Literal Reification

http://ontologydesignpatterns.org/wiki/Submissions:Literal Reification

Aldo Gangemi
ISTC-CNR
aldo.gangemi@cnr.it

ABSTRACT

In this paper we introduce the pattern literal reification, a
modelling technique to address scenarios, in which we need
to bless particular literals, usually when applying data prop-
erties, in order to use them as subjects and/or full-fledged
objects of semantic assertions.

Keywords
OWL, SWRL, literal reification

1. INTRODUCTION

Recently within the Semantic Web community a new topic
has been actively discussed: whether and how to allow lit-
erals to be subjects of RDF statements'. This discussions
failed to provide a unique and clear indication of how to
proceed in that regard.

Although one of the suggestions coming out of the dis-
cussion was to explicitly include the proposal in a (future)
specification of RDF, this topic is not actually new, partic-
ularly in ontology modelling. The needs to describe “typi-
cal” literals (specially strings) as individuals of a particular
class has been addressed by a lot of models in past, such as
Common Tag? (through the class Tag), SIOC? (through the
classes Category and Tag), SKOS-XL* (through the class
Label), and LMM® (through the class Expression). After
considering the above-mentioned models and other related
and inspiring ones, we have developed a pattern called literal
reification to address this issue. It allows to express literal
values as proper ontological individuals so as to use them as
subject/object of any assertion within OWL models.

The rest of the paper follows this structure: in Section 2
and Section 3 we respectively introduce a high level and de-
tailed description of the pattern; in Section 4 we discuss two
particular application scenarios that we use to demonstrate
all the capabilities of the pattern.

2. GENERAL DESCRIPTION

Extending the pattern region®, the pattern literal reifica-
tion promotes any literal as “first class object” in OWL by

Yhttp:/ /www.w3.org/2001 /sw/wiki/Literals_as_Subjects.
http://www.commontag.org

Shttp://rdfs.org/sioc/spec
“http://www.w3.org/TR/skos-reference/#xl

?http://WWW.ontologydesignpatterns.org/ont/lmm/LMM,L 1.owl
Shttp://ontologydesignpatterns.org/wiki/Submissions:Region

Silvio Peroni
University of Bologna

speroni@cs.unibo.it

Fabio Vitali

University of Bologna
fabio@cs.unibo.it

reifying it as a proper individual of the class litre:Literal. In-
dividuals of this class express literal values through the func-
tional data property litre:hasLiteralValue and can be con-
nected to other individuals that share the same literal value
by using the property litre:hasSameLiteral ValueAs. More-
over, a literal may refer to, and may be referred by any
OWL individual through litre:isLiteralOf and litre:hasLiteral
respectively.

Note that the pattern defines also a SWRL rule that al-
lows to infer the (not explicitly asserted) literal value of a
particular literal individual when it is connected to another
literal individual via litre:hasSameLiteral ValueAs:

litre:hasSameLiteralValueAs(x,y) ,
litre:hasLiteralValue (y,v)
-> litre:hasLiteralValue (x,Vv)

This pattern allows to use each reified literal as subject or
object of any assertion, and it is able to address scenarios
described, for example, by the following competency ques-
tions:

e What is the context in which entities refer to a partic-
ular literal value?

e What is the meaning of a particular value considering
the context in which it is used?

Plausible scenarios of its application include:

e modelling domains concerning descriptive tags, in which
each tag may have more than one meaning depending
on the context in which it is used;

e extending quickly the capabilities of a model by adding
the possibility to make assertions on values, previously
referred through data properties, without modifying it.

3. ELEMENTS

As shown in Fig. 1, the pattern literal reification is com-
posed by a class, a data property and three object properties,
described as follows:

e Class litre:Literal. It describes reified literals, where
the literal value they represent is speficied through the
property litre:hasLiteral Value. Each individual of this
class must always have a specified value.

e Data property litre:hasLiteral Value. 1t is used to spec-
ify the literal value that an individual of litre:Literal
represents.



e Object property litre:hasSameLiteral ValueAs. It re-
lates the reified literal to another one that has the same
literal value.

e Object property litre:hasLiteral. It connects individu-
als of any class to a reified literal.

e Object property litre:isLiteralOf. It connects the rei-
fied literal to the individuals that are using it.

owl:Thing

[Iitre:hasLiteraIVaIue exactly 1]

™~

owl:equivalentClass

litre:isLiteralOf

litre:hasLiteral

litre:hasSameLiteralValueAs litre:Literal

lIII

SWRL rule

litre:hasLiteralValue rdfs:subClassOf
il

1 ]

| litre:hasSamelLiteralValuesAs(x,y) & | 'f;?

| litre:hasLiteralValue(y,v) !

! -> litre:hasLiteralValue(x,v) | rdfs:Literal region:Region

1 ]

[=] Legend
Kinds of entity ‘ <resource> ‘ [ <class> ] <literal>

Statement <predica.te>—)-
T S
Dgt:;: Igrrgtplf:?\y <data property>{> < range:

Figure 1: A figure summarizing the pattern.

4. SCENARIOS

4.1 Same tag, different meanings

Used frequently in the Web 2.0, descriptive tags such as
the ones used in folksonomies are keywords (e.g., strings)
assigned to a particular resource, such as a web document,
with the intent to describe it. Just like words in any natural
language, tags may have different meanings depending on
the context in which they are used.

For instance, the word “Paris” may be either a name of a
city or a first name of a person. Here, it is clear that the
act of tagging with “Paris” both the Wikipedia pages about
the Eiffel Tower and the one about Paris Hilton hides two
different intents: in the former case, “Paris” denotes the city
in which the tower stands; in the latter case, “Paris” denotes
a particular person, i.e., Paris Hilton.

Using the literal reification pattern it is possible to express
descriptive tags as first class objects in OWL, by considering
them as proper individuals of the class litre: Literal. Different
individuals may thus represent different meanings even if
their literal values are identical:

Thttp://www.essepuntato.it/2010/06 /sc1.tt]

<http://en.wikipedia.org/wiki/Eiffel_Tower>
a foaf:Document
; prism:keyword :parisTagl

<http://en.wikipedia.org/wiki/Paris_Hilton>
a foaf:Document
; pPrism:keyword :parisTag?2

:parisTagl a litre:Literal
, [ a skos:Concept
; skos:definition "A name associated
to a city"@en ]
; litre:hasLiteralValue "Paris"
; lmm:denotes dbpedia:Paris

:parisTag2 a litre:Literal
, [ a skos:Concept
; skos:definition "A first name of
a person"@en ]
; litre:hasSamelLiteralValueOf :parisTagil
; lmm:denotes dbpedia:Paris_Hilton

4.2 Keeping track of name changes

NameHistory3.0 is a (fictional) institution that keeps track
of all the names of people, and stores them as an ABox of the
FOAF ontology. In particular, each person is stored as an
individual of the class foaf:Person with a specific first name
(data property foaf:givenName) and family name (data prop-
erty foaf:familyName).

On 24/09/2010, Bruce Wayne formally applied for chang-
ing his first name to Jack. Since NameHistory3.0 has to keep
track of everything concerning names of people, on that date
“Jack” was added as Mr. Wayne’s first name. It was then
that NameHistory3.0 noticed that, without any additional
information, it is not possible to know which of the two first
names are legally valid at any given point in time.

A solution to that scenario, which avoids any modifica-
tion of the ontology model and consequently of the entire
triple store (operation that is obviously time-consuming and
error-prone), is to use the literal reification pattern in com-
bination with the new expressivity for punning in OWL 2.
Through them, it is possible to define a literal individual as
also belonging to the class foaf:givenName — that is actually
defined as a data property, but may be additionally be meta-
modelled as a class. We can now associate a particular time
interval to each literal, so as to represent when the literal
itself, i.e., the given name, is legally valid®:

:mr_wayne a foaf:Person
; foaf:familyName "Wayne"
; litre:hasLiteral
[ a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Bruce"
; dcterms:valid
[ a ti:TimeInterval
; ti:hasIntervalStartDate
"1983-01-15"
; ti:hasIntervalEndDate
"2010-09-24"] 1
; litre:hasLiteral
[ a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Jack"
; dcterms:valid
[ a ti:TimeInterval
; ti:hasIntervalStartDate
"2010-09-24" 1 1]

Shttp://www.essepuntato.it/2010,/06 /sc2.ttl



