, Section 3 defines a fuzzy extension of the DL ALCH
based on finite fuzzy logics and discusses some logical properties. Section 4 shows
the decidability of the logic by providing a reduction of fuzzy ALCH into crisp
ALCH. Finally, Section 5 sets out some conclusions and ideas for future research.

2 Finite Fuzzy Logics

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [15] to manage
imprecise and vague knowledge. Here, statements are not either true or false,
but they are a matter of degree.

Let X be a set of elements called the reference set, and let S be a totally
ordered scale with e as minimum element and u as maximum. A fuzzy subset
A of X is defined by a membership function A(x) : X → S which assigns any
x ∈ X to a value in S. Similarly as in the classical case, e means no-membership
and u full membership, but now a value between them represents to which extent
x can be considered as an element of X.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication are performed by a t-norm function, a t-conorm
function, a negation function, and an implication function, respectively.

In the following, we consider finite chains of degrees of truth [10,11,12]. A
finite chain of degrees of truth is a totally ordered set N = {0 = γ0 < γ1 < · · · <
γp = 1}, where p ≥ 1. For our purposes all finite chains with the same number
of elements are equivalent. N can be understood as a set of linguistic terms or
labels. For example, {false, closeToFalse, neutral, closeToTrue, true}.



Table 1. Popular fuzzy logics over a finite chain

Family γi ⊗ γj γi ⊕ γj 	γi γi ⇒ γj
Zadeh min{γi, γj} max{γi, γj} γp−i max{γp−i, γj}

Gödel min{γi, γj} max{γi, γj}
{
γp, γi = 0
γ0, γi > 0

{
γp, γi ≤ γj
γj , γi > γj

 Lukasiewicz γmax{i+j−p,0} γmin{i+j,p} γp−i γmin{p−i+j,p}

In the rest of the paper, we will use the following notion: N+ = N \ {γ0},
+γi = γi+1, −γi = γi−1. Let us also denote by [γi, γj ] the finite chain given by
the subinterval of all γk ∈ N such that i ≤ k ≤ j.

T-norms, t-conorms, negations and implications can be restricted to finite
chains. Table 1 shows some popular examples: Zadeh, Gödel, and  Lukasiewicz.

The smoothness condition is a discrete counterpart of continuity on [0, 1].
A function f : N → N is smooth iff it satisfies the following condition for all
i ∈ N+ f(γi) = γj implies that f(γi−1) = γk with j − 1 ≤ k ≤ j + 1. A binary
operator is smooth when it is smooth in each place.

A t-norm on N is a function ⊗ : N 2 → N satisfying commutativity, asso-
ciativity, monotonicity, and some boundary conditions. Smoothness for t-norms
is equivalent to the divisibility condition in [0, 1], i.e., γi ≤ γj if and only if
there exists γk ∈ N such that γj ⊗ γk = γi. A t-norm ⊗ is Archimedean iff
∀γ1, γ2 ∈ N \ {γ0, γp} there is n ∈ N such that γ1 ⊗ γ1 · · · ⊗ γ1 (n times) < γ2.

Proposition 1. There is one and only one Archimedean smooth t-norm on N
given by γi ⊗ γj = γmax{0,i+j−p}. Moreover, given any subset J of N containing
γ0, γp, there is one and only one smooth t-norm ⊗J on N that has J as the set
of idempotent elements. In fact, if J is the set J = {0 = γi0 < γi1 < · · · <
γim−1 < γim = 1} such a t-norm is given by:

γi ⊗J γj =
{
γmax{ik,i+j−ik+1} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γmin{i,j} otherwise

Note that the Archimedean smooth t-norm happens with J = {γ0, γp}, and
that the minimum happens with J = N . It is worth to note that, as a conse-
quence of Proposition 1, a finite smooth product t-norm is not possible.

Example 1. Given the finite chain N = {γ0, γ1, γ2, γ3, γ4, γ5} and the set J =
{γ0, γ3, γ5}, ⊗J is defined as:

γ0 γ1 γ2 γ3 γ4 γ5
γ0 γ0 γ0 γ0 γ0 γ0 γ0
γ1 γ0 γ0 γ0 γ1 γ1 γ1
γ2 γ0 γ0 γ1 γ2 γ2 γ2
γ3 γ0 γ1 γ2 γ3 γ3 γ3
γ4 γ0 γ1 γ2 γ3 γ3 γ4
γ5 γ0 γ1 γ2 γ3 γ4 γ5

A negation function 	 on N is strong if it verifies 	(	γ) = γ,∀γ ∈ N . There
is only one strong negation on N and it is given by 	γi = γp−i

Given a smooth t-norm ⊗ and the strong negation 	, we can define the dual
t-conorm ⊕⊗, as the function satisfying γi ⊕⊗ γj = 	((	γi)⊗ (	γj)).



Proposition 2. There is one and only one Archimedean smooth t-conorm on
N given by γi⊕ γj = γmin{p,i+j}. Moreover, given any subset J of N containing
γ0, γp, there is one and only one smooth t-conorm ⊕J on N that has J as the
set of idempotent elements. In fact, if J is the set J = {0 = γi0 < γi1 < · · · <
γim−1 < γim = 1} such a t-conorm is given by:

γi ⊕J γj =
{
γmin{ik+1,i+j−ik} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γmax{i,j} otherwise

Note that the Archimedean smooth t-conorm happens with J = {γ0, γp},
and that the maximum happens with J = N .

A binary operator ⇒: N 2 → N is said to be an implication, if it is non-
increasing in the first place, non-decreasing in the second place, and satisfies
some boundary conditions.

Given a smooth t-norm ⊗ and the strong negation 	, an S-implication ⇒s⊗
is the function satisfying γi ⇒s⊗ γj = 	(γi ⊗ (	γj)) = (	γi)⊕ γj .

Proposition 3. Let ⊗J : N 2 → N be a smooth t-norm with J = {0 = γi0 <
γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒s⊗ is given by:

γi ⇒s⊗ γj =
{
γmin{p−ik,ik+1+j−i} if ∃γik ∈ J such that γik ≤ γi, γp−j ≤ γik+1

γmax{p−i,j} otherwise

The Kleene-Dienes implication happens with the minimum t-norm, and the
 Lukasiewicz implication happens with the Archimedean t-norm.

Given a smooth t-norm ⊗, an R-implication ⇒r⊗ can be defined as γi ⇒r⊗
γj = max{γk ∈ N|(γi ⊗ γk) ≤ γj}, for all γi, γj ∈ N .

Proposition 4. Let ⊗J : N 2 → N be a smooth t-norm with J = {0 = γi0 <
γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒r⊗ is given by:

γi ⇒r⊗ γj =

γp if γi ≤ γj
γik+1+j−i if ∃γik ∈ J such that γik ≤ γj < γi ≤ γik+1

γj otherwise

Example 2. Given the t-norm in Example 1, ⇒r⊗ is defined as follows, where
the first column is the antecedent and the first row is the consequent:

γ0 γ1 γ2 γ3 γ4 γ5
γ0 γ5 γ5 γ5 γ5 γ5 γ5
γ1 γ2 γ5 γ5 γ5 γ5 γ5
γ2 γ1 γ2 γ5 γ5 γ5 γ5
γ3 γ0 γ1 γ2 γ5 γ5 γ5
γ4 γ0 γ1 γ2 γ4 γ5 γ5
γ5 γ0 γ1 γ2 γ3 γ4 γ5

Gödel implication happens with the minimum t-norm, and the  Lukasiewicz
implication happens with the Archimedean t-norm.

A QL-implication is an implication verifying γi ⇒ γj = (	γi)⊕ (γi ⊗ γj).



Proposition 5. Let ⊗ : N 2 → N be a smooth t-norm. The operator γi ⇒
γj = (	γi) ⊕ (γi ⊗ γj) is a QL-implication iff ⊕ is the Archimedean smooth
t-conorm. Moreover, in this case, γi ⇒ql⊗ γj = γp−i+z for all γi, γj ∈ N , where
γz = γi ⊗ γj.

Proposition 6. Let ⊗J : N ×J N → N be a smooth t-norm with J = {0 =
γi0 < γi1 < · · · < γim−1 < γim = 1}. Then, the implication ⇒ql⊗ is given by:

γi ⇒ql⊗ γj =

γmax{p−i+ik,p+j−ik+1} if γi, γj ∈ [ik, ik+1] for some 0 ≤ k ≤ m− 1
γp−i+j if γj ≤ ik ≤ γi for some ik ∈ J
γp otherwise

The  Lukasiewicz implication happens with the minimum t-norm, and the
KleeneDienes implication happens with the Archimedean t-norm (note the dif-
ference with respect to S-implications).

Interestingly, ⇒s⊗ and ⇒ql⊗ are smooth if and only if so is ⊗, but the
smoothness condition is not preserved in general for R-implications.

Finally, we can also define D-implications. The name is due to the equivalence
to the Dishkant arrow in orthomodular lattices. Note that D-implication are
sometimes called NQL-implication. A D-implication is an implication satisfying
γi ⇒ γj = ((	γi)⊗ (	γj))⊕γj for all γi, γj ∈ N . However, QL-implications and
D-implications on N actually coincide. Given a set J and J̄ = {γp−x|γx ∈ J},
then ⇒ql⊗J is equivalent to ⇒d⊗J̄ .

The notions of fuzzy relation, inverse relation, composition of relations, re-
flexivity, symmetry and transitivity can trivially be restricted to N .

3 Finite Fuzzy ALCH

In this section we define fuzzy ALCH, a fuzzy extension of ALCH where:

– Concepts denote fuzzy sets of individuals.
– Roles denote fuzzy binary relations.
– Degrees of truth are taking from a finite chain N .
– Axioms have a degree of truth associated.
– The fuzzy connectives used are a smooth t-norm ⊗ onN , the strong negation
	 on N , the dual t-conorm ⊕, and the implications ⇒s⊗,⇒r⊗,⇒ql⊗.

In this paper, we will assume the reader to be familiar with classical DLs (for
details, we refer to [1]).

3.1 Definition

Notation. In the rest of this paper, C,D are (possibly complex) concepts, A is an
atomic concept, R is a role, a, b are individuals, ./ ∈ {≥, <,≤, >}, C ∈ {≥, >},
B ∈ {≤, <}. We will also use ≡ to denote semantical equivalence, and we will
not write ⊗ in the subscripts of the implications.



Syntax. Finite fuzzy ALCH assumes three alphabets of symbols, for concepts,
roles and individuals. A Fuzzy Knowledge Base (KB) contains a finite set of
axioms organized in a fuzzy ABox A (axioms about individuals), a fuzzy TBox
T (axioms about concepts), and a fuzzy RBox T (axioms about roles).

The syntax of fuzzy concept, roles, and axioms are shown in Table 2. Note
that in fuzzy ALCH, all fuzzy roles are atomic.

Remark 1. As opposed to the crisp case, there are three types of universal re-
strictions, fuzzy GCIs, and fuzzy RIAs. In fact, the different subscripts s, r, and
ql denote an S-implication, R-implication, and QL-implication, respectively.

Semantics. A fuzzy interpretation I is a pair (∆I , ·I) where ∆I is a non empty
set (the interpretation domain) and ·I is a fuzzy interpretation function mapping
(i) every individual a onto an element aI of ∆I , (ii) every concept C onto a
function CI : ∆I → N , and (iii) every role R onto a function RI : ∆I ×∆I →
N . The fuzzy interpretation function is extended to fuzzy complex concepts and
axioms as shown in Table 2.

CI denotes the membership function of the fuzzy concept C with respect to
the fuzzy interpretation I. CI(x) gives us the degree of being x an element of
the fuzzy concept C under I. Similarly, RI denotes the membership function of
the fuzzy role R with respect to I. RI(x, y) gives us the degree of being (x, y)
an element of the fuzzy role R.

Remark 2. Note an important difference with previous work in fuzzy DLs. Usu-
ally, ·I maps every concept C onto a function CI : ∆I → [0, 1], and every
role R onto RI : ∆I × ∆I → [0, 1]. Consequently, a fuzzy KB {〈a : C >
0.5〉, 〈a : C < 0.75} is satisfiable, by taking CI(a) ∈ (0.5, 0.75). But now,
given N = {false, closeToFalse, neutral, closeToTrue, true}, a fuzzy KB
{〈a : C > closeToFalse〉, 〈a : C < neutral} is not satisfiable, since CI(a) ∈ N .

Witnessed models. In order to correctly manage infima and suprema in the
reasoning, we need to define the notion of witnessed interpretations [7]. A fuzzy
interpretation I is witnessed iff, for every formula, the infimum corresponds
to the minimum and the supremum corresponds to the maximum. Our logic
also enjoys the Witnessed Model Property (WMP) (all models are witnessed),
because the number of degrees of truth in the models of the logic is finite [7].

Reasoning tasks. We will define the most important reasoning tasks and show
that all of them can be reduced to fuzzy KB satisfiability.

– Fuzzy KB satisfiability. A fuzzy interpretation I satisfies (is a model of) a
fuzzy KB K = 〈A, T ,R〉 iff it satisfies each element in A, T and R.

– Concept satisfiability. C is α-satisfiable w.r.t. a fuzzy KB K iff K∪ {〈a :C ≥
α〉} is satisfiable, where a is a new individual, which does not appear in K.

– Entailment. A fuzzy concept assertion 〈a : C ./ α〉 is entailed by a fuzzy
KB K (denoted K |= 〈a : C ./ α〉) iff K ∪ {〈a : C ¬ ./ α〉} is unsatisfiable.
Furthermore, K |= 〈(a, b) :R ≥ α〉 iff K ∪ {〈b : B ≥ γp〉} |= 〈a : ∃R.B ≥ α〉,
where B is a new concept.



Table 2. Syntax and semantics of finite fuzzy ALCH

Element Syntax Semantics
Concepts > γp

⊥ γ0

A AI(x)

C uD CI(x)⊗DI(x)

C tD CI(x)⊕DI(x)

¬C 	CI(x)

∀sR.C infy∈∆I {R
I(x, y)⇒s C

I(y)}
∀rR.C infy∈∆I {R

I(x, y)⇒r C
I(y)}

∀qlR.C infy∈∆I {R
I(x, y)⇒ql C

I(y)}
∃R.C supy∈∆I {R

I(x, y)⊗ CI(y)}
Roles R RI(x, y)

ABox axioms 〈a :C ./ γ〉 CI(aI) ./ γ

〈(a, b) :R ./ γ〉 RI(aI , bI) ./ γ

TBox axioms 〈C vs D B γ〉 infx∈∆I {C
I(x)⇒s D

I(x)}B γ

〈C vr D B γ〉 infx∈∆I {C
I(x)⇒r D

I(x)}B γ

〈C vql D B γ〉 infx∈∆I {C
I(x)⇒ql D

I(x)}B γ

RBox axioms 〈R1 vs R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒s R

I
2 (x)}B γ

〈R1 vr R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒r R

I
2 (x)}B γ

〈R1 vql R2 B γ〉 infx,y∈∆I {R
I
1 (x)⇒ql R

I
2 (x)}B γ

– Greatest lower bound. The greatest lower bound of a concept or role assertion
τ is defined as the sup{α : K |= 〈τ ≥ α〉}. It can be computed performing at
most log |N | entailment tests [16].

– Concept subsumption: Under an S-implication, D subsumes C with degree α
(C vs D ≥ α) w.r.t. a fuzzy KB K iff K ∪ {a :¬C tD < α} is unsatisfiable,
where a is a new individual. Under an R-implication, D subsumes C (C vr
D) w.r.t. a fuzzy KB K iff, for every α ∈ N , K ∪ {a :C ≥ α} ∪ {a :D < α}
is unsatisfiable, where a is a new individual. Under a QL-implication, D
subsumes C with degree α (C vql D ≥ α) w.r.t. a fuzzy KB K iff K ∪ {a :
¬C t (C uD) < α} is unsatisfiable, where a is a new individual.

3.2 Logical Properties

It can be easily shown that finite fuzzy ALCH is a sound extension of crisp
ALCH, because fuzzy interpretations coincide with crisp interpretations if we
restrict the membership degrees to {γ0 = 0, γp = 1}.

Proposition 7. Finite fuzzy ALCH interpretations coincide with crisp inter-
pretations if we restrict the membership degrees to {γ0 = 0, γp = 1}.

The following properties are extensions to a finite chain N of properties for
Zadeh fuzzy DLs [3] and  Lukasiewicz fuzzy DLs [6].

1. Concept simplification: C u > ≡ C, C t ⊥ ≡ C,C u ⊥ ≡ ⊥, C t > ≡ >,
∃R.⊥ ≡ ⊥, ∀sR.> ≡ >, ∀rR.> ≡ >, ∀qlR.> ≡ >.

2. Involutive negation: ¬¬C ≡ C,
3. Excluded middle and contradiction: In general, C t ¬C 6≡ >, C u ¬C 6≡ ⊥,
4. Idempotence of conjunction/disjunction: In general, C uC 6≡ C, C tC 6≡ C.



5. De Morgan laws: ¬(C tD) ≡ ¬C u ¬D, ¬(C uD) ≡ ¬C t ¬D,
6. Inter-definability of concepts: ⊥ ≡ ¬>, > ≡ ¬⊥, C u D ≡ ¬(¬C u ¬D),
C tD ≡ ¬(¬C t ¬D), ∀sR.C ≡ ¬∃R.(¬C), ∃R.C ≡ ¬∀sR.(¬C). However,
in general, CuD 6≡ ¬(¬Ct¬D), CtD 6≡ ¬(¬Cu¬D), ∀rR.C 6≡ ¬∃R.(¬C),
∃R.C 6≡ ¬∀rR.(¬C), ∀qlR.C 6≡ ¬∃R.(¬C), ∃R.C 6≡ ¬∀qlR.(¬C).

7. Inter-definability of axioms: 〈τ > β〉 ≡ 〈τ > +β〉, 〈τ < α〉 ≡ 〈τ ≤ −α〉.
8. Contrapositive symmetry : C vs D ≡ ¬D vs ¬C. However, in general, C vr
D 6≡ ¬D vr ¬sC,C vql D 6≡ ¬D vql ¬sC.

9. Modus ponens: 〈a : C B γ1〉 and 〈C vr D B γ2〉 imply 〈a : D B γ1 ⊗ γ2〉,
〈(a, b) :RB γ1〉 and 〈R vr R′ B γ2〉 imply 〈(a, b) :R′ B γ1 ⊗ γ2〉.

10. Self-subsumption: (C vr C)I = γp, (R vr R)I = γp. However, in general,
(C vs C)I 6= γp, (R vs R)I 6= γp, and (C vql C)I 6= γp, (R vql R)I 6= γp.

Remark 3. Inter-definability of axioms makes it possible to restrict to fuzzy ax-
ioms of the forms 〈τ ≥ α〉 and 〈τ ≤ β〉.

4 A Crisp Representation for Finite Fuzzy ALCH

In this section we show how to reduce a fuzzy KB into a crisp KB. The pro-
cedure is satisfiability-preserving, so existing DL reasoners could be applied to
the resulting KB. The basic idea is to create some new crisp concepts and roles,
representing the α-cuts of the fuzzy concepts and relations, and to rely on them.
Next, some new axioms are added to preserve their semantics and finally every
axiom in the ABox, the TBox and the RBox is represented, independently from
other axioms, using these new crisp elements.

Before proceeding formally, we will illustrate this idea with an example.

Example 3. Consider the smooth t-norm on N used in Example 1, and let us
compute some α-cuts of the fuzzy concept A1 uA2 (denoted ρ(A1 uA2,≥ α)).

To begin with, let us consider α = γ2. By definition, this set includes the
elements of the domain x satisfying AI1 (x)⊗AI2 (x) ≥ γ2. There are two possibili-
ties: (i) AI1 (x) ≥ γ2 and AI2 (x) ≥ γ3, or (ii) AI1 (x) ≥ γ3 and AI2 (x) ≥ γ2. Hence,
ρ(A1 uA2,≥ γ2) =

(
ρ(A1,≥ γ2) u ρ(A2,≥ γ3)

)
t
(
ρ(A1,≥ γ3) u ρ(A2,≥ γ2)

)
.

Now, let us consider α = γ3. Now, there is only one possibility: AI1 (aI) ≥ γ3

and AI2 (aI) ≥ γ3. Hence, ρ(A1 uA2,≥ γ3) = ρ(A1,≥ γ3) u ρ(A2,≥ γ3).

Observe that for idempotent degrees (α ∈ J) the case is the same as in finite
Zadeh and Gödel fuzzy logics [3,5], whereas for non-idempotent degrees the case
is similar as in finite  Lukasiewicz fuzzy logic [6].

4.1 Adding New Elements

Let A be the set of atomic fuzzy concepts and R the set of atomic fuzzy roles in
a fuzzy KB K = 〈A, T ,R〉, respectively. For each α∈N+, for each A ∈ A, a new
atomic concepts A≥α is introduced. A≥α represents the crisp set of individuals
which are instance of A with degree higher or equal than α i.e the α-cut of A.
Similarly, for each R ∈ R, a new atomic role R≥α is created.



Remark 4. The atomic elements A≥γ0 and R≥γ0 are not considered because they
are always equivalent to the> concept. Also, as opposite to previous works [3,5,6]
we are not introducing elements of the forms A>β and R>β (for each β ∈N \
{γp}), since now A>γi is equivalent to A≥γi+1 , and R>γi is equivalent to R≥γi+1 .

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ p − 1 and
for each A ∈ A, T (N ) is the smallest terminology containing these axioms:
A≥γi+1 v A≥γi . Similarly, for each RA ∈ R, R(N ) is the smallest terminology
containing these axioms: R≥γi+1 v R≥γi .

Remark 5. Again, note that the number of new axioms needed here is less than
the number needed in similar works [3,5,6], since we do not need to deal with
elements of the forms A>β and R>β .

4.2 Mapping Fuzzy Concepts, Roles and Axioms

Fuzzy concept and role expressions are reduced using mapping ρ, as shown in the
top part of Table 3. Given a fuzzy concept C, ρ(C,≥ α) is a crisp set containing
all the elements which belong to C with a degree greater or equal than α. The
other cases ρ(C, ./ γ) are similar. ρ is defined in a similar way for fuzzy roles.
Furthermore, axioms are reduced as in the bottom part of Table 3, where κ(τ)
maps a fuzzy axiom τ in finite fuzzy ALCH into a set of crisp axioms in ALCH.

The reduction of the conjunction considers every pair γx, γy ∈ (γik , γik+1 ]
such that α ∈ (γik , γik+1 ], and x + y = ik+1 + z, with α = γz. Note that the
reduction does not consider a closed internal of the form [γik , γik+1 ]. The reason is
that, if α is idempotent and we set γik+1 = α, the result is correct (γx = γy = α).
However, setting γik = α would yield an incorrect result. Similarly, the reduction
of the disjunction also considers a closed interval.

When dealing with R-implications and QL-implications, we consider optimal
pairs of elements, to get efficient representation that avoids superfluous elements.

Definition 1. Let ⇒ be an implication in N , and let γx, γy ∈ N+. (γx, γy) is
a (⇒≥α)-optimal pair iff (i) γx ⇒ γy ≥ α, (ii) there are no γ′x, γ

′
y ∈ N+ such

that γ′x ⇒ γ′y ≥ α, and such that either γ′x < γx or γ′y < γy.

Definition 2. Let⇒ be an implication in N , and let γx ∈ N+, γy ∈ N . (γx, γy)
is a (⇒≤β)-optimal pair iff (i) γx ⇒ γy ≤ β, (ii) there are no γ′x, γ

′
y ∈ N+ such

that γ′x ⇒ γ′y ≤ β, and such that either γ′x < γx or γ′y > γy.

Example 4. Given the R-implication in Example 2, the (⇒≥γ3)-optimal pairs are
(γ3, γ3), (γ2, γ2), and (γ1, γ1); and the (⇒≤γ3)-optimal pairs are (γ5, γ3), (γ3, γ2),
(γ2, γ1), and (γ1, γ0).

Note that R-implications are, in general, non smooth (see Example 2). Hence,
a pair of elements γ1, γy such that γx ⇒r γy = α might not exist, and thus we
have to consider an inequality of the form γx ⇒r γy ≥ α. In QL-implications,
due to the optimality condition, = and ≥ yield the same result.



Table 3. Mapping of concepts, roles, and axioms

ρ(>,≥ α) >
ρ(>,≤ β) ⊥
ρ(⊥,≥ α) ⊥
ρ(⊥,≤ β) >
ρ(A,≥ α) A≥α
ρ(A,≤ β) ¬A≥+β

ρ(¬C, ./ γ) ρ(C, ./− 	γ)

ρ(C uD,≥ α) tγx,γy{ρ(C,≥ γx) u ρ(D,≥ γy)} for every pair γx, γy such that

α, γx, γy ∈ (γik , γik+1 ], and x+ y = ik+1 + z, with γz = α

ρ(C uD,≤ β) ρ(¬C t ¬D,≥ 	β)

ρ(C tD,≥ α) ρ(C,≥ α) t ρ(D,≥ α)tγx,γy{ρ(C,≥ γx) u ρ(D,≥ γy)} for every pair γx, γy
such that α, γx, γy ∈ (γik , γik+1 ], and x+ y = ik + z, with γz = α

ρ(C tD,≤ β) ρ(¬C u ¬D,≥ 	β)

ρ(∃R.C,≥ α) tγx,γy{∃ρ(R,≥ γx).ρ(C,≥ γy)} for every pair γx, γy ∈ (γik , γik+1 ] such that

γ ∈ (γik , γik+1 ], and x+ y = ik+1 + z, with γz = α

ρ(∃R.C,≤ β) ρ(∀sR.(¬C),≥ 	β)

ρ(∀sR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − i = z − ik+1, with γz = α

ρ(∀sR.C,≤ β) ρ(∃R.(¬C),≥ 	β)

ρ(∀rR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)}
for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

ρ(∀rR.C,≤ β) tγx,γy{∃ρ(R,≥ γx).ρ(C,≤ γy)}
for every pair γx ∈ N+, γy ∈ N such that γx, γy are (⇒r ≤β)-optimal

ρ(∀qlR.C,≥ α) uγx,γy{∀ρ(R,≥ γx).ρ(C,≥ γy)}
for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal

ρ(∀qlR.C,≤ β) tγx,γy{∃ρ(R,≥ γx).ρ(C,≤ γy)}
for every pair γx ∈ N+, γy ∈ N such that γx, γy are (⇒ql ≤β)-optimal

ρ(R,≥ α) R≥α
ρ(R,≤ β) ¬R≥+β

κ(〈a :C ./ γ〉) {a :ρ(C, ./ γ)}
κ(〈(a, b) :R ./ γ〉) {(a, b) :ρ(R, ./ γ)}
κ(〈C vs D ≥ α〉)

⋃
{ρ(C,≥ γx) v ρ(D,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − γi = z − γik+1 , with γz = α

κ(〈C vr D ≥ α〉)
⋃
{ρ(C,≥ γx) v ρ(D,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

κ(〈C vql D ≥ α〉)
⋃
{∀ρ(C,≥ γx) v ρ(D,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal

κ(〈R1 vs R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)} for every pair γx, γy such that

γx ∈ (γik , γik+1 ], α, γy ∈ (γp−ik+1 , γp−ik ], and y − γi = z − γik+1 , with γz = α

κ(〈R1 vr R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒r ≥α)-optimal

κ(〈R1 vql R2 ≥ α〉)
⋃
{ρ(R1,≥ γx) v ρ(R2,≥ γy)}

for every pair γx, γy ∈ N+ such that γx, γy are (⇒ql ≥α)-optimal



κ(A) (resp. κ(T ), κ(R)) denotes the union of the reductions of every axiom in
A (resp. T , R). crisp(K) denotes the reduction of a fuzzy KB K. A fuzzy KB K =
〈A, T ,R〉 is reduced into a KB crisp(K) = 〈κ(A), T (N ) ∪ κ(T ), R(N ) ∪ κ(R)〉.

4.3 Properties of the Reduction

Correctness. The following theorem, showing the logic is decidable and that the
reductions preserves reasoning, can be shown.

Theorem 1. The satisfiability problem in finite fuzzy ALCH is decidable. Fur-
thermore, a finite fuzzy ALCH fuzzy KB K is satisfiable iff crisp(K) is.

Complexity. In general, the size of crisp(K) is O(|K| · |N |k), being k the maximal
depth of the concepts appearing in K. In the particular case of finite Zadeh fuzzy
logic, the size of crisp(K) is O(|K| · |N |) [3]. For other fuzzy operators the case is
more complex because we cannot infer the exact values of the degrees of truth, so
we need to build disjunctions or conjunctions over all possible degrees of truth.

Modularity. The reduction of an ontology can be reused when adding new axioms
if they do not introduce new atomic concepts and roles. In this case, it remains
to add the reduction of the new axioms. This allows to compute the reduction
of the ontology off-line and update crisp(K) incrementally. The assumption that
the basic vocabulary is fully expressed in the ontology is reasonable because
ontologies do not usually change once that their development has finished.

5 Conclusions and Future Work

This paper has set a general framework for fuzzy DLs with a finite chain of
degrees of truth N . N can be seen as a finite totally ordered set of linguistic
terms or labels. This is very useful in practice, since expert knowledge is usually
expressed using linguistic terms and avoiding their numerical interpretations.

Starting from a smooth finite t-norm on N , we define the syntax and seman-
tics of fuzzy ALCH. The negation function and the t-conorm are imposed by the
choice of the t-norm, but there are different options for the implication function.
For this reason, whenever this is possible (i.e., in universal restriction concepts
and in inclusion axioms), the language allows to use three different implications.
We have studies some of the logical properties of the logic. This will help the
ontology developers to use the implication that better suit their needs.

The decidability of the logic has been shown by presenting a reasoning pre-
serving reduction to the crisp case. Providing a crisp representation for a fuzzy
ontology allows reusing current crisp ontology languages and reasoners, among
other related resources. The complexity of the crisp representation is higher than
in finite Zadeh fuzzy DLs, because it is necessary to build disjunctions or con-
junctions over all possible degrees of truth. However, Zadeh fuzzy DLs have some
logical problems [3] which may not be acceptable in some applications, where
alternative operators such as those introduced in this paper could be used.



As future work we will study more expressive logics than ALCH, applying the
ideas in the previous work DLs [3,5,6], with the aim of providing the theoretical
basis of a fuzzy extension of OWL 2 under finite chain of degrees of truth.
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Abstract. The past few years have witnessed an increasingly mature
body of research on the Semantic Web, with new standards being de-
veloped and more complex use cases being proposed and explored. As
complexity increases in SW applications, so does the need for principled
means to cope with uncertainty inherent to real world SW applications.
Not surprisingly, several approaches addressing uncertainty representa-
tion and reasoning on the Semantic Web have emerged [3, 4, 6, 7, 10, 11,
13, 14]. For example, PR-OWL [3] provides OWL constructs for repre-
senting Multi-Entity Bayesian Network (MEBN) [8] theories. This paper
reviews some shortcomings of PR-OWL 1 [2] and describes how they will
be addressed in PR-OWL 2. A method is presented for mapping back
and forth from triples into random variables (RV). The method applies
to triples representing both predicates and functions. A complex example
is given for mapping an n-ary relation using the proposed schematic.

Keywords: uncertainty reasoning, OWL, PR-OWL, MEBN, probabilis-
tic ontology, Semantic Web, compatibility.

1 Introduction

Appreciation is growing within the Semantic Web community of the need to
represent and reason with uncertainty. In recognition of this need, the World
Wide Web Consortium (W3C) created the Uncertainty Reasoning for the World
Wide Web Incubator Group (URW3-XG) in 2007 to identify requirements for
reasoning with and representing uncertain information in the World Wide Web.
The URW3-XG concluded that standardized representations were needed to ex-
press uncertainty in Web-based information [9]. A candidate representation for
uncertainty reasoning in the Semantic Web is Probabilistic OWL (PR-OWL)
[3], an OWL upper ontology for representing probabilistic ontologies based on
Multi-Entity Bayesian Networks (MEBN) [8].

Compatibility with OWL was a major design goal for PR-OWL [3]. However,
there are several ways in which the initial release of PR-OWL falls short of
complete compatibility. First, there is no mapping in PR-OWL to properties of
OWL. Second, although PR-OWL has the concept of meta-entities, which allows
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the definition of complex types, it lacks compatibility with existing types already
present in OWL.

These problems have been noted in the literature [12]:

PR-OWL does not provide a proper integration of the formalism of
MEBN and the logical basis of OWL on the meta level. More specifically,
as the connection between a statement in PR-OWL and a statement in
OWL is not formalized, it is unclear how to perform the integration of
ontologies that contain statements of both formalisms.

This paper justifies the need for a formal mapping between random variables
defined in PR-OWL and concepts defined in OWL, and proposes an approach to
such a mapping. We first present a solution that is sufficient for binary relations.
Next, we present a more robust solution that allows the user to define PR-OWL
random variables with arbitrarily many arguments, while maintaining a 2-way
mapping to OWL concepts. Finally, we present a schematic for the mapping
back and forth from triples into random variables.

2 Why map PR-OWL Random Variables to OWL
Concepts?

PR-OWL was proposed as an extension to the OWL language based on MEBN,
which can express a probability distribution on interpretations of any first-order
theory. In PR-OWL, a probabilistic ontology (PO) has to have at least one
individual of class MTheory, which is basically a label linking a group of MFrags
that collectively form a valid MTheory. In actual PR-OWL syntax, that link
is expressed via the object property hasMFrag (which is the inverse of object
property isMFragIn). Individuals of class MFrag are comprised of nodes. Each
individual of class Node is a random variable (RV) and thus has a mutually
exclusive, collectively exhaustive set of possible states. In PR-OWL, the object
property hasPossibleValues links each node with its possible states, which are
individuals of class Entity. Finally, random variables (represented by the class
Node in PR-OWL) have unconditional or conditional probability distributions,
which are represented by class ProbabilityDistribution and linked to their
respective nodes via the object property hasProbDist.

Fig. 1. Front of an Enterprise MFrag.
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As a running example, we consider an OWL ontology for the public procure-
ment domain. The ontology defines concepts such as procurement, winner of a
procurement, members of a committee responsible for a procurement, etc.

Now, imagine we want to define some uncertain relations about this domain.
For example, if an enterprise wins a procurement for millions of dollars, but the
responsible person for this enterprise makes less than 10 thousand dollars a year,
the responsible person may be a front. That is, we can identify potential fronts
by examining the value of the procurement and the income of the responsible
person. Figure 1 shows this probabilistic relation defined using PR-OWL in an
open-source tool for probabilistic reasoning, UnBBayes [1]. In the figure, we see
that a person’s income and the value of a procurement influence whether the
person is front for the procurement. The green pentagons at the top of the figure
show conditions that must be met for the probabilistic relationship to apply; e.g.,
that the person we are considering as a possible front must be responsible for
the enterprise we are examining.

Listing 1.1. Definition of WinnerOf RV in PR-OWL 1

1 <owl:Thing rd f : abou t=”#WinnerOf RV”>
2 <r d f : t y p e r d f : r e s o u r c e=”#Domain Res”/>
3 <hasPoss ib l eVa lues r d f : r e s o u r c e=”#Ente rp r i s e ”/>
4 <i sRes identNodeIn r d f : r e s o u r c e=”#ProcurementInfo MFrag”/>
5 <hasArgument r d f : r e s o u r c e=”#WinnerOf 1”/>
6 </ owl:Thing>
7
8 <owl:Thing rd f : abou t=”#WinnerOf 1”>
9 <r d f : t y p e r d f : r e s o u r c e=”#SimpleArgRelat ionship ”/>

10 <hasArgNumber r d f : d a t a t y p e=”&xsd ; i n t ”>1</hasArgNumber>
11 <hasArgTerm r d f : r e s o u r c e=
12 ”#ProcurementInfo MFrag . procurement ”/>
13 <isArgumentOf r d f : r e s o u r c e=”#WinnerOf RV”/>
14 </ owl:Thing>
15
16 <owl:Thing rd f : abou t=”#ProcurementInfo MFrag . procurement ”>
17 <r d f : t y p e r d f : r e s o u r c e=”#OVariable ”/>
18 <i sOVar iab le In r d f : r e s o u r c e=”#ProcurementInfo MFrag”/>
19 <isSubsBy r d f : r e s o u r c e=”#Procurement”/>
20 <isArgTermIn r d f : r e s o u r c e=”#WinnerOf 1”/>
21 </ owl:Thing>

We would like to be able to tie this fragment of probabilistic knowledge with
domain knowledge already represented in an OWL ontology. That is, we might
have a database containing instances of persons and enterprises, linked to an
OWL ontology defining their semantics (e.g., that persons can be responsible for
enterprises). Accessing this information should be trivial once the definitions in
the ontology were made available and permission was granted to retrieve data
from the database. However, for PR-OWL to make use of this knowledge, there
must be a way to link PR-OWL random variables (RVs) with concepts defined
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in OWL. The current version of PR-OWL has no standard way to establish such
links.

Listing 1.1 presents how the RV WinnerOf RV from Figure 1 is defined in
PR-OWL today. This RV is defined as follows:

– It is a domain resident node (line 2)
– Its possible values (range) are instances of Enterprise (line 3)
– Its home MFrag is ProcurementInfo MFrag (line 4)
– It has one argument (domain) WinnerOf 1 (line 5)
– WinnerOf 1 is the first argument (line 10)
– WinnerOf 1 is related to the variable ProcurementInfo MFrag.procurement

(lines 11-12)
– ProcurementInfo MFrag.procurement is an ordinary variable (line 17)
– ProcurementInfo MFrag.procurement is defined in the ProcurementInfo-

MFrag (line 18)
– ProcurementInfo MFrag.procurement can only be replaced by instances of

Procurement (line 19)

Listing 1.2 is a suggested definition of the object property winnerOf in OWL.
This property is defined as follows:

– It is an object property (line 1)
– It is a functional property (line 2)
– Its domain is the instances of Procurement (line 3)
– Its range is the instances of Enterprise (line 4)

Listing 1.2. Definition of winnerOf object property in OWL

1 <owl :ObjectProperty rd f : abou t=”#winnerOf”>
2 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Funct iona lProperty ”/>
3 <rd f s :domain r d f : r e s o u r c e=”#Procurement”/>
4 <r d f s : r a n g e r d f : r e s o u r c e=”#Ente rp r i s e ”/>
5 </ owl :ObjectProperty>

Comparing the two definitions winnerOf and WinnerOf RV, we can see that
they are consistent, since their domain/arguments and range/possible values
are the same, Procurement and Enterprise, respectively. However, there is no
property that explicitly relates these two concepts, and there is no implicit way
of figuring out that they should be related besides the fact that their names are
similar (winnerOf and WinnerOf RV). Therefore, we would not have access to
the semantics of the term winnerOf defined in our ontology when defining its
probabilistic relations using the new and unrelated term WinnerOf RV defined in
our probabilistic ontology.

This simple example demonstrates the need to define a reference from every
probabilistic definition involving a concept to its OWL definition. In other words,
full compatibility with OWL requires modifications to PR-OWL that guarantee
the preservation of OWL’s semantics.



PR-OWL 2.0 - Bridging the gap to OWL semantics 5

A simple solution to this mapping problem is presented in Listing 1.3. By
adding the property defineUncertaintyOf which states that a random vari-
able defines the uncertainty relations of a specific property, we could state that
WinnerOf RV defines the uncertainty of the object property winnerOf (line 3).
In order to make this definition consistent we would need to add some axioms to
our language stating that the possible values of the RV must be the same as the
range defined in the property for which this RV defines the uncertainty. Similar
axioms would be needed for its domain.

Listing 1.3. Definition of WinnerOf RV with mapping information to its OWL concept

1 <owl:Thing rd f : abou t=”#WinnerOf RV”>
2 <r d f : t y p e r d f : r e s o u r c e=”#Domain Res”/>
3 <de f ineUncer ta intyOf r d f : r e s o u r c e=”#winnerOf”/>
4 <hasPoss ib l eVa lues r d f : r e s o u r c e=”#Ente rp r i s e ”/>
5 <i sRes identNodeIn r d f : r e s o u r c e=”#ProcurementInfo MFrag”/>
6 <hasArgument r d f : r e s o u r c e=”#WinnerOf 1”/>
7 </ owl:Thing>
8
9 <owl:Thing rd f : abou t=”#WinnerOf 1”>

10 <r d f : t y p e r d f : r e s o u r c e=”#SimpleArgRelat ionship ”/>
11 <hasArgNumber r d f : d a t a t y p e=”&xsd ; i n t ”>1</hasArgNumber>
12 <hasArgTerm r d f : r e s o u r c e=
13 ”#ProcurementInfo MFrag . procurement ”/>
14 <isArgumentOf r d f : r e s o u r c e=”#WinnerOf RV”/>
15 </ owl:Thing>
16
17 <owl:Thing rd f : abou t=”#ProcurementInfo MFrag . procurement ”>
18 <r d f : t y p e r d f : r e s o u r c e=”#OVariable ”/>
19 <i sOVar iab le In r d f : r e s o u r c e=”#ProcurementInfo MFrag”/>
20 <isSubsBy r d f : r e s o u r c e=”#Procurement”/>
21 <isArgTermIn r d f : r e s o u r c e=”#WinnerOf 1”/>
22 </ owl:Thing>

3 Mapping n-ary relations

In Section 2 we presented a simple solution to map OWL concepts to random
variables defined in PR-OWL. In this section we will show that the presented
solution is not enough to cover the full expressiveness of PR-OWL. In particular,
this solution cannot represent uncertainty for n-ary functions and relations.

Imagine extending our example to a situation in which a group of enterprises
can win a procurement. Moreover, there will be a price associated with each
enterprise on the contract. Therefore, instead of comparing the value of the
procurement as a whole to try to identify the owner of the enterprise as a front
(as shown on Figure 1), we need to consider only the part of that total associated
to that specific enterprise, as shown in Figure 2.

Note that we now have a ternary relation which associates an enterprise,
a contract, and the amount awarded by the contract to the enterprise. As a
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functional relation, this is represented by the two-argument function priceOf(-
contract,enterprise).

Fig. 2. Front of an Enterprise MFrag using priceOf(contract,enterprise).

Listing 1.4. Problem when trying to define n-ary relations as simple binary relations

1 <owl :ObjectProperty rd f : abou t=”#hasPr ice ”>
2 <rd f s :domain r d f : r e s o u r c e=”#Contract ”/>
3 <r d f s : r a n g e r d f : r e s o u r c e=”#Money”/>
4 </ owl :ObjectProperty>
5
6 <owl :ObjectProperty rd f : abou t=”#hasEnte rpr i s e ”>
7 <rd f s :domain r d f : r e s o u r c e=”#Contract ”/>
8 <r d f s : r a n g e r d f : r e s o u r c e=”#Ente rp r i s e ”/>
9 </ owl :ObjectProperty>

10
11 <Contract rd f : abou t=”#contrac t1 ”>
12 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Thing”/>
13 <hasEnte rpr i s e r d f : r e s o u r c e=”#e n t e r p r i s e 1 ”/>
14 <hasEnte rpr i s e r d f : r e s o u r c e=”#e n t e r p r i s e 2 ”/>
15 <hasPr ice r d f : r e s o u r c e=”#p r i c e 1 ”/>
16 <hasPr ice r d f : r e s o u r c e=”#p r i c e 2 ”/>
17 </ Contract>
18
19 <Money rd f : abou t=”#p r i c e 1 ”>
20 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Thing”/>
21 <valueOf r d f : d a t a t y p e=”&xsd ; f l o a t ”>10000</ valueOf>
22 <currencyOf r d f : r e s o u r c e=”#Dol la r ”/>
23 </Money>
24
25 <owl:Thing rd f : abou t=”#p r i c e 2 ”>
26 <r d f : t y p e r d f : r e s o u r c e=”#Money”/>
27 <valueOf r d f : d a t a t y p e=”&xsd ; f l o a t ”>500000</ valueOf>
28 <currencyOf r d f : r e s o u r c e=”#Dol la r ”/>
29 </ owl:Thing>

Suppose that we want to represent that enterprise1 was hired for $10,000.00
and enterprise2 for $500,000.00 both in contract1. The problem is that OWL
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supports only binary relations. As shown in Listing 1.4, if we tried to represent
this situation using binary relations with the class Contract, we would be un-
able to distinguish whether enterprise1 has price of $10,000.00, price1, or
$500,000.00, price2.

Listing 1.5. Defining n-ary relations in OWL

1 <owl :ObjectProperty rd f : abou t=”#contractOf ”>
2 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Funct iona lProperty ”/>
3 <rd f s :domain r d f : r e s o u r c e=” : i d 1 ”/>
4 <r d f s : r a n g e r d f : r e s o u r c e=”#Contract ”/>
5 </ owl :ObjectProperty>
6
7 <owl :ObjectProperty rd f : abou t=”#e n t e r p r i s e O f ”>
8 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Funct iona lProperty ”/>
9 <rd f s :domain r d f : r e s o u r c e=” : i d 1 ”/>

10 <r d f s : r a n g e r d f : r e s o u r c e=”#Ente rp r i s e ”/>
11 </ owl :ObjectProperty>
12
13 <owl :ObjectProperty rd f : abou t=”#pr iceOf ”>
14 <r d f : t y p e r d f : r e s o u r c e=”&owl ; Funct iona lProperty ”/>
15 <rd f s :domain r d f : r e s o u r c e=” : i d 1 ”/>
16 <r d f s : r a n g e r d f : r e s o u r c e=”#Money”/>
17 </ owl :ObjectProperty>
18
19 <owl:Thing rd f : abou t=”#3aryIns tance1 ”>
20 <r d f : t y p e r d f : r e s o u r c e=” : i d 1 ”/>
21 <contractOf r d f : r e s o u r c e=”#contrac t1 ”/>
22 <e n t e r p r i s e O f r d f : r e s o u r c e=”#e n t e r p r i s e 1 ”/>
23 <pr i ceOf r d f : r e s o u r c e=”#p r i c e 1 ”/>
24 </ owl:Thing>
25
26 <owl:Thing rd f : abou t=”#3aryIns tance2 ”>
27 <r d f : t y p e r d f : r e s o u r c e=” : i d 1 ”/>
28 <contractOf r d f : r e s o u r c e=”#contrac t1 ”/>
29 <e n t e r p r i s e O f r d f : r e s o u r c e=”#e n t e r p r i s e 2 ”/>
30 <pr i ceOf r d f : r e s o u r c e=”#p r i c e 2 ”/>
31 </ owl:Thing>

As shown in Figure 3, one way to overcome this problem is to create a blank
node which has three functions mapping to each of the 3 arguments of our ternary
relation. Notice that these 3 binary relations (contractOf, enterpriseOf, and
priceOf) have to be functions, otherwise we would have the same problem we
had in Listing 1.4. Listing 1.5 presents this representation in OWL (for more
details on how to define n-ary relations in OWL, see [5]).

When we try to apply the simple solution given in Section 2, we realize that
it is not suitable for RVs with more than one argument. This is due to the fact
that we assume the following:
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1. The range from the property associated to the defineUncertaintyOf has
to be the same type as the value of the RV’s hasPossibleValues property;
and

2. The domain from the property associated to the defineUncertaintyOf has
to be the same type as the only RV’s argument (hasArgument→ hasArgTerm
→ isSubsBy).

Fig. 3. An initial ontology with an n-ary relation between Price, Enterprise, and
Contract using a blank node.

So, what happens with the other arguments of the RV? What do they map to?
Notice also that there is no argument in priceOf(contract,enterprise) that
relates to the domain of the OWL property priceOf. In other words, there is no
argument that “points” to the blank node we defined in Figure 3 and Listing 1.5.
Besides, having only the property defineUncertaintyOf relating to the OWL
property priceOf tells us nothing about what contract and enterprise are
and where they come from. As a matter of fact, we need to have a reference to
all the binary properties that we use to represent the n-ary relation we want.
Therefore, in this case, we also need to have a mapping to both contractOf and
enterpriseOf.

Taking a closer look, we realize that all three properties of interest (priceOf,
contractOf, and enterpriseOf) have the same domain (the blank node) and
their range, Money, Contract, and Enterprise, map directly to the possible
values of our RV of interest, to the argument contract, and to the argument
enterprise, respectively. Listing 1.6 shows a more complex and robust solution
that covers this case and any other n-ary relation for which we might want to
define uncertainty.

Listing 1.6 states that the RV priceOf RV defines the probabilistic semantics
of the property priceOf, which already has an OWL semantics (line 3). Lines
4 and 5 ensure that the domain and range from the OWL property match the
RV domain (hasDomain) and range (hasPossibleValues), respectively. Lines 7
and 8 say that this RV has two arguments. Lines 13-15 define the first argument
as being the variable contract, and lines 30-32 define the second argument as
the variable enterprise. Lines 22-24 specify that the contract variable is used
as the object (objectIn) of the OWL property contracOf, thus it can only
be substituted by (isSubsBy) the class that is the range of the contractOf
property, which is Contract. In addition, the domain also has to be the same
(hasDomain), which, in this case, is the blank node :id1.
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Listing 1.6. Robust solution for defining n-ary RVs and mapping them to the OWL
concepts that define their semantics

1 <owl:Thing rd f : abou t=”#priceOf RV”>
2 <r d f : t y p e r d f : r e s o u r c e=”#Domain Res”/>
3 <de f ineUncer ta intyOf r d f : r e s o u r c e=”#pr iceOf ”/>
4 <hasDomain r d f : r e s o u r c e=” : i d 1 ”/>
5 <hasPoss ib l eVa lues r d f : r e s o u r c e=”#Money”/>
6 <i sRes identNodeIn r d f : r e s o u r c e=”#FrontOfEnterprise MFrag ”/>
7 <hasArgument r d f : r e s o u r c e=”#pr i c eOf 1 ”/>
8 <hasArgument r d f : r e s o u r c e=”#pr i c eOf 2 ”/>
9 </ owl:Thing>

10
11 <owl:Thing rd f : abou t=”#pr i c eOf 1 ”>
12 <r d f : t y p e r d f : r e s o u r c e=”#SimpleArgRelat ionship ”/>
13 <hasArgNumber r d f : d a t a t y p e=”&xsd ; i n t ”>1</hasArgNumber>
14 <hasArgTerm r d f : r e s o u r c e=
15 ”#FrontOfEnterprise MFrag . cont rac t ”/>
16 <isArgumentOf r d f : r e s o u r c e=”#priceOf RV”/>
17 </ owl:Thing>
18
19 <owl:Thing rd f : abou t=”#ProcurementInfo MFrag . cont rac t ”>
20 <r d f : t y p e r d f : r e s o u r c e=”#OVariable ”/>
21 <i sOVar iab le In r d f : r e s o u r c e=”#FrontOfEnterprise MFrag ”/>
22 <ob j e c t I n r d f : r e s o u r c e=”#contractOf ”/>
23 <hasDomain r d f : r e s o u r c e=” : i d 1 ”/>
24 <isSubsBy r d f : r e s o u r c e=”#Contract ”/>
25 <isArgTermIn r d f : r e s o u r c e=”#pr i c eOf 1 ”/>
26 </ owl:Thing>
27
28 <owl:Thing rd f : abou t=”#pr i c eOf 2 ”>
29 <r d f : t y p e r d f : r e s o u r c e=”#SimpleArgRelat ionship ”/>
30 <hasArgNumber r d f : d a t a t y p e=”&xsd ; i n t ”>2</hasArgNumber>
31 <hasArgTerm r d f : r e s o u r c e=
32 ”#FrontOfEnterprise MFrag . e n t e r p r i s e ”/>
33 <isArgumentOf r d f : r e s o u r c e=”#priceOf RV”/>
34 </ owl:Thing>
35
36 <owl:Thing rd f : abou t=”#ProcurementInfo MFrag . e n t e r p r i s e ”>
37 <r d f : t y p e r d f : r e s o u r c e=”#OVariable ”/>
38 <i sOVar iab le In r d f : r e s o u r c e=”#FrontOfEnterprise MFrag ”/>
39 <ob j e c t I n r d f : r e s o u r c e=”#e n t e r p r i s e O f ”/>
40 <hasDomain r d f : r e s o u r c e=” : i d 1 ”/>
41 <isSubsBy r d f : r e s o u r c e=”#Ente rp r i s e ”/>
42 <isArgTermIn r d f : r e s o u r c e=”#pr i c eOf 2 ”/>
43 </ owl:Thing>

The same thing goes for the enterprise variable. In lines 39-41 we define
that the enterprise variable is in fact used as the object (objectIn) of the
OWL property enterpriseOf, thus it can only be substituted by (isSubsBy)
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the class that is the range of the enterpriseOf property, which is Enterprise.
In addition, the domain also has to be the same (hasDomain), which, in this
case, is the blank node :id1.

4 The bridge joining OWL and PR-OWL

The key to building the bridge that connects the deterministic ontology defined
in OWL and its probabilistic extension defined in PR-OWL is to understand how
to translate one to the other. On the one hand, given a concept defined in OWL,
how should its uncertainty be defined in PR-OWL in a way that maintains its
semantics defined in OWL? On the other hand, given a random variable defined
in PR-OWL, how should it be represented in OWL in a way that respects its
uncertainty already defined in PR-OWL? Examples of our proposed translation
were given above. Here, a schematic is given in Figure 4 for the 2-way mapping
between triples and random variables. Functions and predicates are considered
as separate cases.

Fig. 4. The bridge joining OWL and PR-OWL.

If a property (hasB or dOf) is defined in OWL, then its domain and range are
already represented (A and B; C and D, respectively). The first thing to be done is
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to create the corresponding RV in PR-OWL (hasB RV and dOf RV, respectively)
and link it to this OWL property through the property defineUncertaintyOf.

For binary relations, the domain of the property (A and C, respectively) will
usually be the type (isSubsBy) of the variable ( MFrag.a and MFrag.c, respec-
tively) used in the first argument (hasB RV 1 and dOf RV 1, respectively) of the
RV. For n-ary relations see Section 3.

If the property is non-functional (hasB), then it represents a predicate that
may be true or false. Thus, instead of having the possible values of the RV in PR-
OWL (hasB RV) being the range of the OWL property (B), it must be Boolean.
So, its range (B) has to be mapped to the second argument (hasB RV 2) of the
RV, the same way the domain (A) was mapped to the first argument (hasB RV 1)
of the RV. On the other hand, if the the property is functional (dOf), the possible
values of its RV (dOf RV) must be the same as its range (B).

It is important to note that not only is the RV linked to the OWL property
by the defineUncertaintyOf, but also to the variables by either subjectIn
or objectIn, depending on what they refer to (domain or range of the OWL
property, respectively). This feature is especially important when dealing with
n-ary relations, where each variable will be associated with a different OWL
property (see Section 3) for details).

Finally, if the RV is already defined in PR-OWL with all its arguments and
its possible values, the only thing that needs to be done is to create the corre-
sponding OWL property, link the RV to it using the defineUncertaintyOf and
make sure that the domain and range of the property matches the RV definition,
as explained previously.

The mapping described in this Section provides the basis for a formal def-
inition of consistency between a PR-OWL probabilistic ontology and an OWL
ontology, in which rules in the OWL ontology correspond to probability one as-
sertions in the PR-OWL ontology. A formal notion of consistency can lead to
development of consistency checking algorithms.

5 Conclusion

Although the semantics was not formally defined, this paper provided both the
syntax and a more in depth description of one of the major changes in PR-OWL
2: a formal mapping between OWL concepts and PR-OWL random variables.
First, the importance of a formal mapping was justified through an example. Sec-
ond, a simple solution sufficient for 2-way relations was presented. Next, a more
complex and robust solution covering n-ary random variables was presented. Fi-
nally, a schematic was given for how to do the mapping back and forth between
PR-OWL random variables and OWL triples (both predicates and functions).

As future work, this schematic will be formally defined by explicitly defining
its semantics. This will be a major contribution of PR-OWL 2. Moreover, a
formalization of an algorithm for performing the mapping from OWL concepts
to PR-OWL RVs, and vice-versa, will be proposed. In addition, PR-OWL 2 will
address other issues described in [2].
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Abstract. The representation of uncertainty in the semantic web can
be eased by the use of learning techniques. To completely induce a pro-
babilistic ontology (that is, an ontology encoded through a probabilistic
description logic) from data, two basic tasks must be solved: (1) learning
concept definitions and (2) learning probabilistic inclusions. In this paper
we propose and test an algorithm that learns concept definitions using
an inductive logic programming approach and then learns probabilistic
inclusions using relational data.

1 Introduction

Probabilistic Description Logics (PDLs) have been extensively investigated in
the last few years [5, 8, 19, 7]. The goal is to represent uncertainty in the context
of classical description logics. So far probabilistic description logics have been
mostly restricted to academic purposes, as caveats in syntax and semantics have
prevented them from spreading into several domains. Additionaly, it can be hard
to elicit the probability component of a particular set of sentences.

The probabilistic description logic crALC [6, 22, 7] allows one to perform
probabilistic reasoning by adding uncertainty capabilities to the logic ALC [2].
Previous efforts for learning crALC have separately focused on concept defini-
tions [20] and probabilistic inclusions [24]. In this paper, we present an algorithm
for learning concept definitions and probabilistic inclusions at once; i.e., we dis-
cuss how to construct the whole probabilistic terminology based on crALC from
relational data. We expect that learning techniques can accomodate together
background knowledge and deterministic and probabilistic concepts, giving each
component its due relevance.

The algorithm we propose is mostly based on inductive logic programming
(ILP) [9] techniques with a probabilistic twist. A search for the best concept
description is performed. At the end of this search a decision is made as to
whether to consider the concept description found or to insert a probabilistic
inclusion based on this concept.

The paper is organized as follows. Section 2 reviews basic concepts of de-
scription logics, probabilistic description logics, crALC and machine learning



in a deterministic setting. Section 3 presents our algorithm for probabilistic de-
scription logic learning. Experiments are discussed in Section 4, and Section 5
concludes the paper.

2 Basics

The aim of this paper is to learn probabilistic terminologies from data. In this
section we briefly review both deterministic and probabilistic components of
probabilistic description logics. In addition, machine learning in a deterministic
setting is discussed.

2.1 Description Logics

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantic of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C, D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Concepts and roles are combined to form new concepts using a set of construc-
tors. Constructors in the ALC logic are conjunction (C⊓D), disjunction (C⊔D),
negation (¬C), existential restriction (∃r.C), and value restriction (∀r.C). Con-
cept inclusions/definitions are denoted respectively by C ⊑ D and C ≡ D, where
C and D are concepts. Concepts (C ⊔ ¬C) and (C ⊓¬C) are denoted by ⊤ and
⊥ respectivelly. Information is stored in a knowledge base (K) divided in two
parts: the TBox (terminology) and the ABox (assertions). The TBox lists con-
cepts and roles and their relationships. A TBox is acyclic if it is a set of concept
inclusions/definitions such that no concept in the terminology uses itself. The
ABox contains assertions about objects.

Given a knowledge base K =< T ,A >, the reasoning services typically in-
clude (i) consistency problem (to check whether the A is consistent with respect
to the T ); (ii) entailment problem (to check whether an assertion is entailed by
K; note that this generates class-membership assertions K |= C(a), where a is
an individual and C is a concept); (iii) concept satisfiability problem (to check
whether a concept is subsumed by another concept with respect to the T ). The
latter two reasoning services can be reduced to the consistency problem [2].

2.2 Probabilistic Description Logics and crALC

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [12], Jaeger [14] and Sebastiani [25] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object is a
Professor with probability α. This characterizes a domain-based semantics: prob-
abilities are assigned to subsets of the domain D. Sebastiani also allows inclusions



such as P (Professor(John)) = α, specifying probabilities over the interpretations
themselves. For example, one interprets P (Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor.
This characterizes an interpretation-based semantics.

The PDL crALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names on the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β
for concepts C and D, and for role r. If the interpretation of D is the whole
domain, then we simply write P (C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in [7]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D
is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r to each restriction
directly using it. Each restriction node is a deterministic node in that its value
is completely determined by its parents.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [7].

2.3 Learning Description Logics

The use of ontologies for knowledge representation has been a key element of pro-
posals for the Semantic Web [1]. However, constructing ontologies from scratch
can be a bundersome and time consuming task [10]. Nowadays, mainly due to
the availability of data, learning of ontologies has turn out to be an interes-
ting alternative. Indeed, considerable effort is currently invested into developing
automated means for the acquisition of ontologies [16].

Most early approaches were only capable of learning simple ontologies such
as taxonomic hierarchies. Some recent approaches such as YINYANG [13], DL-
FOIL [10] and DL-Learner [18] have focused on learning expressive terminologies
(we refer to [20] for a detailed review on learning description logics). To some
extent, all these approaches have been inspired by Inductive Logic Programming
(ILP) techniques, in that they try to transfer ILP methods to description logic
settings. The goal of learning in such deterministic languages is generally to find
a correct concept with respect to given examples. A formal definition is:



Definition 1. Given a knowledge base K, a target concept Target such that
Target 6∈ K, a set E = Ep ∪En of positive and negative examples given as asser-
tions for Target, the goal of learning is to find a concept definition C(Target ≡ C)
such that K ∪ C |= Ep and K ∪ C 6|= En.

A sound concept definition for Target must cover all positive examples and
none of the negative examples. A learning algorithm can be constructed as a
combination of (1) a refinement operator, which defines how a search tree can
be built, (2) a search algorithm, which controls how the tree is traversed, and
(3) a scoring function to evaluate the nodes in the tree defining the best one.

The refinement operator Refinement operators allow us to find candidate
concept definitions through two basic tasks: generalization and specialization
[17]. Such operators in both ILP and description logic learning rely on θ-sub-
sumption to establish an ordering so as to traverse the search space. If a concept
C subsumes a concept D(D ⊑ C), then C covers all examples which are covered
by D, which makes subsumption a suitable order. Arguably the best refinement
operator for description logic learning is the one available in the DL-Learner
system [17, 18], as this operator has been proved to be complete, weakly complete
and proper (see [17] for details).

The score function In a deterministic setting a cover relationship simply tests
whether, for given candidate concept definition (C), a given example e holds;
that is, K ∪ C |= e where e ∈ Ep or e ∈ En. In this sense, a cover relationship
cover(e,K, C) indicates whether a candidate concept covers a given example. A
cover relationship is commonly evaluated by instance checking [10].

In description logic learning one often compares candidates through score
functions based on the number of positive/negative examples covered. To avoid
overfitting on concepts, horizontal expansions3 are also explored [18]. For in-
stance, in DL-Learner a fitness relationship considers the number of positive
examples as well as the length of solutions when expanding candidates in the
tree search.

The algorithm to traverse the search space The learning algorithm de-
pends basically on the way we traverse the candidate concepts obtained after
applying refinement operators. In a deterministic setting the search for candi-
date concepts is often based on the FOIL [23] algorithm. There are also different
approaches (for instance, DL-Learner, an approach based on genetic algorithms
[16], and one that relies on horizontal expansion and redundance checking to
traverse search trees [18]).

3 Given a node in a search tree, the horizontal expansion is its upper bound on the
length of child concepts.



3 Learning the PDL crALC

A probabilistic terminology consists of both concepts definitions and probabi-
listic components (probabilistic inclusions in crALC). We aim at automatically
identifying from data sound deterministic concepts and consistent probabilistic
inclusions. A key design choice in learning under a combined approach is to give
a due relevance to each component.

It is worth noting that there are well established deterministic concepts such
as Father ≡ Male ⊓ hasChild.⊤ for which it would be unnecessary to find a
probabilistic interpretation. On the other hand, there are concepts with natural
probabilistic assessments such as P (FlyingBird|Bird) = α. In principle, a learning
algorithm should be able to deal with these subtleties.

We argue that negative and positive examples underlie the choice of either a
concept definition or a probabilistic inclusion. In a deterministic setting we ex-
pect to find concepts covering all positive examples, which is not always possible.
It is common to allow flexible heuristics that deal with these issues. Moreover,
there are several examples that cannot be ascribed to candidate hypotheses4.
Uncertainty stems from such missing information. Therefore, when we are un-
able to find a concept definition that covers all positive examples we assume
such hypothesis as candidates to be a probabilistic inclusion and we begin the
search for the best probabilistic inclusion that fits the examples.

As in description logic learning three tasks are important and should be
considered: (1) refinement operators, (2) scoring functions and (3) a traverse
search space algorithm. The refinement operator described in 2.3 is used for
learning the deterministic component of probabilistic terminologies. The other
two tasks were adapted for probabilistic description logic learning as follows.

3.1 The Probabilistic Score Function

In our proposal, since we want to learn probabilistic terminologies, we adopt a
probabilistic cover relation given in [15]:

cover (e,K, C) = P (e|K, C).

Every candidate hypothesis together with a given example turns out to be a
probabilistic random variable which yields true if the example is covered, and
false otherwise. To guarantee soundness of the ILP process (that is, to cover
positive examples and not to cover negative examples), the following restrictions
are needed:

P (ep|K, C) > 0, P (en|K, C) = 0.

In this way a probabilistic cover relationship is a generalization of the deter-
ministic cover, and is suitable for a combined approach. Probabilities can be

4 In some cases the Open World Assumption inherent to description logics prevent us
for stating membership of concepts.



computed through Bayes’ theorem:

P (e|K, C1, . . . , Ck) =
P (C1, C2, . . . , Ck|T )P (T )

P (C1, . . . , Ck)
,

where C1, . . . , Ck are candidate concepts definitions, and T denotes the target
concept variable. Here are three possibilities for modeling P (C1, . . . , Ck|T ): (1)
a naive Bayes assumption may be adopted [15] (each candidate concept is in-
dependent given the target), and then P (C1, . . . , Ck|T ) =

∏

i P (Ci|T ); (2) the
noisy-OR function may be used [20]; (3) a less restrictive option based on tree
augmented naive Bayes networks (TAN) may be handy [15]. This last possibility
has been considered for the probabilistic cover relationship used in this paper.
In each case probabilities are estimated by maximum (conditional) likelihood
parameters. The candidate concept definition Ci with the highest probability
P (Ci|T ) is the one chosen as the best candidate.

As we have chosen a probabilistic cover relationship, our probabilistic score
is defined accordingly:

score(K|C) =
∏

ei∈Ep

P (ei|K, C),

where C is the best candidate chosen as described before.
In the probabilistic score we have previously defined, a given threshold allow

us differentiate between a deterministic and probabilistic inclusion candidate.
Further details are given in the next section.

3.2 The Algorithm to Learn Probabilistic Terminologies

Previous efforts for learning the PDL crALC have separately explored concepts
definitions [20] and probabilistic inclusions [24]. In this paper, we advocate for a
combined approach where we use a classical approach for traversing the space of
deterministic concepts and a probabilistic procedure for generating probabilistic
inclusions.

The choice between a deterministic or a probabilistic inclusion is based on a
probabilistic score. We start by searching a deterministic concept. If after a set of
iterations the score of the best candidate is below a given threshold, a search for a
probabilistic inclusion is preferred rather than keep searching for a deterministic
concept definition. Then, the current best k-candidates are considered as start
point for probabilistic inclusion search. The complete learning procedure is shown
in Algorithm 1.

The algorithm starts with an overly general concept definition in the root
of the search tree (line 1). This node is expanded according to refinement op-
erators and horizontal expansion criterion (line 4), i.e, child nodes obtained by
refinement operators are added to the search tree (line 5). The probabilistic pa-
rameters of these child nodes are learned (line 6) and then they are evaluated
with the best one chosen for a new expansion (line 3) (alternative nodes based



Require: an initial knowledge base K =< T ,A > and a training set E.
1: SearchTree with a node {C = ⊤, h = 0}
2: repeat

3: choose node N = {C, h} with highest probabilistic score in SearchTree
4: expand node to length h + 1:
5: add all nodes D ∈ (refinementOperator(C)) with lenght =h + 1
6: learn parameters for all nodes D

7: N = {C, h + 1}
8: expand alternative nodes according to horizontal expansion factor and h + 1[18]
9: until stopping criterion

10: N ′ = best node in SearchTree
11: if score(N ′) > threshold then

12: return deterministic concept C′
∈ N ′

13: else

14: call ProbabilisticInclusion(SearchTree)
15: end if

Algorithm 1: Algorithm for learning probabilistic terminologies.

on horizontal expansion factor are also considered (line 8)). This process contin-
ues until a stopping criterion is attained (difference for scores is insignificant);
After that, the best node obtained is evaluated and if it is above a threshold,
a deterministic concept definition is found and returned (line 11). Otherwise, a
probabilistic inclusion procedure is called (line 13).

The Algorithm 2 learns probabilistic inclusions. It starts retrieving the best
k nodes in the search tree and computing the conditional mutual information for
every pair of nodes (line 2). Then an undirected graph is built where the vertices
are the k nodes and the edges are weighted with the value of the conditional
mutual information [21] for each pair of vertices (lines 4 and 5). A maximum
weight spanning tree [4] from this graph is built (line 6) and the target concept
is added as a parent for each vertice (line 7). The probabilistic parameters are
learned (line 8). This learned TAN-based classifier [11] is used to evaluate the
possible probabilistic inclusion candidates (line 9) and the best one is returned.

4 Experiments

In order to evaluate the learning algorithm we have divided the analysis in two
stages. In a first stage, the algorithm was compared with, arguably, the best de-
scription logic learning algorithm available (the DL-Learner system). The second
stage evaluated suitability of the algorithm for learning probabilistic terminolo-
gies in real world domains.

The aim of the first stage was to investigate whether by introducing a pro-
babilistic setting the algorithm behaves as well as traditional deterministic ap-
proaches in description logic learning tasks. In this preliminar evaluation (as a
rule, there is a lack of evaluation standards in ontology learning [18]) we have



Require: SearchTree previously computed
1: for each pair of candidates Ci, Cj in first k nodes of the SearchTree do

2: compute the conditional mutual information I(Ci, Cj |T )
3: end for

4: build an undirected graph in which vertices are the k candidates
5: annotate the weight of an edge connecting Ci to Cj by the I(Ci, Cj |T )
6: build a maximum weight spanning tree from this graph
7: add T as parent for each Ci

8: learn probabilities for P (Ci|Parents(Ci))
9: return the highest probabilistic inclusion P (T |C′) = α

Algorithm 2: Algorithm for learning probabilistic inclusions.

considered five datasets available in the DL-Learner system and reported in [18].
Evaluation results are shown in Table 1.

Table 1. Description logic learning results

Problem axioms, examples DL-learner Combined approach

correct (length) correct(length)

trains 252,10 100(5) 100%(5)
arches 47,5 100%(9) 100%(10)
moral 31,43 100%(3) 100%(5)

poker(pair) 35,49 100%(8) 100%(8)
poker (straight) 45,55 100%(5) 100%(5)

The combined approach was able to learn correct concept definitions. How-
ever, in some cases produced longer solutions.

In the second stage we focused on learning of probabilistic terminologies from
real world data. Wikipedia5 was used to do so. Wikipedia articles consist mostly
of free text, but also contain various types of structured information in the form
of Wiki markup. Such information includes infobox templates, categorization in-
formation, images geo-coordinates, links to external Web pages, disambiguation
pages, redirects between pages, and links across different language editions of
Wikipedia.

In the last years, there were several projects aimed at structuring such huge
source of knowledge. Examples include, The DBpedia project [3], which ex-
tracts structured information from Wikipedia and turns it into a rich know-
ledge base, and YAGO [26], a semantic knowledge base based on data from
Wikipedia and WordNet6. Currently, YAGO knows more than 2 million entities
(like persons, organizations, cities, etc.). It knows 20 million facts about these

5 http://www.wikipedia.org/
6 wordnet.princeton.edu/



entities. Unlike many other automatically assembled knowledge bases, YAGO
has a manually confirmed accuracy of 95%. Several domains ranging from films,
places, historical events, wines, etc. have been considered in this ontology. More-
over, facts are given as binary relationships that are suitable for our learning
settings. There are approximately 92 relationships available. Examples include
actedIn, bornIn, created, discovered describes, diedIn, happenedIn, hasAcademicAdvisor,
hasChild, hasHDI, hasWonPrize, influences, isMarriedTo, isPartOf, livesIn, politicianOf,
worksAt.

We have used subsets of YAGO facts for learning probabilistic terminologies.
Two domais have been mostly explored. The first, related to scientists. The
second, related to film directors. In both cases the threshold used was 0.85 and
the 20 best candidates were considered in the probabilistic inclusion learning
step.

The first dataset consists of 2008 potential scientists for which we have
learned concept definitions and probabilistic inclusions. The complete termi-
nology is given below:

P (Person) = 0.9
P (Topic) = 0.4

P (Year) = 0.35
P (Prize) = 0.2
P (Text) = 0.25

P (EducationalInstitution) = 0.3
P (wrotes) = 0.4

P (hasAcademicAdvisor) = 0.80
P (interestedIn) = 0.6
P (diedOnYear) = 0.7

P (hasWonPrize) = 0.4
P (worksAt) = 0.85

P (influences) = 0.6

Scientist ≡ Person
⊓(∃hasAcademicAdvisor.Person

⊓∃wrotes.Text ⊓ ∃worksAt.EducationalInsitution)
P (InfluentialScientist | Scientist ⊓ ∃influences.

∃diedOnYear.Year) = 0.85

P (Musician | Person ⊓ ∃hasAcademicAdvisor.∃wrote.Text) = 0.1
HonoredScientist ≡ Scientist

⊓ ∃hasWonPrize.Prize

This resulting crALC terminology can be further investigated by proba-
bilistic inference7. The basic task we address is classification. Assume we are
interested in classifying a potential scientist given we know he/she has written
a book and has an academic advisor:

P (Scientist(0)|Person(0) ⊓ ∃wrote.Text(1) ⊓ hasAcademicAdvisor.Person(2)) = 0.5

When further evidence is available the value probability is updated to:

P (Scientist(0) |Person(0)
⊓(∃wrote.Text(1) ⊓ ∃hasAcademicAdvisor.
∃influences.Person(3))) = 0.65

7 Given a domain size, a relational Bayesian network is constructed to do so.



In the second dataset we have collected facts about film directors ranging
from classical to contemporary. About 5589 potential directors have been con-
sidered. The complete probabilistic terminology is shown below.

P (Person) = 0.9
P (Prize) = 0.1

P (Year) = 0.25
P (Film) = 0.3
P (isMarriedTo) = 0.1

P (influences) = 0.35
P (hasWonPrize) = 0.28

P (hasChild) = 0.05
P (diedOnYear) = 0.5
P (directed) = 0.8

P (actedIn) = 0.4

Actor ≡ Person ⊓ ∀actedIn.Film
P (Director | Person ⊓ (∃directed.Film ⊓ ∃influences.

∃actedIn.Film) = 0.75
P (FomerActor | Director ⊓ ∃actedIn.Film) = 0.6

HonoredDirector ≡ Director ⊓ ∃hasWonPrize.Prize
FamilyDirector ≡ Director ⊓ (∃isMarriedTo.Director ⊔ ∃hasChild.Director)
P (InfluentialDirector | Director ⊓ ∃hasWonPrize.Prize ⊓ ∃influences.

∃isMarriedTo.Director) = 0.7
P (MostInfluentialDirector | Director ⊓ ∃diedOnYear.Year ⊓ ∃influences.

∃hasWonPrize.Prize) = 0.8

Learned components range from basic concept definitions such as Actor to
probabilistic inclusions for describing most influential directors. Assume we are
interested in classifying a person given we know that he/she has acted and
directed. According to evidence available:

P (Actor(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.4

P (Director(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.55

As further evidence is given, probability value changes to:

P (Actor(0) |Person(0)
⊓(∃actedIn.Film(1) ⊓ ∃directed.Film(2)
⊓∃influences.Person(3))) = 0.3

5 Conclusion

We have proposed a method for learning deterministic/probabilistic components
of terminologies expressed in crALC. Differently from previous approaches, we
have produced a combined scheme, where both the deterministic and probabi-
listic components receive due attention.

This unified learning scheme has the following components: (1) a refinement
operator for traversing the search space, (2) probabilistic cover and score rela-
tionships for evaluating candidates, (3) a mixed search procedure. Initially, the
search aims at finding deterministic concepts. If the score obtained is below a
given threshold, a probabilistic inclusion search is conducted (a probabilistic clas-
sifier is produced). Experiments with probabilistic terminology in a real-world
domain suggest that probabilistic inclusions do lead to improved likelihoods.



Probabilistic description logics offer expressive languages in which to conduct
learning, while charging a relatively low cost for inference. The present contri-
bution offers novel ideas for this sort of learning task; we note that the current
literature on this topic is rather scarce. Our future work is to investigate the
scalability of our learning methods.
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J. Mach. Learn. Res., 8:481–507, 2007.

16. J. Lehmann. Hybrid learning of ontology classes. In Proceedings of the 5th Interna-
tional Conference on Machine Learning and Data Mining, volume 4571 of Lecture
Notes in Computer Science, pages 883–898. Springer, 2007.

17. J. Lehmann and P. Hitzler. Foundations of refinement operators for description
logics. In Hendrick Blockeel, Jude W. Shavlik, and Prasad Tadepalli, editors, ILP
’07: Proceedings of the 17th International Conference on Inductive Logic Program-
ming, volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer,
2007.

18. J. Lehmann and P. Hitzler. A refinement operator based learning algorithm for
the ALC description logic. In Hendrick Blockeel, Jude W. Shavlik, and Prasad
Tadepalli, editors, ILP ’07: Proceedings of the 17th International Conference on
Inductive Logic Programming, volume 4894 of Lecture Notes in Computer Science,
pages 147–160. Springer, 2007.

19. T. Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-
7):852–883, 2008.

20. J. E. Ochoa-Luna and F. G. Cozman. An algorithm for learning with probabilistic
description logics. In 5th International Workshop on Uncertainty Reasoning for
the Semantic Web (URSW) at the 8th International Semantic Web Conference
(ISWC), pages 63–74, Chantilly, USA, 2009.

21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of plausible in-
ference. Morgan Kaufman, 1988.

22. R. B. Polastro and F. G. Cozman. Inference in probabilistic ontologies with at-
tributive concept descriptions and nominals. In 4th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW) at the 7th International
Semantic Web Conference (ISWC), Karlsruhe, Germany, 2008.

23. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings
of the European Conference on Machine Learning, pages 3–20. Springer-Verlag,
1993.

24. K. Revoredo, J. Ochoa-Luna, and F.G. Cozman. Learning terminologies in pro-
babilistic description logics. In Proceedings of the 20th Brazilian Symposium on
Artificial Intelligence. To appear, 2010.

25. F. Sebastiani. A probabilistic terminological logic for modelling information re-
trieval. In ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pages 122–130, 1994.

26. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 697–706, New York, NY, USA, 2007. ACM.



 

SWRL-F - A Fuzzy Logic Extension of the Semantic 

Web Rule Language 

Tomasz Wiktor Wlodarczyk1, Martin O’Connor
2
, Chunming Rong

1
, Mark Musen2,  

  
1 University of Stavanger, Norway; 2 Stanford University, USA 

tomasz.w.wlodarczyk@uis.no 

Abstract. Enhancing Semantic Web technologies with an ability to express 

uncertainty and imprecision is widely discussed topic. While SWRL can 

provide additional expressivity to OWL-based ontologies, it does not provide 

any way to handle uncertainty or imprecision. We introduce an extension of 

SWRL called SWRL-F that is based on SWRL rule language and uses SWRL’s 

strong semantic foundation as its formal underpinning. We extend it with a 

SWRL-F ontology to enable fuzzy reasoning in the rule base. The resulting 

language provides small but powerful set of fuzzy operations that do not 

introduce inconsistencies in the host ontology. 

Keywords: SWRL, SWRL-F, fuzzy logic, fuzzy rules, fuzzy, rule language, 

risk. 

1   Introduction 

Fuzzy Logic (FL) has provides a way to express imprecise information and helps in 

simplifying knowledge representation. For these reasons it is considered to be an 

important element in Semantic Web (SW) research. Despite the existing research 

work the problem of supplementing SW with FL remains without implemented, 

generic, publicly available, standards-based and widely used solution. 

In this paper we present SWRL-F, a Fuzzy Logic extension of the Semantic Web 

Rule Language. It allows expressing imprecise information and helps in simplifying 

knowledge representation in SWRL. It consists of two parts. SWRL-F ontology that 

allows representing FL knowledge in the ontology and SWRL rule base, and 

execution engine that integrates with Protégé [1]. One of the areas where fuzzy logic 

found significant application are control systems. In this work we based on the control 

system approach that follows the scheme: collect crisp inputs, fuzzify inputs, perform 

fuzzy inference, defuzzify inputs, apply crisp outputs [2]. 

Related Work. Pan et al. [3] propose f-SWRL, a fuzzy extension to SWRL. It 

includes fuzzy assertions and fuzzy rules, however, does not describe any 

implementation. Moreover, that approach is criticized in Agarwal and Hitzler [4], 

who explain that syntax and semantics of f-SWRL actually offer no fuzziness in f-

SWRL rules. Bobillo et al. [5] present a semantic fuzzy expert system for a fuzzy 

balanced scorecard. They use OWL ontology to represent knowledge about variables. 

They also provide and interface to FuzzyJess to execute fuzzy rules. Protege is used 

as a development platform; however, implementation focuses only on balanced 



 

 

scorecard and rules are not based on SWRL. A need for more generic approach is 

mentioned in conclusions. Stoilos et al. [6] discuss Fuzzy OWL and uncertainty 

representation with rules. They present a fuzzy reasoning engine that implements a 

reasoning algorithm for a fuzzy DL language fKD-SHIN. It handles most of OWL 

features. However, the implementation is proprietary and does not connect directly 

with any established Semantic Web technologies or tools like OWL, SWRL or 

Protege. For additional related work one can refer to [7]. 

Contributions. In SWRL-F we aim to provide a FL extension to SWRL, which is 

based on standard OWL DL and SWRL. SWRL-F ontology enables description of FL 

knowledge and its application in SWRL rules. We also implemented a test execution 

engine and development environment that is publically available
1
. 

Organization of the Paper. After the Introduction, in Section 2 we explain our 

design choices for SWRL-F in term of their influence on semantics of rules and 

logical soundness of ontology. In Section 3 we mention basic constructs of SWRL-F 

ontology. Further, in Section 4, we describe how to understand and construct fuzzy 

rules with SWRL-F. We conclude in Section 5. 

2   Design Choices 

Connection between FL and SW technologies based on DL is a non-trivial 

problem. We have made four main design choices that influence semantic of the rules 

and logical soundness of the ontology. 

First, SWRL-F must be standard based. It includes anchoring in the well 

established fuzzy logic scheme. Our leading idea was to follow fuzzy control systems 

scheme: fuzzification, inference, defuzzification. Moreover, SWRL-F can be fully 

expressed using OWL and SWRL, by importing SWRL-F ontology that we created. 

This ontology is purely OWL-based and it is described in the Section 3. 

Second, fuzzy inference in SWRL-F is limited to the rules only. This way we can 

avoid inconsistencies in the ontology. Ontology is used to describe fuzzy knowledge 

base, however, it can be interpreted in a limited, non-fuzzy way by a DL-reasoner. 

Until we connect fuzzy rule reasoner knowledge based on SWRL-F ontology has 

limited use, but it does not create any inconsistencies with standard SW technologies. 

Third, fuzzy assertions in SWRL are represented as a standard object property 

defined in SWRL-F ontology, which has special meaning when interpreted by a fuzzy 

rule reasoner. It provides the most natural way of expression and can be interpreted 

(though not in a fuzzy way) by a non-fuzzy rule reasoner. 

Fourth, we decided to reuse existing fuzzy rule engine namely FuzzyJess [8]. This 

allowed us to implement our solution faster and be sure that it will be stable and 

reasonably efficient. As FuzzyJess is a superset of Jess we could automatically 

provide compatibility with existing extensions and built-ins available for SWRL and 

SWRLJESSTab [9]. There is, though, one notable limitation of such approach: not all 

the OWL constructs can be represented, which follows the limitations as described in 

[10]. 

                                                 
1 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLF 

http://protege.cim3.net/cgi-bin/wiki.pl?SWRLF


 

 

3   SWRL-F ontology 

In order to express necessary fuzzy knowledge, namely fuzzy: sets, terms, 

variables and values, we have created SWRL-F ontology. Due to limited space, we 

present here only a few key elements. Representation follows Manchester syntax [11]. 
Class: FuzzyVariable 

Class: FuzzyTerm 

Class: FuzzyValue 

Class: FuzzySet 

ObjectProperty: hasFuzzySet 

  Domain: FuzzyTerm, FuzzyValue 

  Range: FuzzySet 

ObjectProperty: hasFuzzyTerm 

  Domain: FuzzyVariable 

  Range: FuzzyTerm 

ObjectProperty: hasFuzzyValue 

  Domain: FuzzyVariable 

  Range: FuzzyValue 

ObjectProperty: hasFuzzyVariable 

  Domain: FuzzyValue 

  Range: FuzzyVariable 

4   SWRL-F Rules 

Having FuzzyValues and FuzzyTerms described one can construct rules in SWRL-

F. To do so we use modified SWRLJessTab. SWRL-F rules are normal SWRL rules 

that make use of fuzzymatch object property from SWRL-F ontology. If executed 

using standard rule engine like Jess this property acts as any other object property. 

However, if run using modified version of SWRLJessTab together with FuzzyJ and 

FuzzyJess packages, fuzzymatch property allows constructing fuzzy rules. 
ObjectProperty: fuzzymatch 

  Domain: FuzzyValue 

  Range: FuzzyTerm 

Let us analyze a generic example: 
FuzzyValue (?v1) ∧ fuzzymatch(?v1, someFuzzyTerm) ∧ 

FuzzyValue(?v2) →  fuzzymatch(?v2, otherFuzzyTerm) 

The fuzzymatch property is used to calculate degree of membership of FuzzyValue 

?v1 in the someFuzzyTerm. FuzzyValues and FuzzyTerms are related by 

FuzzyVariables. Second use of fuzzymatch allows to bind the value of 

otherFuzzyTerm to the ?v2 FuzzyValue, basing on the calculated degree of 

membership.  

Many rules can assign new values to the same FuzzyValue. In contrast with 

standard SWRL where such assertions would not carry any additional semantics, in 

SWRL-F the values that each rule assigns are then grouped together and collectively 



 

 

defuzified into one final crisp result. Apart from simplifying management and 

creation of rules, this allows to create rules in a more natural way.  

5   Conclusions 

In this paper we presented SWRL-F. It is an extension to SWRL that allows 

constructing fuzzy rules using lexical variables described it OWL-based ontology. Its 

general design is based on fuzzy control system approach and together with proper 

construction of SWRL-F ontology it allows to avoid conflicts between FL and DL in 

the ontology. SWRL-F can be used to extend any SW application with FL capabilities 

basing on Protege editor and modified SWRLJessTab. 

SWRL-F does not introduce any inconsistencies into a DL-based ontology due to 

limiting fuzzy inference to rules basing on SWRL-F ontology construction. However, 

it has the some limitations with regards to OWL representation as explained in [10]. 

SWRL-F allows easier knowledge management by moving numerical values from 

rules to ontology. This results in simpler rules and removes hard-coding of those 

numerical values in rules. 
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Abstract. In this paper, we introduce the tractable pf -EL++ logic, a paracon-
sistent version of the fuzzy logic f -EL++. Within pf -EL++, it is possible to
tolerate contradictions under incomplete and vague knowledge. pf -EL++ ex-
tends the f -EL++ language with a paraconsistent negation in order to represent
contradictions. This paraconsistent negation is defined under Belnap’s bilattices.
It is important to observe that pf -EL++ is a conservative extension of f -EL++,
thus assuring that the polynomial-time reasoning algorithm used in f -EL++ can
also be used in pf -EL++.

1 Introduction

A difficult task in a knowledge base that aims to formalise a real world application is to
deal with incomplete, imprecise and contradictory information. Hence, it is unreason-
able to expect that a knowledge base which allows realistic reasoning based on partial
knowledge must always be kept logically consistent. In this sense, in the last century,
the paraconsistent logics were designed to handle inconsistencies without deriving any-
thing from a contradiction. Here, we are particularly interested in the paraconsistent
logic introduced by Belnap [3]. In addition, there are some logical approaches that at-
tempt to formalise reasoning under incomplete and imprecise knowledge as the fuzzy
logic introduced by Zadeh [10].

Although expressive enough to deal with incomplete, imprecise and contradictory
information, the satisfiability problem for paraconsistent and fuzzy logics is undecid-
able. Since real world applications demand efficient inference systems, a family of log-
ics, the Description Logics (DLs) [1], have been proposed. DLs are decidable fragments
of classical first-order logic, and they have been customarily used in the definition of
ontologies and applications for the Semantic Web.

In [7], a fuzzy logic f -EL++ with a polynomial-time subsumption algorithm was
specially defined to deal with imprecise and vague knowledge. Unfortunately, this logic
cannot express negative information. In fact, it was proved that the introduction of the
classical negation in DLs leads to undecidability [2].

In this paper, we introduce the tractable pf -EL++ logic, a paraconsistent version of
f -EL++ that is able to tolerate contradiction under incomplete and vague knowledge.
It extends the f -EL++ language with a paraconsistent negation in order to represent
contradictions.



2 Bilattices

In [3] Belnap introduced a logic intended to deal with inconsistent and incomplete in-
formation. This logic is capable of representing four truth values: t (true), f (false), >̈
(overdefined) and ⊥̈ (underdefined). The underdefined value represents the total lack
of knowledge, while the overdefined one represents the excess of knowledge (conflicts
between information). Belnap’s logic was generalized by Ginsberg [4], who introduced
the notion of bilattices, which are algebraic structures containing an arbitrary number
of truth values simultaneously arranged in two partial orders. In the sequel, we will
show the definition of bilattices and introduce the particular billatice employed in the
representation of fuzzy truth-values in our proposal:

Definition 1 (Complete Bilattice) Given two complete lattices1〈C,≤1〉 and 〈D,≤2〉,
the structureB(C,D)=〈C×D,≤k,≤t,¬〉 is a complete bilattice, in which: 〈c1, d1〉 ≤k

〈c2, d2〉 if c1 ≤1 c2 and d1 ≤2 d2, 〈c1, d1〉 ≤t 〈c2, d2〉 if c1 ≤1 c2 and d2 ≤2 d1.
Furthermore, ¬ : C ×D → D × C is a negation operation such that: (1) a ≤k b ⇒
¬a ≤k ¬b, (2) a ≤t b⇒ ¬b ≤t ¬a, (3) ¬¬a = a.
B2 = 〈[0, 1]× [0, 1],≤t,≤k,¬〉 is a complete bilattice where¬ 〈x1, x2〉 = 〈x2, x1〉.

In an element x = 〈x1, x2〉 in [0, 1] × [0, 1], x1 and x2 represent, respectively, the
membership and non-membership degrees of x in [0, 1]. This means that x2 can be any
value in [0, 1] and not necessarily 1−x1 as one would expect in the classical case. It is a
very important distinction because it will allow us to identify contradictory truth-values.
A truth-value x = 〈x1, x2〉 is contradictory whenever x1 + x2 > 1.

3 The pf -EL++ Logic

Here we propose a new Description Logic, pf -EL++, by extending f -EL++ [7] with
the negation operator ¬. Motivated by [6,5], we will employ a bilattice of truth-values
to represent the degree of inclusion and non-inclusion of an individual to a concept.
The differences between the syntax of pf -EL++ and f -EL++ concepts is that in our
proposal we introduce the negation in the alphabet andt and ∃ are replaced respectively
by ⊗k and ∃k. Now it is also possible to use negation to concepts and atomic roles:

Definition 2 (Concept Semantics) The semantics of pf -EL++ individuals and atomic
concepts/roles is given by I = (∆I , .I ), where the domain ∆I is a nonempty set of
elements and .I is a mapping function defined by: each individual a ∈ NI is mapped to
aI ∈ ∆I ; each atomic concept name A ∈ NC is mapped to AI : ∆I → [0, 1]× [0, 1];
each atomic role name R ∈ NR is mapped to RI : ∆I ×∆I → [0, 1]× [0, 1].

Each atomic concept/role C is mapped to a pair 〈P,N〉, where P,N ∈ [0, 1]. Intu-
itively, P denotes the degree in which an element belongs toC, whileN denotes the de-
gree in which it does not belong toC. Note that P+N is not necessarily equal to 1 as in
the classical case. We define the functions proj+ 〈P,N〉 = P and proj− 〈P,N〉 = N .
Concepts can be interpreted inductively as follows, where for all x ∈ ∆I :

1 Let L be a nonempty set and ≤ a partial order on L. The pair 〈L,≤〉 is a complete lattice if
every subset of L has both a least upper bound and a greatest lower bound according to ≤.



Syntax Semantics
> >I(x) = 〈1, 0〉
⊥ ⊥I(x) = 〈0, 1〉
¬C (¬C)I(x) = 〈N,P 〉, if CI(x) = 〈P,N〉

{a} {a}I(x) =
{
〈1, 0〉 if x = aI

〈0, 1〉 otherwise
C ⊗k D (C ⊗k D)I(x) = 〈min(P1, P2),min(N1, N2)〉 ,

if CI(x) = 〈P1, N1〉 and DI(x) = 〈P2, N2〉
∃kR.C (∃kR.C)I(x) = 〈 sup

y∈∆I

(min(proj+(RI(x, y)), proj+(CI(y)))),

sup
y∈∆I

(min(proj+(RI(x, y)), proj−(CI(y)))) 〉

The controversial part refers to ⊗k and ∃k, which were designed in a way that
¬(C ⊗k D)I(x) = (¬C ⊗k ¬D)I(x) and ¬(∃kR.C)I(x) = (∃kR.¬C)I(x). Roughly
speaking we can understand them as the counterpart in ≤k of conjunction (u) and role
restriction (∃) respectively. In fact, we can simulate u and ∃ presented in f -EL++

respectively as (C uD)I(x) ≡ (C ⊗k D ⊗k >)I(x) and (∃R.C)I(x) ≡ (∃kR.C ⊗k

>)I(x). The problem is that we cannot introduce them in pf -EL++ language because
¬(C uD)I(x) = (¬C t ¬D)I(x) and ¬(∃R.C)I(x) = (∀R.¬C)I(x). Then, since our
aim is to present a tractable paraconsistent fuzzy extension for EL++, the inclusions
of disjunction (t) and universal restriction (∀) in EL++ are not allowed. Otherwise, as
proved in [2], the algorithm of decidibility will grow exponentially!

We define the notions of Terminological Box (TBox), Assertional Box (ABox) and
ontology in pf -EL++. For now on, consider T1, . . . , Tk, T refer to atomic roles or the
negation of them. The semantics of negation of roles is similar to negation of concepts.

Definition 3 (TBox/ABox) A paraconsistent fuzzy TBox in pf -EL++ is a finite set of
internal fuzzy inclusion axioms (C @n D), strong fuzzy inclusion axioms (C →n D),
internal role inclusion axioms (T1 ◦ . . . ◦ Tk @ T ) and strong role inclusion axioms
(T1 ◦ . . . ◦ Tk → T ). A paraconsistent fuzzy ABox in pf -EL++ consists of a finite set
of assertion axioms of the form C(a) ≥ n and T (a, b) ≥ n, where n ∈ [0, 1].

Definition 4 (Ontology) An ontology or knowledge base in pf -EL++ is a set com-
posed by a paraconsistent fuzzy TBox and a paraconsistent fuzzy ABox.

The semantics of both paraconsistent fuzzy general concept inclusions, role inclu-
sions, concept assertion and role assertion is given as follows, where for all x, y ∈ ∆I :

Axiom Name Syntax Semantics
Internal f-GCI C1 @n C2 min(proj+(CI1 (x)), n) ≤ proj+(CI2 (x))
Strong f-GCI C1 →n C2 min(proj+(CI1 (x)), n) ≤ proj+(CI2 (x)),

min(proj−(CI2 (x)), n) ≤ proj−(CI1 (x))

Internal RIA T1 ◦ . . . ◦ Tk @ T proj+([T I1 ◦t . . . ◦t T Ik ](x, y)) ≤ proj+(T I(x, y))
Strong RIA T1 ◦ . . . ◦ Tk → T proj+([T I1 ◦t . . . ◦t T Ik ](x, y)) ≤ proj+(T I(x, y)),

proj−(T I(x, y)) ≤ proj−([T I1 ◦t . . . ◦t T Ik ](x, y))
Concept assertion C(a) ≥ n proj+(CI(aI)) ≥ n

Role assertion T (a, b) ≥ n proj+(T I(aI , bI)) ≥ n

Finally, we show the notions of satisfiability and logical consequence in pf -EL++:



Definition 5 (Satisfiability) The satisfiability of an axiom α by a fuzzy interpretation
I , denoted I |= α, is defined as I |= C1 vn C2 iff ∀x ∈ ∆I ,min(proj+(CI

1 (x)), n) ≤
proj+(CI

2 (x)). The notion is similarly applied to the other axioms shown in the table
above. I is a model of an ontology O iff I satisfies each axiom of O.

Definition 6 (Logical Consequence) An axiom α is a logical consequence of an on-
tology O, denoted by O |= α, iff every model of O satisfies α.

Paraconsistency comes to deal with the principle that α,¬α 6` ⊥, where α is an
axiom. Note that in pf -EL++, ⊥ is not logical consequence of α and ¬α. For example,
consider the axioms (C(a) ≥ 0), (¬C(a) ≥ 0) and (⊥(a) ≥ 1). We have that (C(a) ≥
0), (¬C(a) ≥ 0) 6` (⊥(a) ≥ 1), because there is an interpretation I (say CI(aI) =
〈0, 0〉) such that (C(a) ≥ 0)I and (¬C(a) ≥ 0)I are true and (⊥(a) ≥ 1)I is false.

4 Conclusions and Future Works

In this paper, we introduced pf -EL++, a paraconsistent extension of the fuzzy descrip-
tion logic f -EL++, that deals with negation on concepts and roles. Inspired in [6], we
can show how to translate pf -EL++ into f -EL++, preserving logical consequence, and
under linear time and space in the size of the ontology. Since there is an algorithm for
deciding fuzzy concept subsumptions operating in polynomial time [8], we know that
paraconsistency can be simulated by f -EL++ without the loss of tractability.

Regarding future works, we plan to investigate and extend another approach to fuzzy
EL, presented by Vojtás [9], where conjunction is interpreted as a fuzzy aggregation
function rather than fuzzy intersection. Another line of research is to extend tractable
DLs to deal with probabilistic and possibilistic knowledge.
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Abstract. Using a variant of Lehmann’s Default Logics and Probabilis-
tic Description Logics we recently presented a framework that invalidates
those unwanted inferences that cause concept unsatisfiability without the
need to remove explicitly stated axioms. The solutions of this methods
were shown to outperform classical ontology repair w.r.t. the number of
inferences invalidated. However, conflicts may still exist in the knowledge
base and can make reasoning ambiguous. Furthermore, solutions with a
minimal number of inferences invalidated do not necessarily minimize the
number of conflicts. In this paper we provide an overview over finding
solutions that have a minimal number of conflicts while invalidating as
few inferences as possible. Specifically, we propose to evaluate solutions
w.r.t. the quantity of information they convey by recurring to the no-
tion of entropy and discuss a possible approach towards computing the
entropy w.r.t. an ABox.

1 Introduction

In the Semantic Web, knowledge is represented by ontologies expressed in the
Web Ontology Language OWL. The current standard, OWL2 [1], defines differ-
ent profiles all of which have some Description Logics as a rough syntactic vari-
ant. These Description Logics (DL) are decidable fragments of first-order logics
where knowledge is explicitly expressed in axioms and assertions. DL knowledge
bases have well-defined model-theoretic semantics. They allow to express knowl-
edge on different levels of expressivity and enable to infer new conclusions from
existing knowledge.

When ontologies evolve or one ontology is mapped to another, contradictions
may be introduced that cause the knowledge base as a whole to be inconsis-
tent. Yet, for an inconsistent knowledge base any conclusion—even meaningless
ones—becomes trivially true. One cause of inconsistency is given by assertions
of concepts that are inferred to be unsatisfiable. Hence, it is desirable to prevent



concepts from being inferred unsatisfiable. A knowledge base can become incon-
sistent for other reasons, but we propose to start off with conflict-free conceptu-
alizations and apply a method that never infers any concept to be unsatisfiable.

In the Semantic Web, agents interacting with an ontology assume that both
the query and the answer are expressible in OWL2. Furthermore, the answer
should have meaningful semantics but not infer conflicts. We therefore demand
any formalism allowing for plausible reasoning on controversial information to
fulfill the following properties:

1. Permanence: The formalism for knowledge representation is not changed.
2. Coherency: No concept is inferred to be unsatisfiable
3. Autonomy: The procedure shall work automatically.
4. Originality: The original information should be kept.
5. Conservation: As little inferred information as possible shall be lost.

We presented a method for solving unsatisfiable concepts [2] using a combina-
tion of Lehmann’s Default Logics [3] and Lukasiewicz’ Probabilistic Description
Logics [4]. Instead of removing (explicit) axioms, we propose to invalidate those
inferences that cause concepts to be inferred unsatisfiable [5]. While it is possi-
ble to reason with all information provided, we may still produce contradicting
inferences. In this paper we show that minimizing the number of inferences inval-
idated does not necessarily minimize the number of those conflicts. For finding
optimal solutions we propose to evaluate these w.r.t. their information content
which requires the definition of the entropy of a solution. We discuss a possible
approach towards computing the entropy w.r.t. an ABox and give an outlook on
future work.

2 Procedure

For each unsatisfiable concept U of an ontology, its justifications JkUv⊥ [6], i.e.
the minimal sets of axioms explaining the conflict, are determined in a first
step. Each of these justifications is split up into two sets: one that contains all
axioms which contain the unsatisfiable concept, Γ kUv⊥ and one that contains

all other axioms of that very justification, ΘkUv⊥ [2]. Afterwards, the root unsat
justifications are determined, which are those justifications that do not depend
on any other justification [7].

According to the partition scheme of Lehmann’s Default Logics, the axioms
of the root justifications are put into partitions U0, . . . ,UN and a separate TBox
T∆ such that all concepts in T∆∪Un are satisfiable for n = 0, . . . N . Thanks to the
splitting, we do not have to perform additional satisfiability checks for computing
the partition. The resulting Default TBox is a family of (classical) TBoxes:
DT = (T∆ ∪ U0, . . . , T∆ ∪ UN ). For such a Default TBox we may either use the
inference methods provided by Probabilistic Description Logics [4] or stick to
classical reasoning on the single partitions, separately. Either approach defines a
deductive closure of the Default TBox as a set of OWL2 axioms, but we prefer the
latter approach to change the formalism for reasoning only as little as possible.



Instead of putting all axioms of the root unsat justifications into the parti-
tions, we showed in [5] that we indeed have to put only two axioms of each root
unsat justification into the partitions—one of eachΘkUv⊥ and one of each Γ kUv⊥—
while we may put the remaining axioms into T∆. While potentially invalidating
less inferences, however, finding partitions may become non-deterministic.

We propose to approximate an optimal solution by a (stochastic) search pro-
cess: On the one hand, the number of possible solutions is exponential in the
number of axioms in the justifications. On the other hand, once the justifica-
tions are known, finding a single valid solution can be performed efficiently, be-
cause the complexity of the approach is dominated by the complexity of finding
justifications—a task which has to be performed anyhow.

3 Minimizing Conflicts by Minimizing the Entropy

By invalidating the inferences of the kind DT |= U v ⊥ we ignore the conflicts
during reasoning. Yet, inferences such as the co-occurrence of DT |= A and
DT |= ¬A are still possible but not desired. Hence, a performance measure that
assesses the quality of a solution must not only take into account the number
of inferences invalidated but, even more important, the number of conflicts still
remaining.

Assume the simple TBox T = {B v A,C v B,C v ¬A, } which has two
Default TBoxes as potential solutions:

DT 0 with T 0
∆ = {C v B}, U0

0 = {B v A}, U0
1 = {C v ¬A}

DT 1 with T 1
∆ = {C v ¬A}, U1

0 = {B v A}, U1
1 = {C v B}

In contrast to the latter, the first Default TBox DT 0 preserves the inference
C v A. Yet, in the presence of an ABox that infers the assertion C(i), the
assertion A(i) as well as its complement ¬A(i) can be inferred. The second
Default TBox DT 1, in contrast, infers only ¬A(i). It is preferred over DT 0,
because it contains fewer conflicts than DT 1.

Conflicts potentially reduce the information content of a knowledge base. For
minimizing the number of conflicts as well as the number of inferences invalidated
we are currently investigating qualitative measures based on the entropy of a
possible solution. As opposed to methods based on the structure of an ontology
[8], we propose that an entropy-measure should take into account the ambiguity
of different ABoxes.

In information theory, the entropy measures the average information content
of a random variable we are missing when the value of the random variable is not
known [9]. If we know the probability mass function p of the random variable X,

we may explicitly denote the entropy byH(X) = −
∑N
n=0 p(xn) log p(xn). In case

p(xn) = 0, then p(xn) log p(xn) = 0. We propose to approximate the probability
mass function pA for the axioms B v A ∈ DT by counting assertions for the
concept (¬BtA) found by the instance retrieval service of the reasoning process:

pA(B v A) =
|{x ∈ AI | T ,A |= (¬B tA)(x)}|∑

DvC∈DT |{y ∈ AI | T ,A |= (¬D t C)(y)}|



The entropy of a Default TBox DT measures the information content of its
axioms w.r.t. an ABoxA:H(DT ,A) = −

∑
BvA∈(DT ) pA(B v A) log pA(B v A).

For the Default TBoxes in the example above, we obtain an entropy of
H(DT 0) = − log(1/3) and H(DT 1) = − log(1/2) which would make us choose
DT 1 rather than DT 0. Our current hypothesis is that a Default TBox with min-
imal entropy also minimizes the number of explicit conflicts w.r.t. an ABox. A
prototype implementation is available 4.

4 Conclusion

We recently introduced a framework that never infers any concept to be unsatis-
fiable while keeping all originally provided information. This allows plausible rea-
soning on ontologies that possibly contain controversial information—as it is the
case for mapped or dynamic ontologies. Finding solutions is non-deterministic
and requires optimization techniques that, in turn, require a performance mea-
sure for evaluating the quality of possible solutions.
While reasoning ignores conflicts, they are still present in the knowledge base
and may lead to sub-optimal results. It was shown that solutions invalidating a
minimal number of inferences do not necessarily minimize the number of con-
flicts still present. For minimizing these we proposed to use an entropy-based
performance measure. We provided a definition for the entropy of a solution
w.r.t an ABox which is currently being further investigated.
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Abstract. An important line of research within the field of fuzzy DLs is
the computation of an equivalent crisp representation of a fuzzy ontology.
In this short paper, we discuss the relation between tractable fuzzy DLs
and tractable crisp representations. This relation heavily depends on the
family of fuzzy operators considered.

Introduction. Despite the undisputed success of ontologies, classical ontol-
ogy languages are not appropriate to deal with vagueness or imprecision in the
knowledge, which is inherent to most of the real world application domains.
As a solution, several fuzzy extensions of Description Logics (DLs) have been
proposed in the literature. For a good survey we refer the reader to [1].

An important line of research within the field of fuzzy DLs is the compu-
tation of an equivalent crisp representation of a fuzzy ontology. This way, it is
possible to reason with the obtained crisp ontology, making it possible to reuse
classical ontology languages (e.g., OWL 2), DL reasoners, and other resources.
It is possible to reason with very expressive fuzzy DLs, and with different fam-
ilies of fuzzy operators (also called fuzzy logics), namely Zadeh [2], Gödel [3],
and  Lukasiewicz [4]. To be precise, in Gödel and  Lukasiewicz it is necessary to
restrict to the finite case, i.e., where the set of degrees of truth is finite and fixed.

In the last years, there is a growing interest in the study of tractable DLs. In
these logics, the expressive power is compromised for the efficiency of reasoning.
In OWL 2, the current standard language for ontology representation, three
fragments (called profiles) have been identified, namely OWL 2 EL, OWL 2 QL,
and OWL 2 RL [5]. Table 1 shows the relation of some OWL 2 constructors and
its fragments. In OWL 2 EL and OWL 2 RL, the basic reasoning tasks can be
performed in a time which is polynomial with respect to the size of the ontology.
In OWL 2 QL, conjunctive query answering can be performed in LogSpace
with respect to the size of the assertions.

Sometimes, the crisp representation of a fuzzy KB enjoys the following prop-
erty: given a fuzzy ontology O in a fuzzy DL language X , the crisp representation
of O is in the (crisp) DL X . The objective of this paper is to determine in a
precise way when this property is verified, focusing on the case of tractable fuzzy
DLs, which is a very interesting case in real-world applications.

Definition 1. A fuzzy DL language X is closed under reduction iff the crisp
representation of a fuzzy ontology in X is in the (crisp) DL language X .



Table 1. Summary of the relation among OWL 2 and its three profiles.

OWL 2 OWL 2 EL OWL 2 QL OWL 2 RL
Class X X X
ObjectIntersectionOf X restricted X
ObjectUnionOf restricted
ObjectComplementOf restricted restricted
ObjectAllValuesFrom restricted
ObjectSomeValuesFrom X restricted restricted
DataAllValuesFrom restricted
DataSomeValuesFrom X X restricted
. . .
ObjectProperty X X X
DatatypeProperty X X X
. . .
ClassAssertion X X X
ObjectPropertyAssertion X X X
SubClassOf X X X
SubObjectPropertyOf X X X
SubDataPropertyOf X X X
. . .

In the following, we will assume that X is not more expressive than SROIQ(D).

Fuzzy DLs. We assume the reader to be familiar with fuzzy DLs [1]. We note
that the many existing proposals usually differ in syntax, semantics, and logical
properties. In this paper, we consider fuzzy DLs with the following features:

– Concepts and roles are syntactically the same as in the crisp case.
– Axioms are syntactically the same as in the crisp case, with the exception

of concept assertions, role assertions, general concept inclusions (GCIs), and
role hierarchies, where a crisp axiom τ is extended with a lower bound as
〈τ B α〉, with B ∈ {≥, >}, and α ∈ [0, 1]. For instance, 〈a : C u D ≥ 0.6〉
means that the concept assertion a : C uD is true with degree at least 0.6.

– The semantics of classes, properties and axioms depends on some fuzzy logi-
cal operators, namely a t-norm, a t-conorm, a negation, and an implication.
For instance, the semantics of the conjunction is given by a t-norm. Fuzzy
DLs with different fuzzy operators have many different logical properties.

Crisp representations of fuzzy DLs. The basic idea of the crisp represen-
tation is to use some basic crisp concepts and roles, representing the α-cuts of
the fuzzy concepts and roles. To keep the semantics of the α-cuts, some axioms
must be introduced, namely GCIs and role hierarchies. Finally, every axiom of
the fuzzy ontology is represented, independently from other axioms, using these
basic crisp elements. An important property of these crisp representations is
that, although the number of axioms in the TBox and the RBox increase, the
number of axioms in the ABox is constant. Let us illustrate this with an example.

Example 1. Assume that a fuzzy ontology K includes the set of axioms {〈a :
∃R.C ≥ 0.6〉, 〈a : ¬∃R.C > 0.8〉}. The crisp representation of the ontology must
consider the crisp concepts C≥0.6, C≥0.8, and the crisp roles R≥0.6, R≥0.8, which



produce the GCI C≥0.8 v C≥0.6 and the role hierarchy R≥0.8 v R≥0.6. Assuming
that the t-norm is the minimum and the negation is the standard ( Lukasiewicz),
the crisp representation of the axioms is {a : ∃R≥0.6.C≥0.6, a : ∀R≥0.8.(¬C≥0.8)}.

The case of Zadeh fuzzy logic. The full details of the crisp representation
in Zadeh SROIQ(D) can be found in [2]. Zadeh logic makes it possible to
obtain smaller crisp representations than with Gödel and  Lukasiewicz logics. For
instance, in Zadeh logic, from 〈a : CuD ≥ 0.6〉 we can deduce both 〈a : C ≥ 0.6〉
and 〈a : D ≥ 0.6〉. However, in  Lukasiewicz logic, this is not possible, and we have
to build a disjunction over all the possibilities. In Gödel implication, we have a
similar problem. In the case of Zadeh logic, we have the following property:

Property 1. In Zadeh fuzzy logic, a fuzzy DL language X is closed under reduc-
tion iff it includes GCIs and role hierarchies. ut

The proof of this property is trivial from the crisp representation [2]. This re-
sult applies, for instance, to logics more expressive thanALCH, such as SROIQ(D).
Furthermore, it also applies to the DLs that are equivalent to the profiles OWL
2 EL, OWL 2 QL, and OWL 2 RL (see Table 1).

Example 2. Consider again the fuzzy ontology K from Example 1, and assume
that the language of K is ALC. Since ALC does not contain role hierarchies,
the second condition of Property 1 fails, and hence fuzzy ALC is not closed
under reduction. This is intuitive, because the crisp representation contains role
hierarchies (R≥0.8 v R≥0.6). ut

The case of Gödel fuzzy logic. The full details of the crisp representation in
Gödel SROIQ(D) can be found in [3]. This case is very similar to the previous
one. In fact, using a similar reasoning, it can be seen that the following property
is verified by the three OWL 2 profiles.

Property 2. In Gödel fuzzy logic, a fuzzy DL language X is closed under reduc-
tion iff it verifies each of the following conditions:

– X includes GCIs.
– X includes role hierarchies.
– If X includes universal (all) restrictions, then it also include conjunction. ut

The case of  Lukasiewicz fuzzy logic. The full details of the crisp represen-
tation in  Lukasiewicz ALCHOI can be found in [4].

Property 3. In  Lukasiewicz fuzzy logic, a fuzzy DL language X is not closed
under reduction if it verifies some of the following conditions:

– X does not include GCIs.
– X does not include role hierarchies.
– X includes one and only one of the constructors disjunction and conjunction.



– X includes existential (some) restrictions, but it does not include disjunction.
– X includes universal (all) restrictions, but it does not include conjunction.

ut

Again, the proof of this property is trivial from the crisp representation [4].
The three OWL 2 profiles verify this property. OWL 2 EL and OWL 2 QL
support conjunction but not disjunction (see Table 1); and OWL 2 RL allows
intersection as a superclass expression, but does not allow disjunction there [5].

Note that this property is formulated in a different way. The reason is that
a crisp representation for a fuzzy DL more expressive than ALCHOI is still
unknown. Hence, rather than a general result, we only have a partial one.

Size of the crisp representations. In Zadeh and Gödel OWL 2 QL we obtain
a crisp ontology where the ABox has the same number of axioms as the original
fuzzy ABox. Hence, tractability is preserved, since the complexity of reasoning
depends on the number of assertions.

In Zadeh and Gödel OWL 2 EL and OWL 2 RL, we obtain a crisp ontology
in a tractable language. However, the TBox and the RBox are larger than in
the original fuzzy ontology. This increase in the size is an issue to consider when
dealing with tractable fuzzy DLs from a practical point of view, as reasoning
depends on the size of the ontology.

In Gödel OWL 2 QL, a fuzzy universal restriction is mapped into a (crisp)
conjunction of universal restrictions. Hence, the resulting ontology is bigger than
in the Zadeh case. This does not happen in OWL 2 EL nor in OWL 2 QL, as
they do not allow universal restrictions (see Table 1).

In tractable fuzzy DLs, it is specially important to use optimized crisp repre-
sentations. For instance, domain and range restrictions can be treated as GCIs,
but their crisp representation are more efficient if treated as special cases [2].
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