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@® jnitial model
O new model
(b)
symsxytd % parameters (X,y,theta), move d units

f = [x+d*cos(t); y+d*sin(t); t]; % transition function
v=[xVt];
% Derive Jacobian

G = jacobian(f, v)

G=
[ 1, 0, -d*sin(t)]

[ 0, 1, d*cos(t)]

[ 0, 0, 1]

Sig=1[0.01,0 , 0;

0 ,0.01,0;

0 ,0 , 10000];
x=0;y=0;d=1;t=0;R=0;
G =11, 0, -d*sin(t);

0,1, d*cos(t);
0,0, 1];
% Calculate X3
Sigh = G*Sig*G' + R
Sigh =
1.0e+004 *
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Now incorporate a measurement. Our measurement shall be a noisy
projection of the x-coordinate of the robot, with covariance @ = 0.01.
Specify the measurement model. Now apply the measurement both
to your intuitive posterior, and formally to the EKF estimate using the
standard EKF machinery. Give the exact result of the EKF, and compare
it with the result of your intuitive analysis.

The measurement model h(z) =z,

By intuition:




Using EKF:

L/

® initial model
O new model
@ Updated model
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H=[1, 0, 01;

K = Sigb*H' * inv (H*Sigb*H'+Q);

z = 1;
% Calculate 24
u = ub + K*(z-ub(1l));
u =
1
0
0
% Calculate X
Sig = (eye(3,3)-K*H)*Sigb;
Sig =
1.0e+004 ~*
0.0000 0 0
0 1.0000 1.0000
0 1.0000 1.0000
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Discuss the difference between your estimate of the posterior, and the
Gaussian produced by the EKFE. How significant are those differences?
What can be changed to make the approximation more accurate? What
would have happened if the initial orientation had been known, but
not the robot’s y-coordinate?

My posterior seems to converge after the measurement is used for update, while the EKF still have a
great uncertainty along y axis. At the prediction step of EKF, the Gaussian estimate didn’t produce a
correct presentation for the uncertainty since the possible robot pose should be a circle centered at
the initial point. Due to linearization on g the EKF prediction have a great linearization error on the
nonlinear functionon &.

If the orientation had been known, but not the robot’s y-coordinate, from my point of view, the EKF
prediction will be more accurate, since y is a linear variable for g. Therefore the linearization error is
smaller. However, the update won’t have much effect because the measurement is the projection of x
coordinate of robot pose. This won’t help to lower the uncertainty on y axis.

Ch4
2.

(@)

Propose a f,u1tc1l‘:le initial estimate for a histogram filter, which reflects
the state of knowledge in the Gaussian prior.
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a uniform distribution of probability at (x=0,y=0,theta)
for ti=t axis
Px(ind(0,0,ti)) = 1/t len;

end

(b)

Implement a histogram filter and run its prediction step. Compare the

resulting posterior with the one from the EKF and from your intuitive
analvsis. What can you learn about the resolution of the z-y coordi-

: 4
nates and the orientation ¢ in your histogram filtes

(x, y resolution=0.05, & =pj/180) (x, y resolution=0.2, 6 =pj/45)

histogram filter

eta = 0;
for xi=-1:x res:1
for yi=-1:y res:1

for ti=t axis

Pxb (ind (xi+cos(ti),yi+sin(ti),ti)) = Pxb(ind(xitcos(ti),yi+sin(ti),ti)) +
Px (ind(xi,yi,ti));
eta = eta + Px(ind(xi,yi,ti));
catch

end

end
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end
end

Pxb = Pxb / eta;

The distribution produced is more like the intuitive result than EKF. The result reflects more like real
distribution. If we use raise the resolution, then the prediction result will reflect more precise
distribution after the transition but the computation speed will get slower. If the resolutions of each
axis double, the overall runtime will be 8 times.

(©)

Now incorporate a measurement into vour estimate. As before, the
measurement shall be a noisy projection of the i coordinate of the
robot, with covariance ¢ 0.01. Implement the step, compute the
result, plot it and \wln}n\n-|txxit% the result of the EKF and your intu

itive drawing

(%, y resolution=0.05, & =pj/180) (x, y resolution=0.2, 6 =pj/45)

eta = 0;
for xi=-1:x res:1
for yi=-1:y res:1

for ti=t axis

% if succ
Flxi yi ti]
try

pp = Px(ind(xi,yi,ti)) *normpdf (xi+cos(ti),1,0.1);

$normpdf (xi+cos (ti),3,0.1)

Pxb (ind (xi+cos(ti),yi+sin(ti),ti)) = Pxb(ind(xitcos(ti),yi+sin(ti),ti)) + pp;
eta = eta + Px(ind(xi,yi,ti)) + pp:;

catch
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end
5 end
end
end
end

Pxb = Pxb / eta;

The updated distribution produced is more like the intuitive result than EKF.

5.

Implement Exercise 2 using particle

filters instead of histograms, and plot

and discuss the results. Investigate the effect of varying numbers of par-

ticles on the result.

1.5

0.5

*  initial
predicted
*  updated

Number of particle = 1000

function chd4 2 c

M = 1000;

oldChi = [0.1 .* randn(M,1)
Chib = zeros(0,4);

Chi = zeros(0,4);

wsum = 0;

for m = 1:M

o°

sample x = p(x|u,x);
x = 0l1ldChi (m,1);

0ldChi (m, 2) ;

=
I

0ldChi (m, 3) ;

0.1 .* randn(M,1) 100 .* randn(M,1)];
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xt = [x+tcos(t) , y+tsin(t), tl;
wt = normpdf (1,x+cos(t),0.1);
wsum = wsum + wt;
Chib = [Chib; xt, wsum ];
end
for m=1:M
i = bsearch(Chib, rand(1l,1)*wsum);
Chi = [Chi; Chib(i,:)];
end
hold on
plot (oldChi(:,1),0ldChi(:,2),"'*"', " "'coloxr', "k");
plot (Chib(:,1),Chib(:,2),"'*", "color', 'c");
plot(Chi(:,1),Chi(:,2),'*", 'color','b");

end

The result is much similar to the intuitive result unlike the EKF prediction and update. The runtime is
much faster than using histogram because histogram is a dense calculation on grids but particle filter
only predict and update on the particles.
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Number of particle = 10000

To compare the effect of different particle numbers, we generate the above figures. From the above
figures, we can conclude that the more particles we apply the more accurate model for to describe the
posterior distribution. The time complexity is O(MlogM), where log M is for binary search.



