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Although not always identified as such, information has been a fundamental quantity in
Physics since the advent of Statistical Mechanics, which recognized “counting states”
as the fundamental operation needed to analyze thermodynamic systems. Quantum
Mechanics (QM) was invented to fix the infinities that arose classically in trying to count
the states of Black Body radiation. In QM, both amount and rate of change of information
in a finite physical system are finite. As Quantum Statistical Mechanics developed,
classical finite-state models naturally played a fundamental role, since only the finite-
state character of the microscopic substratum normally enters into the macroscopic
counting. Given more than a century of finite-state underpinnings, one might have
expected that by nowall of physics would be based on informational and computational
concepts. That this isn’t so may simply reflect the stubborn legacy of the continuum,
and the recency and macroscopic character of computer science. In this paper, I discuss
the origins of informational concepts in physics, and reexamine computationally some
fundamental dynamical quantities.

KEY WORDS: information; entropy; energy; action; cellular automaton; quantum
mechanics.

1. INTRODUCTION

Viewed from a distance a digital image looks continuous, but if you look
closely enough you start to see the pixels—it becomes apparent that there is only a
finite amount of resolution. Similarly, it became apparent about a century ago that
finite physical systems also have only a finite amount of resolution. For example, a
gas of particles in a box has only afinitenumber of possible distinct states. This is
described precisely by Quantum Mechanics (QM), which also says that the rate at
which a finite physical system can move from one distinct state to another distinct
state is finite. Thus Nature is a lot like a computer: every finite system has finite
state and a finite rate of change of this finite state. Of course, Nature is more like a
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spatially distributed Cellular Automaton (Margolus, 1998; Toffoli and Margolus,
1987) than like a conventional von Neumann machine.3

Since the nonclassical properties of quantum physics (other than finite state)
are rarely evident in the macroscopic world, for many purposes it will be indis-
tinguishable whether the microscopic finite-state dynamics is classical or quan-
tum. We might therefore expect basic quantities of macroscopic physics to have
a classical informational/computational interpretation. That this is true has been
understood about entropy for a long time. More recently, energy has been under-
stood to be a computational quantity as well (Margolus and Levitin, 1998). For
any isolated physical system, the energy determines the maximum rate at which it
can go through a sequence of distinct states—its maximum number of operations
per second.

In this paper, we begin with a review of how information first became an
essential part of physics. We then develop a statistical description of ordinary
computation using the language of QM. This provides a simple introduction to
QM from a computer science point of view, clearly separating the formalism from
its physical content. We use this approach to define energy and action in ordinary
computation. We then discuss the difference between a finite-state classical world
and a quantum world. Finally, we argue that since most of macroscopic physics is
indifferent to this difference, classical finite-state models can play a distinguished
role in understanding physical dynamics.

2. INFORMATION

Since this is all going to be about information, we should start off by saying
what we mean here byinformation. We will be concerned here only with the
information-carrying capacity of physical systems: How many bits can a given
physical system hold, used as a computer memory? Ann-bit computer memory
has 2n possible distinct physical states and, conversely, any physical system that has
2n possible distinct states can, in principal, be used as ann-bit computer memory.

This is a classical notion of information. As Bennett (this issue) discusses,
there is an expanded notion of information that deals with qubits and quantum
entanglement and such, but here we will be concerned only with the classical
information content of physical systems. One reason that this is an interesting focus
is that classical information survives in the macroscopic limit. The whole basis of
Quantum Statistical Mechanics is that QM is needed primarily to determine a set
of distinct states—to give us something to count. The macroscopic combinatorics
that give relative probabilities are purely classical. From this, we expect that all of
the ordinary quantities in macroscopic physics should have a classical-information

3 Interestingly enough, Cellular Automata were also invented by von Neumann (Burks, 1970): they are
unconventionalvon Neumann machines.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464433 June 17, 2003 9:54 Style file version May 30th, 2002

Looking at Nature as a Computer 311

interpretation. Also, classical information is easier to understand, so it’s a good
place to start.

3. ENTROPY

In discussing information in physics, the natural starting point is Entropy.
Entropy was, for a long time, one of the most mysterious quantities in physics.
You put in an integrating factor in some differential equations of Thermodynam-
ics and you got a perfect differential. It was a very formal thing. Boltzmann and
Gibbs proposed that the entropyS equals log(ω), whereω is the number of pos-
sible microscopic physical states consistent with the macroscopic constraints on
the system. Since computers and information hadn’t been invented yet, no one
thought of S as being like a number of bits in a computer memory. They just
reasoned that to do statistics you need to count something, and this definition of
S grows proportionately with the size of the system, as thermodynamic entropy
does, and gets larger for less constrained systems. They guessed correctly that this
Scorresponds to the more abstract concept of entropy from thermodynamics.

Now the connection between entropy and the direction of macroscopic ther-
modynamic evolution was explained. When macroscopic constraints are relaxed—
say, a wall is removed—then a physical system expands to make use of a larger set
of possible states. Even though the microscopic evolution is reversible, it is very
unlikely that the system will just happen to land on one of the relatively few states
consistent with the original constraint. This relative likelyhood is reflected in the
fact that a particle in a small box can be used to represent fewer bits of information
than the same particle in a large box (Bennett, 1982; Bennett and Landauer, 1985).

Classically, in order to calculate the number of possible states, what they did
was introduce some sort of coarseness both in positions and momenta.4 Then you
could just do a counting of the relative number of ways of getting different kinds
of states, with and without a constraint. It didn’t much matter what the coarseness
was because when you compared two things, the size of the grain canceled out
in the ratio of relative probabilities. It’s like the relative probability of hitting a
bullseye on a dart board, compared to hitting the next ring—it doesn’t matter what
units you use to measure the two areas.

This kind of coarse-graining worked well until they came to the problem
of black body radiation, which was the first place where they really had to get
the counting of states right. This necessitated the invention of QM. The situation
considered is illustrated in Fig. 1. We have a cavity, and we have the radiation
4 They also had to treat particles of the same kind as classically indistinguishable, like the two ones in
the number 110: switching the two ones doesn’t give a new number, and swapping two classically
identical particles doesn’t give a new state. They didn’t understand why they had to adjust their counts
like this to get the right answer. If computer scientists had been around, they might have suggested
that particles are like patterns of bits in a computer memory, and swapping identical patterns between
two memory locations doesn’t produce a new state of the memory.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464433 June 17, 2003 9:54 Style file version May 30th, 2002

312 Margolus

Fig. 1. Radiation field inside a cavity. The boundaries are periodic,
and so each Fourier mode must be periodic.

field inside the cavity, and the boundaries in the illustration are periodic. We can
analyze the field as a sum of some number of Fourier modes, each with an integer
number of cycles that fit between the boundaries. There are an infinite number of
these, with higher and higher frequencies. Classically, the energy of each mode
only depends on its amplitude, and so if you have a unit of energy that you’re
adding to the system, you can add it to any one of these modes: there are an infinite
number of places to put the unit of energy. Even if you coarse grain the amplitudes,
there arestill an infinite number of places to put the energy! You don’t get a finite
number by coarse graining.

Max Planck solved this problem around the beginning of the last century.
What Planck proposed was that for each mode, there is a minimum energy that
is proportional to the frequency, with a universal constant of proportionality that
he introduced. Only integer multiples of the minimum energy can be added to a
given mode. This means that given a unit of energy to add to the system, there are
only a finite number of places it can be put—modes with energies too high cannot
be “excited.” Given the integer-multiple constraint, there are in fact only a finite
number of way to divide up the given unit of energy to add it to the system.

Planck’s strange new rule gave a finite count for the entropy, for the heat
capacity, and even gave agreement with experiment! He didn’t have to figure out
the dynamics, he just initially figured out the counting that was needed: Quan-
tum Statistical Mechanics is easier than QM, and was invented first. Soon, it
was understood how to apply Planck’s quantization to the rest of physics, to
make the counting of physical entropy of every finite system finite. Planck’s new
constant was in fact the grain size that needed to be used to do coarse grain-
ing of classicalposition× momentumin general, to get the correct quantum
counting of distinct states!5 This grain size was no longer an arbitrary unit that

5 Since an integer number of wavelengths must fit across a cavity of widthW, all mode frequencies
must be integer multiples ofν1 = c/W. If just one mode is minimally excited (i.e., just a single
photon), then with energyE there areE/hν1 possible modes for the photon. Since a photon has
two possible polarizations, there are actually twice this number of possible states. SinceE = cp, the
number of possible states for a single photon can be written as 2cp/hν1 = W × 2p/h, which is just
the number of states for a single particle in a box if theposition× momentumgrain size ish.
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cancels out in Statistical Mechanics calculations: it was a new fundamental unit of
Nature.

As an aside, we should note that QM defines what it means physically to have
a set of distict states: this is a set of states that can, in principle, be distinguished
from each other with perfect fidelity. Such a set ofmutually orthogonalstates
must be used for doing the counting. A physical system with finite extent and
finite energy has only a finite set of distinct possible states.

4. COMPUTATIONAL MECHANICS

The dynamics of finite-state systems is quite familiar to computer scientists,
and if computers had existed when it was realized that the world is a finite state
machine, it would have been natural to try to describe Nature in computational
terms. Here we will develop a statistical description of classical finite-state sys-
tems, and lead into QM from that viewpoint—giving a classical computational
interpretation of energy and action along the way.

Figure 2 shows a logic gate. This is just ordinary computer logic.A andB go
in; A comes out andA+ B (modulo 2) comes out. This is a reversible logic gate:
A is one of the outputs, and if you add the two outputs, modulo 2, you getB back
again. In fact, this gate is its own inverse: if you apply it again to the two outputs,
you get back the original inputs.

We can describe this gate’s dynamics using vector notation. Here you should
try to forget for a moment that you may have seen the bra-ket notation used in
QM, and we’ll reintroduce it in this classical context. The symbol|00〉 represents
a vector in a vector space. We associate a distinct basis vector with each possible
input state of our logic gate:|00〉, |01〉, |10〉, and|11〉 are the four possible input
cases. Now we describe what the gate does to each possible input state using a
linear operatorUxor:

Uxor|00〉 = |00〉,
Uxor|01〉 = |01〉,
Uxor|10〉 = |11〉,
Uxor|11〉 = |10〉. (1)

|00〉 and|01〉 are unchanged by this gate, and|10〉 and|11〉 turn into each other. If
we applyUxor twice, we always get back the state we started with. Note that we can
representanylogic operation on a fixed set of bits using this kind of linear-algebra

Fig. 2. A reversible logic gate with two inputs and two outputs.
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notation, since we’ve associated a distinct basis vector with each possible state, and
so we can decide separately what happens to each. By using 2n basis states for an
n-bit system, we are able to represent even nonlinear logic using linear operators.

5. CLASSICAL STATISTICAL ENSEMBLES

Now suppose you wanted to describe an ordinary statistical ensemble of
computations that employ a gate like that of Fig. 2. You start off with state|00〉
with probabilitya, |01〉with probabilityb, and so on. After we apply the gate once
to the initial state, we get

a|00〉 + b|01〉 + c|10〉 + d|11〉 → a|00〉 + b|01〉 + d|10〉 + c|11〉 (2)

For example, if we start off in|10〉 1/3 of the time, then we end up in the state
|11〉 1/3 of the time, since|10〉 turns into|11〉. In other words, the probabilities
just move around to follow the states. Statistical ensembles of invertible logic
circuits are naturally described using linear algegra, since whatever probabilityps

you had of starting the computer in a particular state|s〉, after applyingn steps
of computationU you end up in thenth successor stateUn|s〉 with the same
probability ps. If the computation is invertible, distinct states remain distinct, and
so probabilites just move around between basis vectors.

Now suppose we simply take Eq. (2) and replace all probabilities with their
square roots:

√
a|00〉 +

√
b|01〉 + √c|10〉 +

√
d|11〉 →

√
a|00〉 +

√
b|01〉 +

√
d|10〉 + √c|11〉. (3)

Since there is no mixing of probabilities under an invertible dynamics, it makes no
difference informationally if we use probabilities directly as coefficients, or some
encoded form of the probabilities, such as

√
p. The reason that

√
p is convenient to

use with a vector description of ensemble dynamics is that the sum of the squares
of the coefficients is a meaningful geometrical quantity: thevector lengthis just
the total probability, which is always one. This probabilistic character of vector
length will be important when we want to analyze our systems in different bases.
This notation, with square roots of probabilities (calledprobability amplitudes), is
the one that is used in QM. The amplitude-weighted sum of basis states is called
asuperposition.

More generally, if we take any invertible logic circuit and describe its action
on a set of bits using linear operatorsU as above, then the behavior of that circuit
with a Gibbs ensemble of possible initial states is naturally described using basis
vectors, probability amplitudes, superpositions, and length-preserving invertible
operators (so-calledunitary operators). There is no mixing of the amplitudes, they
just follow the states. We could do Monte Carlo sampling, starting the circuit off in



P1: GXB

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464433 June 17, 2003 9:54 Style file version May 30th, 2002

Looking at Nature as a Computer 315

different initial states with specified probabilities, runningnsteps of time evolution,
and getting final states with the same probabilities predicted by applyingUn to
the probability vector describing the ensemble of initial states. There is nothing
mysterious about this quantum mechanical language—it is just a natural way to
describe the classical evolution of ensembles of inputs.

6. THE ENERGY BASIS

We have described time evolution in terms of what it does to some complete
basis of states. For ordinary invertible circuits, the basis states are just all possible
configurations of the bits, where each bit is localized in space and is either zero
or one. The dynamics of asuperpositionof configuration states describes the time
evolution of a statistical ensemble.

Now suppose that we have a circuit that is governed by the time evolution
Uτ , applied repeatedly. For example,Uτ might describe one clock-cycle of the
operation of a reversible computer. The operatorUτ turns one configuration of the
bits of the computer into the next. Since the computer is finite, some configuration
of bits will eventually repeat. Since the evolution is deterministic, all subsequent
configurations will then also be repeats. Since the evolution is invertible, the first
repeated configuration will be the one we started with: all dynamical histories form
closed cycles. For example, a cycle of configuration states of lengthN might look
like

|X0〉 → |X1〉 → · · · → |XN−1〉 → |X0〉. (4)

If we add together, with equal weight, all of the configuration states in a cy-
cle, we produce a time-invariant state: the dynamics turns this superposition into
itself!

|E0〉 = 1√
N

N−1∑
m=0

|Xm〉,

Uτ |E0〉 = 1√
N

N−1∑
m=0

|Xm〉. (5)

Such a state describes a circuit that is at some unknown point in time in a known re-
peating cycle of configurations. By adding the same set of configurations together
with different sets of amplitudes, all of equal magnitude, we can form a complete
basis out of time-invariant states. This is called theenergy basis—the connection
to the classical notion of energy will be discussed in the next section.

As a very simple example, consider a one-bit system withUτ the NOT op-
eration that changes the configuration|0〉 into |1〉 and vice versa. This system has
only two configuration basis states, and they are turned into each other byUτ to
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form a cycle of length 2. We can construct a new two-elementenergy basisby
adding the two configuration states in two different ways:

|E0〉 = |0〉 + |1〉√
2

,

|E1〉 = |0〉 − |1〉√
2

. (6)

The original configuration states can be recovered by adding and subtracting the
energy states, and so this is a complete basis. WhenUτ acts on the energy states
|E0〉 and|E1〉, we see that

Uτ |E0〉 = Unot|0〉 +Unot|1〉√
2

= |E0〉,

Uτ |E1〉 = Unot|0〉 −Unot|1〉√
2

= −|E1〉. (7)

Each energy basis state is invariant under the dynamics, with only its overall sign
changing with time. More generally, for a cycle of configuration states of lengthN,
whereUτ takes us from one configuration|Xm〉 to the next configuration|Xm+1〉,
we can construct

|En〉 = 1√
N

N−1∑
m=0

e2π inm/N |Xm〉,

Uτ |En〉 = 1√
N

N−1∑
m=0

e2π inm/N |Xm+1〉,

= e−2π in/N |En〉. (8)

Since we only require the square of the magnitudes of our amplitudes to be prob-
abilities, we are free here to use complex amplitudes in constructing the new
basis, while retaining an equal-probability-for-all-configurations-in-a-cycle inter-
pretation of the energy basis states. Using complex amplitudes provides enough
different coefficients of equal magnitude to constructN orthogonal time-invariant
basis states.

We should make it clear what we mean here by orthogonality. We define a
vector |A〉 to be equivalent to a column vector consisting of its components in
some basis, and the dual vector〈A| is equivalent to a row vector consisting of the
complex conjugates of the same components. Then the inner product〈A|A〉 is just
the matrix product of these two quantities, and equals the sum of the squares of
the magnitudes of the components. Thus if|A〉 is a superposition of configurations
with unit total probability,〈A|A〉 = 1. It is then easy to verify that〈Ej |Ek〉 = δ j ,k,
as you would expect for a basis.
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The energy and configuration bases are discrete Fourier transforms of each
other: we can express|Xm〉 in terms of the|En〉 as

|Xm〉 = 1√
N

N−1∑
n=0

e−2π inm/N |En〉. (9)

This can be verified by substituting in the definition of|En〉 in terms of configu-
ration states. If we interpret the magnitudes of the amplitudes in a superposition
of energy basis states as square roots of probabilities, then the probability of dif-
ferent energy basis states doesn’t change with time: this is a kind of normal-mode
decomposition of a dynamics.

If Uτ represents the change in the circuit that happens in a time interval of
lengthτ , then in timet this operator will be appliedt/τ times, and the phase of|En〉
(see Eq. (8)) will decrease by (t/τ × (2πn/N). The phase change is proportional
to time. Since this is the phase of a complex amplitude, the amplitude itself will
repeat in value cyclically as t gets larger, repeating with a frequency of

νn = n

N
ν, (10)

whereν = 1/τ . If we were computer scientists living in the year 1901 and had
just heard about Planck’s work, we might think that it would be natural to call
En = hνn the energy of a Fourier mode that cycles with a period ofνn. This is in
fact what we will do.

The operation ofUτ on configuration states can be described in the energy
basis. Both the length and the motion of the state vector are independent of the
basis—changing bases is just changing coordinate axes. If we interpret the square-
magnitudes of the components in the energy basis as probabilities, then since
these states are invariant in time, so are all probabilities in the energy basis. We
can compute a time invariant energy for any state by expressing the state in the
energy basis. For example, if

|X〉 = α|E0〉 + β|E1〉, (11)

then the “average” energy of|X〉 is
E = |α|2E0+ |β|2E1, (12)

and this is constant in time.

7. WHAT IS ENERGY?

Classically, kinetic energy is a measure of how much motion a system has. For
a classical system with energyE and lowest possible energyEmin, the most energy
that could possibly be changed into kinetic energy is given byE − Emin. This is the
energy that is not somehow inextricably tied up—that you can actually turn into
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motion of particles. We will see that in our statistical treatment of computational
dynamics, the “average cycle rate” that we’ve called energy is also a measure of
motion: it is the maximum rate of state change.

On the face of it, the classical and statistical notions of energy seem very
different. One has to do with particle motion and “potential” motion, whereas the
other has to do with state change. But in considering computational systems, all
“motion” is state change. As we’ll see in Section 7.2, these concepts are essentially
the same.

For a computation that passes through a cycle ofN configurations|Xm〉 at a
rateν = 1/τ , the average value of the energy of a configuration is simplyhν/2.
We can see this directly from Eq. (9): all energy statesEn appear in this expression
with equal and constant probabilities, and the corresponding energy values are

0, hν/N, 2hν/N, 3hν/N, . . . , (N − 1)hν/N (13)

and so, forN large, the average isE = hν/2. We can also turn this expression
around, to say that the rate at which this system passes through a set of configura-
tions is governed by its energy:

ν = 2E/h. (14)

Perhaps the best way to express this is in terms of action. If we multiply both sides
of this equation byt , the total time that we let the system run, then we see that the
number of configurationsÄ(t) that the system passes through in timet is

Ä(t) = 2Et/h. (15)

Suppose we have an array of bits that all change simultaneously in one particular
relativistic reference frame. In almost any other reference frame, the bits will
change one at a time. Thus in general the transitions we should be thinking about in
our discussion above are configuration changes in which a single bit may change.
This means that, in general, energy should be interpreted as the maximum rate
at which bits can change (timesh/2). A computer scientist might call this the
maximum number of operations per second. Action is then the maximum number
of bit changes in a given time.

7.1. Serial Versus Parallel

Let’s look at the interpretation of energy in spatially extended systems in more
detail. Suppose we haveN separate, completely uncoupled computers. From our
earlier calculations, the energy of each computeri is simplyhνi /2, whereνi is the
rate at which computeri passes through a sequence of distinct configurations. Since
the computers are completely uncoupled, the rate at which the entire collection of
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computers goes through distinct states is

νtot =
∑

i

νi (16)

and thus if we callhνtot/2 the energy of the entire system, we see that it is just the
sum of the individual energies. For a fixed total energy, it doesn’t matter how we
divide it up among the various computers, the total number of distinct states per
second depends only on the total energy.

In particular, if we only run one computer at a time, letting each run at the
ratevtot for some interval, then the total energy of the system and the total rate of
processing are unchanged. In other words, if we have no parallelism at all, and run
the collection as a single serial computer, applying its processing power to only
one place at a time, the overall energy is unchanged.

This leads us to the conclusion that we can serialize our description of parallel
computers (Margolus, 1986, 1990), and we will still calculate the right energy! If
only one spot at a time in a lattice is allowed to change, then the total energy tells
us the maximum number of spots that can change, per unit time. If we double the
size of the lattice but want to continue to update the entire lattice at the same rate,
then the energy must also double.

7.2. Computers With Conservation Laws

If we have a computational system with a conservation law, then the maximum
number of bits that can change per unit of time may be reduced. For example, if
we have a simple single-speed lattice gas (Frischet al., 1986; Hardyet al., 1976;
Margolus, 2002) that conserves the number of ones and zeros, then if there areM
ones in the system, there are at most 2M spots in the lattice that can change in
one update of the entire lattice (M spots can change from 1 to 0, andM from 0
to 1). If some ones land on spots vacated by other ones, the number of changes is
less. If fewer than half of the cells contain ones, then not all spots can change in a
single update of the lattice. If we think of these ones as particles, then they have
a period associated with them, which is the time that it takes a particle to move
from one cell to the next. This is also the time that it takes to update the entire
lattice, and so the frequency of lattice updatesνu is also the frequency associated
with these particles. If we associate a unit of energyhνu with each particle, then
the maximum rate at which spots can change is

νchange= 2Mνu = 2E/h, (17)

whereE = Mhνu. Thus even if we restrict ourselves to the portion of the energy
associated with the particles, we still see that energy governs the maximum rate
of evolution between distinct states according to Eq. (14).
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8. QUANTUM COMPUTATION

Everything that we’ve said so far is really just standard QM. It is perfectly
consistent to use this language to talk about statistical situations involving re-
versible circuitry—the quantum computing folks use such language all the time.
As long as time evolution operatorsU simply permute states when expressed in the
configuration basis, then nothing very strange is going on. This is, in fact, exactly
where the probabilistic interpretation of quantum amplitudes comes from: from
considering states such as those discussed above, which just describe statistical
ensembles.

The only thing that QM adds is thatU can, at least in principle, be any
unitary operator—any operator that conserves probability. An ordinary reversible
logic gate turns each distinct input configuration into a distinct result configuration.
For example, a NOT gate turns|0〉 into |1〉. A distinctively quantum gate can turn
a single configuration into a superposition of several configurations, or vice versa.
For example,|0〉might turn into (|0〉 − |1〉)/√2 and vice versa. This latter example
conserves total probability, but allows probabilities to appear and disappear.

Let’s look at these examples in more detail. ConsiderUτ that implements the
NOT operation:

Uτ |0〉 = |1〉,
Uτ |1〉 = |0〉. (18)

What mightUτ/2 do? Suppose we defineUt for continuous time t as

Ut |0〉 = cosπ t/2τ |0〉 − sinπ t/2τ |1〉,
Ut |1〉 = sinπ t/2τ |0〉 + cosπ t/2τ |1〉. (19)

Clearly the sum of the squares of the amplitudes is 1, so this definition conserves
probability. In fact, this is just a rotation of the basis, and so the opposite rotation
undoes it—thisUt is invertible. Fort = τ , this is just the NOT operation (with an
extra minus sign that doesn’t change the probability). Fort = τ/2, we get a kind
of “square root of NOT” (Hayes, 1995):

Uτ/2|0〉 = |0〉 − |1〉√
2

,

Uτ/2|1〉 = |0〉 + |1〉√
2

. (20)

If we start off with a bit that is a zero (state|0〉), then after one application ofUτ/2,
we are in a configuration with equal probability of either value,|0〉 or |1〉. If we
applyUτ/2 to this same bit a second time, then we arrive at the state−|1〉. This is a
state with 100% probability of being a one. This seems somewhat at odds with our
interpretation of the square-magnitudes of the amplitudes as probabilities, since
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the probabilities come and go! Any interpretation in terms of the evolution of a
completely described ensemble would not have this property.

By combining ordinary reversible logic with operations that act on single bits
and make probabilities come and go, we can construct any unitaryU (Barencoet al.,
1995). Thus all distinctively QM computation can be regarded as a combination
of ordinary computation plus probability-changing single-bit operations such as
that of Eq. (20).

9. THE POWER OF QM COMPUTATION

We should not get carried away by the strangeness of QM, and ascribe ex-
aggerated capabilities to it. With enough work, the equations governing any QM
system can be numerically integrated on an ordinary computer: QM doesn’t change
whichthings are computable and which are not. It may, however, change theamount
of effortrequired to compute a desired result.

With an ordinary computer, we start it in some definite configuration, and we
run it once to get a definite result. With a distinctively QM computer, even if we start
it in a definite configuration and it finishes in a definite configuration, probabilities
may arise and change during the course of the computation. To simulate this on
an ordinary computer may require an enormous effort: we may need to keep track
of the amplitudes of essentially all possible intermediate configurations in order
to get a single result. If we could run the corresponding QM system just once, we
would get the same result with much less work!

This observation, that distinctively QM computers are hard to simulate on
ordinary computers, led Richard Feynman to speculate that perhaps such com-
puters could do some computations faster than ordinary computers (Feynman,
1982; Lloyd, 1996). He suggested that an interesting class of such computations
might be the simulation of physical systems where QM correlations are impor-
tant. More recently, there have been proposals that distinctively QM computers
could perform some interesting classical computations rapidly (Grover, 1996; Shor,
1994).

It is worth noting, in thinking about such proposals, that the distinction be-
tween ordinary computation and distinctively QM computation is basis dependent.
If an ordinary computation is expressed in a basis other than the configuration basis,
the time evolution will generally involve probabilities that appear and disappear.
Conversely, a distinctively QM computation can be described in bases in which
probabilities never change, or even in bases where, at regular time intervals, the
system moves from basis state to basis state (Margolus and Levitin, 1998). How
can QM computations have any extra power if there are bases in which they act
like ordinary computations?

The answer is that, with more freedom to choose the time evolution operator
Uτ , we may be able to speed up the computation. In practice, the onlyUτ ’s available
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are those we can piece together from theU ’s that are provided by Nature.6 The
extra component that QM provides is one which changes single-bit probabilities.
Does this let us compute faster?

This question is closely related to the more fundamental question, What is
the difference between a Quantum world and a Classical world? Might it be that
we are simply analyzing our world in the wrong configuration basis, and so we
see probabilities that appear and disappear? QM computation provides a direct
challenge to this possibility: if there really are some classical computations that
can be performed exponentially faster in a QM world than using just classical logic
elements, then describing Nature in terms of a classical computational substratum
is unnatural. But it may well turn out that, when compared to the right classical
hardware and algorithms, QM doesn’t actually let you solve problems faster.7 It
might also turn out that proposed QM computers aren’t actually realizable, or large
QM computers must be very slow for some reason. We’ll find out as we try to build
them.

10. ACTION OF A COMPUTATION

In our discussion above, we saw that for a classical computation, the energy
gives the maximum rate at which the system can pass through a sequence of distinct
(i.e., mutually orthogonal) states. This is true for any unitary evolution (Margolus
and Levitin, 1998): for the fastest moving sequence of states, the maximum rate of
orthogonal evolution is given by 2E/h, whereE is the energy of the system, taking
the ground state energy as zero.

Putting this another way, 2Et/h is the greatest number of distinct states that
a long unitary evolution can pass through in timet . Thusaction in time(i.e, Et)
counts the maximum number of distinct states for a system, givenE andt . This
is analogous to the semiclassical result, used frequently in Quantum Statistical
Mechanics, thataction in space(i.e.,px) counts the maximum number of distinct
states for a system, given a range of momenta of sizep and a range of position of
sizex.

In different relativistic frames, we would expect these space and time counts
of distinct states to be mixed together. Figure 3(a) shows a system (e.g., an atom)
viewed from its rest frame. In this frame, the maximum number of changes that
we could see in timet is going to be2Et/h. Now even if the atom isn’t changing
at all, if we move our head at some rate relative to this atom (Fig. 3(b)), we see
a distinct state after some amount of motion. This change has nothing to do with
anything that is going on internally in the atom—it has only to do with our relative

6 These are all presumably special cases of some fundamentalUτ that we don’t know.
7 The factoring problem (Shor, 1994) may not be exponentially hard, and general database searches
(Grover, 1996) can be sped up with parallel hardware.
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Fig. 3. When we are moving relative to a system, we see additional distinct
states just because of our motion.

state of motion. SinceEt – px gives the value ofEt in the rest frame, 2(Et – px)/h
counts the maximum number of distinct changes in that frame.8

Connections between orthogonal evolution and action allow us to put bounds
on the maximum performance of real computations. If we know how many distinct
states the computation must pass through (i.e., how many bit-changing operations
it must perform), we have a bound on the action resources needed for that com-
putation. If the ideal algorithm abstracts away some implementation details, then
there will be additional distinct states needed for any actual implementation, and
so additional action—the ideal algorithm only gives a bound. This also associates
a minimum energy with a given computation that proceeds at a particular rate:
at least 3× 10−34 J must be available for each operation per second. This energy
doesn’t have to be dissipated by the computation, it just has to be available for use
by the computer.

11. INFORMATION MECHANICS

In Section 7.2, we discussed the example of a lattice gas that conserves the
numberM of ones on the lattice, and concluded thatM can be interpreted as a
form of energy, since it governs the maximum rate of change of spots on the lattice.
In the same example, the number of onesM also governs how much information
can be represented on the lattice, and so in this case energy governs both rate of
computation and amount of memory.

This is a typical situation in statistical mechanics in cases where all forces
are purely statistical. As an illustration, consider the well known and very simple
model of a spring (Kubo, 1965) shown in Fig. 4. Here we have a one-dimensional
chain consisting ofN links, starting at the origin (dark circle) and ending some
distancex away. Each link is a distancel long, and the joints connecting the links
(shown as circles) have no configurational energy associated with which way the
link is pointing. Each link extends the chain either one unit to the right, or one unit
to the left. If p+ is the fraction of the links that extend to the right, andp− the

8 By the same token, (H − pẋ) dt, which appears in action integrals, has an informational interpretation.
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Fig. 4. A statistical model of a spring. The model is one-dimensional,
with the extra dimension here used to show parts of the chain that are
folded over other parts. The origin is the dark circle at the left. Each
link extends the chain one unit rightwards or leftwards.

fraction that extend to the left, then the distancex is given by

x = Nl(p+ − p−). (21)

We can define a dimensionless length variableu that represents the fraction ofx
associated with each link,

u = x/Nl. (22)

Then p+ and p− can be rewritten in terms ofu as

p± = (1± u)/2. (23)

The entropy associated with a chain of lengthx is just the log2 of the number of
microscopic configurations that give us a chain of that length,9 and can be written
approximately in terms ofp± as

Sx = −N(p+ log2 p+ + p− log2 p−). (24)

If there were no constraint on the total length of the chain, then each link could be
freely chosen to point to the right or the left, and sop+ = p− = 1/2, x = 0, and
the maximum entropy for this chain is

S0 = N. (25)

We will call the difference between the maximum and the actual entropy of the
chain thelength constraint information,

Ix = S0− Sx = 1

2
N{(1+ u) log2(1+ u)+ (1− u) log2(1− u)}. (26)

This is the number of bits of state information that are being used to remember
the length constraint. Now, since we’ve assumed that there is no energy associated
with the joints in our chain, all of the work that we do if we pull or push on the
end of this chain is work done on the heat bath—we don’t provide an explicit
interaction mechanism with the heat bath, but simply assume this. Thus to extend

9 We’ve chosen units in which Boltzmann’s constantkB = log2 e.
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the chain from its equilibrium position to a lengthx requires energy

Ex = T(S0− Sx) = IxT. (27)

This relation between energy and entropy comes from thermodynamics and as-
sumes that the process happens at constant temperature, slowly enough so that the
system is always very nearly in equilibrium, and that no other energy enters or
leaves the system.10 For small displacements (u¿ 1), Ix is proportional tou2, and
so the potential energyEx associated with a displacementx is proportional tox2

(Hooke’s Law).
This example says that, in a situation in which forces are statistical,Ex/T ,

the potential energy divided by the temperature, is simply the number of bits that
the system is using to remember its macroscopic configurational constraint. If we
attach a mass to this spring, and watch it exhibit simple harmonic motion, then we
will see this constraint information flow back and forth between a configurational
constraint, and a kinetic constraint. In a classical finite state model of the mass, this
might translate into a constraint on the distribution of momenta of the components
of the mass. Any stationary-action principle governing this kind of system is purely
combinatorial, and has nothing to do with any special properties of QM.

12. CONCLUSION

Informational models have long been a cornerstone of Statistical Mechanics,
but computational models of dynamics remain second-class citizens. I believe that
the development and analysis of such models will help clarify fundamental issues
in physics, and allow us to generalize concepts thought to be the unique province of
physics. For Computer Science, ideal computations that map directly onto unitary
time evolutions may provide useful bounds on the physical requisites of compu-
tation, such as time, volume, energy, heat, and power. I expect that there will be a
profound interplay between the concepts and models of Physics and of Computer
Science as computation continues to migrate to increasingly microscopic realms,
and as our understanding of physics becomes more computational.
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