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Figure 1: The method presented in this paper takes a stream of stereo images as an input and synthesizes additional views required for an
automultiscopic display. The output views are also filtered to remove inter-view aliasing. (”Big Buck Bunny” c© by Blender Foundation)

Abstract

Multi-view autostereoscopic displays provide an immersive, glasses-
free 3D viewing experience, but they require correctly filtered con-
tent from multiple viewpoints. This, however, cannot be easily
obtained with current stereoscopic production pipelines. We pro-
vide a practical solution that takes a stereoscopic video as an input
and converts it to multi-view and filtered video streams that can be
used to drive multi-view autostereoscopic displays. The method
combines a phase-based video magnification and an interperspective
antialiasing into a single filtering process. The whole algorithm is
simple and can be efficiently implemented on current GPUs to yield
a near real-time performance. Furthermore, the ability to retarget
disparity is naturally supported. Our method is robust and works
well for challenging video scenes with defocus blur, motion blur,
transparent materials, and specularities. We show that our results
are superior when compared to the state-of-the-art depth-based ren-
dering methods. Finally, we showcase the method in the context
of a real-time 3D videoconferencing system that requires only two
cameras.
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1 Introduction

Stereoscopic 3D content is becoming more popular as it reaches
an increasing number of home users. While most of current TV
sets are 3D-enabled, and there is plenty of 3D movies and sports
programming available, the adoption of stereoscopic 3D is hampered
by the use of 3D glasses required to view the content. Multi-view au-
tostereoscopic (or automultiscopic) displays offer a superior visual
experience since they provide both binocular and motion parallax
without the use of special glasses. A viewer is not restricted to be in
a particular position and many viewers can watch the display at the
same time. Furthermore, automultiscopic displays can be manufac-
tured inexpensively, for example, by adding a parallax barrier or a
lenticular screen to a standard display.

However, there are three major problems that need to be addressed
in order for a multi-view autostereoscopic TV to become a reality.
First, current 3D content production pipelines provide only two
views, while multi-view stereoscopic displays require images from
many viewpoints. Capturing TV-quality scenes with dense camera
rigs is impractical because of the size and cost of professional quality
cameras. A solution to use view-interpolation to generate these ad-
ditional views requires an accurate depth and inpainting of missing
scene regions. There has been a steady progress in stereo depth
reconstruction algorithms, but the quality is not yet good enough for
TV broadcast and movies. Handling scenes that include defocus blur,
motion blur, transparent materials, and specularities is especially
difficult. Second, multi-view autostereoscopic displays require spe-
cial filtering to remove interperspective aliasing – all image content
that is not supported by a given display [Zwicker et al. 2006]. With-
out performing this step severe ghosting and flickering can be seen.
However, in order to properly antialias a multi-view video, a dense
light field is necessary. Finally, to assure viewing comfort, image
disparities usually have to be modified according to the display type,
size, and viewer preference. This disparity retargeting step also
requires rerendering the scene with the adjusted disparities.

We propose a method that addresses all these three limitations. Our
method takes a stereoscopic stream as an input and produces a cor-
rectly filtered multi-view video for a given automultiscopic display
as shown in Figure 1. The solution does not require any changes to
the current stereoscopic production and content delivery pipelines.

http://doi.acm.org/10.1145/2508363.2508387
http://portal.acm.org/ft_gateway.cfm?id=2508387&type=pdf
http://people.csail.mit.edu/pdidyk/projects/MultiviewConversion/
http://people.csail.mit.edu/pdidyk/projects/MultiviewConversion/multiviewConversion.mp4


All additional processing can be done by the client (e.g., at home).
The proposed method is simple and it can be implemented in hard-
ware. Our current implementation on GPU in CUDA achieves a near
real-time performance. The key to our solution is a steerable pyra-
mid decomposition and filtering that has been recently successfully
used for motion magnification in video sequences [Wadhwa et al.
2013]. We show how similar concepts can be used for view inter-
polation and how the antialiasing filter and disparity remapping can
be incorporated with almost no additional cost. We demonstrate the
results on a variety of different scenes including defocus blur, motion
blur, and complex appearance. We compare our results to both the
ground truth and depth-based rendering. Finally, we demonstrate our
method on a real-time 3D video conferencing system that requires
only two video cameras and provides multi-view autostereoscopic
experience.

To summarize, our contributions are an efficient algorithm for joint
view expansion, filtering and disparity remapping for multi-view
autosteresocopic displays as well as an evaluation of the method on
many different scenes along with a comparison to both the ground
truth and the state-off-the-art depth-based rendering techniques.

2 Previous Work

An automultiscopic display reproduces multiple views correspond-
ing to different viewing angles. This allows for glasses-free 3D and
more immersive experience. In order to achieve this, all the views
need to be provided to the display. A standard technique to acquire
multiple images from different locations is to use a camera array.
Such systems usually consist of calibrated and synchronized sensors,
which record the scene from different locations. The number of
cameras can range from a dozen [Matusik and Pfister 2004] to over
a hundred [Wilburn et al. 2001]. However, such setups are usually
impractical [Farre et al. 2011] and too expensive for commercial
use. Instead, it is possible to use image-based techniques to generate
missing views. Most of these techniques need to recover depth infor-
mation first, and then a view synthesis method is used for computing
additional views [Smolic et al. 2008]. Although there is a number of
techniques that try to recover depth information from stereo views
[Brown et al. 2003], this is an ill-posed problem. Most of existing
methods is prone to artifacts and temporal inconsistency. The quality
of estimated depth maps can be improved in a post-processing step
[Richardt et al. 2012]. This, however, is usually a time consum-
ing process. Instead of recovering dense map correspondence, it
is possible to recover only sparse depth maps and use a warping
technique to compute new views [Farre et al. 2011]. Such methods
can produce good result but at expense of computational time which
prevents real-time solutions.

Recently, there has been a significant development in display de-
signs [Holliman et al. 2011]. Commercial automultiscopic displays
are usually based on either parallax barriers or lenticular sheets.
Both, placed atop a high resolution panel, trade spatial resolution
for angular resolution, and produce multiple images encoded as one
image on the panel [Lipton and Feldman 2002; Schmidt and Gras-
nick 2002]. Multi-view projector systems have been also proposed
[Matusik and Pfister 2004; Balogh 2006]. Even more recently, there
has been many attempts of building a display which would repro-
duce the entire light field. One such example is a display with 256
views proposed by Takaki et al. [2010]. Also so-called compressive
and multi-layer displays try to achive this goal by introducing more
sophisticated hardware solutions [Akeley et al. 2004; Wetzstein
et al. 2012]. This trend makes multi-view autostereoscopic display a
promising solution for the future.

Automultiscopic screens usually produce a light field, which is
a continuous 4D function representing radiance with respect to a

position and a viewing direction [Levoy and Hanrahan 1996]. Due
to discrete nature of an acquisition (i. e., limited number of views),
the recorded light field is usually aliased. Chai et al. [2000] as
well as Isaksen et al. [2000] presented a plenoptic sampling theory
which analyses the spectrum of reconstructed light field. Based on
this, there has been presented a number of techniques that allow for
antialiasing of the recorded light field [Isaksen et al. 2000; Stewart
et al. 2003]. In the context of automultiscopic display, the aliasing
is not only due to undersampling of the light field but also because
of the limited bandwidth of the display. Zwicker et al. [2006] took
both sources of the aliasing into account and presented a combined
antialiasing framework which filters input views coming from a
camera array. However, the large number of views required for
their technique makes the solution impractical in a standard scenario
when only 3D stereo content (two views) is available.

A sequence of images required for automultiscopic display usually
corresponds to a set of views captured from different locations. Such
a sequence can be captured by a camera moving horizontally on a
straight line. In this context, a problem of creating additional views
is similar to a motion editing problem when the only motion in the
scene comes from the camera movement. Recently, a number of
techniques have been presented which seek to magnify invisible mo-
tions. For example, in the Lagrangian approach [Liu et al. 2005], the
motion is explicitly estimated and then magnified. Later, an image
based technique is used to compute frames that correspond to mod-
ified flow. Wu et al. [2012] proposed an Eulerian approach which
eliminates the need of flow computation. Instead, it processes the
video in space and time to amplify the temporal color changes. More
recently, Wadhwa et al. [2013] proposed a phase-based technique.
This method benefits from the observation that in many cases motion
is encoded in a complex-valued steerable pyramid decomposition
as coefficients variation. Compared to previous techniques, this
method does not require motion computation and can handle much
bigger displacements then the Eulerian approach. Our technique is
inspired by these methods. Instead of estimating correspondence
(depth) between two stereo views, we assume that it is encoded in
the phase shift once the left and right views are decomposed into
complex-valued steerable pyramids.

3 View Expansion

In this section, we describe our approach for view expansion. The
goal of this method is to take as an input a standard 3D stereo video
stream (i. e., left and right view), and create additional views that can
be later used on an automultiscopic display. Our method is inspired
by the phase-based motion magnification technique. Therefore, we
first give a short overview of this method, and then explain how it can
be adapted to create additional views for automultiscopic display.

3.1 Phase-based Motion Magnification

The phase-based motion magnification exploits the steerable pyra-
mid decomposition [Simoncelli et al. 1992; Simoncelli and Freeman
1995], which decomposes images according to the spatial scale and
orientation. Assuming that the signal is a sine wave, a small motion
is encoded in the phase shift between frames. Therefore, the motion
can be magnified by modifying the temporal changes of the phase.

In order to compute the steerable pyramid a series of filters Ψω,Θ
is used. These filters correspond to one filter, which is scaled and
rotated according to the scale ω and the orientation Θ. The steerable
pyramid is then built by applying these filters to the discrete Fourier
transform (DFT) Ĩ of each image I from the video sequence. This
way each frame is decomposed into a number of frequency bands
Sω,Θ which have DFT S̃ω,Θ = ĨΨω,Θ. A great advantage of such a



decomposition is that the response of each filter is localized, which
enables processing of phases locally.

To give an intuition how the phase-based motion magnification
works, let us consider first a 1D case, i. e., 1D intensity profile f
translating over time with a constant velocity. If the displacement is
given by a function δ (t), the image changes over time according to
f (x+δ (t)). This function can be expressed in the Fourier domain
as a sum of complex sinusoids:

f (x+δ (t)) =
∞

∑
ω=−∞

Aω eiω(x+δ (t)), (1)

where ω is a single frequency and A is amplitude of the sinusoid.
From this, a band corresponding to the frequency ω is given by:

Sω (x, t) = Aω eiω(x+δ (t)). (2)

The ω(x+δ (t)) is the phase of the sinusoid, and it contains the mo-
tion information which can be directly amplified. However, changing
individual phases does not lead to meaningful motion editing, as the
motion is rather encoded in the relative changes of the phase over
time. To amplify motion, first, the phase is filtered in the temporal
direction to isolate desired phase changes Bω (x, t). Next, it is mul-
tiplied by a magnification factor α , and the original phase in band
Sω,Θ is increased by the amplified signal Bω (x, t). If we assume that
the filtering applied to the phase removes only DC component, the
new modified sub-band with amplified motion is:

Ŝω (x,y) = Ŝω (x,y)eiαBω (x,t) = Aω eiω(x+(1+α)δ (t)). (3)

The method generalizes to the 2D case, where the steerable pyramid
decomposition uses filters with a finite spatial support. This enables
detecting and amplifying local motions. For more details please
refer to the original paper [Wadhwa et al. 2013].

3.2 Our Approach

In order to expand 3D stereo content to a multiview video stream
(Figure 2), we make the following observation. Similarly to motion
magnification, where the motion information is mostly encoded
in the phase change, the parallax between two neighboring views
is encoded in the phase difference. As we deal with two frames
only (left and right), instead of analyzing the phase changes in the
temporal domain, we need to account for the phase differences in
corresponding bands between two input views. Because there is no
notion of time, we denote the phase shift as δ instead of δ (t) in the
rest of the paper.
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Figure 2: Our method takes a 3D stereo stream as an input, and
performs a view expansion together with an antialiasing filtering to
obtain a correct input for an automultiscopic display. (”Sintel” c©
by Blender Foundation)

In order to create the additional views we take the two stereo frames
L and R, and perform the steerable pyramid decomposition on both.

Then, we compute the phase difference for each complex coefficient.
After modifying the phase differences according to the α value and
collapsing the pyramids, two nearby views are created. The result
is a stereo disparity expansion without a need of dense depth map
reconstruction, which can be prone to significant artifacts.

The process can be defined as follows:

(L′,R′) = M(L,R,α),

where M is the view generation process, and L′ and R′ are the nearby
views according to the magnification factor α . The magnification
factors are computed based on virtual camera positions that the
images correspond to. If we assume that the input images coincide
with locations−x0 and x0, for the left and the right view, respectively,
the magnification factor for an arbitrary location x needs to be set to
α = (|x|− x0)/(2x0). Because a new image is always reconstructed
from the input view which is closest to the new location, the same α

value is used for location x and −x. The process of choosing correct
magnification factors is shown in Figure 3. For all our results, we
use view expansion only in outward direction illustrated as the first
example.
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Figure 3: The magnification factor α needs to be adjusted according
to the position of the virtual camera for which the view is generated.
Our method can synthesize new views in outward direction but also
interpolate inbetween views. New views are reconstructed from
the input image corresponding to the closest location, i. e., the left
image is used to reconstruct images corresponding to locations in
blue regions whereas the right one is used for green regions.

4 Antialiasing for Automultiscopic Display

In this section, we show how our method for new views generation
can be extended so that it produces images without interperspective
aliasing. This requires the views to be filtered according to the local
depth. The process is similar to adding a depth-of-field effect. A
naïve and costly way to filter a single view is to generate a number
of neighboring views and average them using weights corresponding
to the distance from the original view. In contrast, a key advantage
of our approach is that we can perform the filtering directly on the
steerable pyramid decomposition. We derive a closed form solution
that can be performed at almost no additional cost.

4.1 Filtering Equation

For the simplicity, let us assume that instead of the previously defined
function M we have two: MR and ML. These return only one of
the views, i. e., R′ or L′ respectively. The process of antialising is
analogous for both views, and we will describe the case of R′ view.

In order to be filtered, R′ needs to be averaged with its neighboring
views according to the weights given by a low pass filter along the
viewpoint dimension. Let us assume that the filter is given as a
function F . The antaliased view R̂′ corresponding to fixed α value,



Rendered frames without filtering Ground truth (filtered) Depth-based rendering with filering Our method

Figure 4: Comparison of different content creation approaches for automultiscopic display. When each frame is rendered, but antialiasing is
not applied a significant ghosting is visible for objects located further from the screen plane (green insets). These artifacts can be removed
when the content is properly filtered but this requires rendering hundreds of views. Image-based techniques combined with filtering can produce
good results for many cases, but also can introduce significant artifacts when depth estimation fails (red insets). Our method produces results
similar to rendering with filtering, but at cost similar to real-time image-based techniques. (”Big Buck Bunny” c© by Blender Foundation)

can be computed as follows:

R̂′ =
∫

F (β −α)MR(L,R,β )dβ .

In order to perform the filtering directly on the pyramid decompo-
sition, the above integration can be approximated before the recon-
struction of the pyramid for each sub-band of R′ separately. Let
us consider one band Ŝω (x,y,α) of the decomposition of R′. The
corresponding filtered sub-band can be computed as:

S̃ω (x,y,α) =
∫

F (β −α) · Ŝω (x,y) dβ ,

which can be further transformed:

S̃ω (x,y,α) =
∫

F (β −α) ·Aω eiω(x+(1+β )δ ) dβ

= Aω eiω(x+δ (t))
∫

F (β −α) · eiωβδ dβ

= Sω (x,y)
∫

F (β −α) · eiωβδ dβ .

The final filtered sub-band consists of two components. The first one,
Sω (x,y), is a sub-band of original view R. The second component
is the integral component, which depends only on δ . This is very
convenient because in most cases it has a closed form solution, or it
can be precomputed and stored as a lookup table parametrized by δ .

In our implementation we chose F to be a Gaussian filter:

Fσ (β ) =
1√

2π ·σ
· e−

β2

2σ2 ,

which results in each sub-band of view R′ being:

S̃ω (x,y,α) =
σ

2
· eiαδ−σ 2δ 2/2 · Sω (x,y).

The above equation assumes a good estimation of the phase shift
δ . In practice, the phase-based approach [Wadhwa et al. 2013] may
underestimate it, which leads to insufficient filtering. This happens
when the assumption that the correspondence between two views
is encoded in the phase difference fails. In that case, we propose
to correct the phase shift in each sub-band separately, based on the
phase shift in the corresponding sub-band for the lower frequency.
To this end, before applying the factor responsible for the filtering,

we process the entire pyramid starting from the lowest frequency
level. Whenever the phase shift on the level below is greater then
π/2, the phase shift at the current level may be underestimated. In
such a case, we correct the phase shift by setting its value to twice
the phase shift on the lower level. This provides a correct phase shift
estimation under the assumption that the correspondence between
the input views behaves locally as a translation. The correct phase
shift estimation is not crucial for the motion magnification nor for
the nearby view synthesis. However, it is important for the correct
filtering.

5 Results

In this section, we provide an extensive set of results to evaluate
our method. First, we include implementation details and standard
running times. Second, we provide a detailed comparison with a
state-oft-the-art depth image-based rendering technique (DIBR). We
also present our real-time 3D video conferencing system to showcase
the robustness and efficiency. Then, we show an application of our
method to depth remapping. Finally, the limitations are discussed.

Implementation details We have implemented our method on a
GPU using CUDA API, and processed all sequences using NVIDIA
GTX Titan graphics card on an Intel Xeon machine. We have
used eight orientations in the steerable pyramid, which gives us a
good trade-off between quality and performance. The time required
for building a pyramid and reconstructing one additional view is
independent of the image content, and it is 15 ms and 12 ms for
building and reconstructing respectively, assuming a content with
816× 512 resolution. This enables reconstruction of eight views
for a standard automultiscopic display at 8.3 FPS rate. The memory
requirement for our method is relatively low. Each pyramid requires
137 MB of memory. Hence, to process an input stereo sequence,
3 × 137 MB of memory is required – 2 × 137 MB for two input
views and 137 MB for the synthesized view.

Comparison to depth-based techniques We are not aware of
any real-time method that directly computes properly filtered con-
tent for automultiscopic 3D displays based on a stereoscopic video
stream. However, in order to evaluate our method we compared our
technique to a combination of depth-based rendering and antialias-
ing. Our hypothetical competitive method takes a stereoscopic video
stream as an input, and reconstructs a depth map for each image pair.
Then, it applies a real-time warping technique for additional views
synthesis. To obtain one antialiased view the method averages 30



neighboring views according to Gaussian weights similar to these
that are used in Section 4. For estimating depth we used a recent
technique proposed by Hosni et al. [2013]. The view sythesis is sim-
ilar to the approach presented by Didyk et al. [2010]. Combination
of these two techniques provides a good trade-off between quality
and performance.

We compare this depth-based rendering with our method on three
different examples. Two of them are computer generated anima-
tions (Figures 4 and 5). The third example is a photograph taken
using a 3D camera (LG Olympus P725 camera) (Figure 6). This
example is challenging for both techniques as the captured scene
contains both reflections and transparent objects. In addition, for
the sequence from Figure 4 we computed a dense light field (100 of
views). This allowed us to use the antaliasing technique proposed by
Zwicker et al. [2006]. We refer to this as to the ground truth method.
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Figure 5: The comparison between our method and depth-based
rendering for one of the synthesized views. Please note the artifacts
due to the poor depth estimation for depth-based rendering. Blue
inset shows how incorrect depth estimation results in jaggy depth
discontinuities. In red insets, depth estimation fails in reconstruct-
ing depth of the out-of-focus butterfly. In both cases our method
produces more correct results. (”Sintel” c© by Blender Foundation)

In all cases our method produces more graceful degradation of the
image quality comparing to the DIBR method. It is important to
note, that artifacts produced by the depth-based technique are mostly
due to poor depth estimation and not due to incorrect view-synthesis.
Depth estimation is an ill-posed problem, and such methods cannot
handle regions with non-obvious per-pixel depth values (e. g., trans-
parencies, reflections, motion blur, defocus blur, and thin structures
that have partial coverage) as shown in Figures 5 and 6. Real-time
depth estimation methods also have problems with temporal coher-
ence. In contrast, our method does not produce visible and disturbing
artifacts even though the coherence is not explicitly enforced. This
can be observed in the accompanying video. Additionally, Figure 7
visualizes errors of our and the depth-based techniques when com-
pared to the ground truth using the SSIM metric [Wang et al. 2004].
The error produced by the latter is localized mostly around depth
discontinuities. Our method provides error which is distributed more
uniformly across the image, and therefore less disturbing. It is im-
portant to mention that the error of our technique is significantly
influenced by the different types of blur introduced by the compared
methods. While the ground-truth and the depth-based techniques
filter images only in the horizontal direction, our method results in a
more uniform blur. This can be observed in Figure 4 (green inset).
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Figure 6: Transparent and highly reflective objects are very chal-
lenging for any depth estimation and view synthesis methods. The
figure shows the input images (top) and views that were generated us-
ing depth image-based technique (middle) and our method (bottom).
The technique that relies on the depth estimation fails to reconstruct
highly reflective and transparent objects.

Ground truth vs DBR Ground truth vs Ours

Figure 7: A colormap visualizing errors between depth-based ren-
dering and ground truth (left) as well as our method and ground
truth (right) for the example from Figure 4. The difference is com-
puted using the SSIM metric. The error of the depth-based technique
is localized mostly around depth discontinuities. In contrast, the
error introduced by our method is distributed more uniformly across
the entire image. (”Big Buck Bunny” c© by Blender Foundation)

We attribute the better results produced by our method to the over-
complete representation that we use in our method. While depth-
based approaches estimate only one depth value per pixel, which can
lead to artifacts in complex cases where no such single value exists,
our technique captures the correspondence between views using
phase differences for multiple spatial frequencies and orientations
separately. As a result the local depth is not represented as one value
but many, which can lead to better performance where the depth is
not well-defined.

Standard 3D Stereo Content To demonstrate the robustness of
our method, we have tested it on many sequences downloaded from
the internet. These sequences often have severe compression arti-
facts, vertical misalignment, and visible color differences between
cameras. We have used our approach to expand a stereoscopic video
stream to a multiview stream and to display it on an 8-view auto-
multiscopic screen. The method works very well with most of these
sequences. We show two of them in the accompanying video.

3D Video Conferencing System Based on our fast view expan-
sion technique, we have built a light-weight, real-time 3D video
conferencing system. It consists of eight cameras mounted on a lin-
ear ring as well as an automultiscopic display. The system operates



Depth reduction Depth amplification

Figure 8: Our method can also support disparity manipulations. We show stereo images in anaglyph version (red channel for the left eye and
cyan for the right one) for the same scene with different depth ranges. (”Sintel” c© by Blender Foundation)

in two modes: it either uses all cameras to acquire 8 views, or it
uses only 2 of them and computes the additional six views using our
method. In both cases, the 8 views are streamed in real-time to the
screen, providing an interactive feedback for the users. See the sup-
plementary video for the comparison between views captured using
all cameras and those generated using our technique. Note that the
views rendered by our method are filtered to avoid aliasing and this
does not add any additional cost to the processing. In contrast, orig-
inal views captured by eight cameras contain aliasing. This could
be removed using the method presented by Zwicker et al. [2006]
with the aid of depth image-based rendering. However, it would be
prohibitively expensive for a real-time system. We showcase our
video conferencing system in the accompanying video.

Disparity Manipulations Our method can also be used for remap-
ping disparities in stereoscopic images and videos. Such modifi-
cations are often desired and necessary in order to adjust disparity
range in the scene to a given comfort range [Lambooij et al. 2009],
viewer preferences or for an artistic purpose [Lang et al. 2010]. For
example, NVIDIA 3D Vision allows users to change depth range us-
ing a simple knob. Also, methods that target directly automultiscopic
displays exist [Didyk et al. 2012]. Using our method, disparity range
in the image can be changed by adjusting α value in our view ex-
pansion (Section 3). The result is a global scaling of disparities. The
example of such manipulations is presented in Figure 8.

Limitations The phase-based approach is limited to processing
video that exhibits small displacements [Wadhwa et al. 2013]. For
larger displacements the locality assumption of the motion does
not hold. Therefore, for larger displacements, only lower spatial
frequencies can be correctly reconstructed. In the context of view
synthesis for multi-view autostereoscopic displays, this limitation is
largely alleviated due to the need of the interperspective antialiasing.
While the view synthesis cannot correctly reconstruct high frequen-
cies for scene elements with large disparity, these frequencies need
to be removed anyway since they usually lie outside of the display
bandwidth and lead to aliasing artifacts. For extreme cases, where
either magnification factors or the interaxial between input images
are large, some artifacts can remain visible. Therefore, our tech-
nique is not a universal substitute for large camera arrays. However,
in such cases the method can reduce the number of required cam-
eras significantly. Figure 9 visualizes a case where α values are
drastically increased.

6 Conclusions

We presented a novel method which, for the first time, combines
view synthesis and antialiasing for automultiscopic display. In con-
trast to prior solutions, our algorithm does not perform explicit depth
estimation and alleviates this source of artifacts. Instead, we leverage
the link between parallax and the local phase of Gabor-like wavelets,
in practice complex-valued steerable pyramids. This allows us to ex-

ploit the translation-shift theorem and simply extrapolate the phase
difference measured in the two input views. Importantly, the pyra-
mid representation allows us to integrate antialiasing directly and
avoid expensive numerical prefiltering. We derive a closed-form
approximation to the prefiltering integral that results in a simple
attenuation of coefficients based on the band and phase difference.
The simplicity of our method is key because it enables an interactive
implementation and makes it behave robustly even for difficult cases.
It is also guaranteed to avoid artifacts at the focal plane because the
measured phase difference is zero. For displays that do not repro-
duce only horizontal parallax but also vertical, our method can be
extended to generate small light fields. In Figure 10, we created
additional views in the horizontal as well as the vertical direction
using four input images.
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