AMR HW8
R99922070 俞冠廷
2011/6/11
(a) Chapter 10, Exercise 2
Why initialization is a problem in bearing only SLAM?
The reason why initialization of landmark is an important issue is because there is no direct depth information from the bearing-only sensor. Therefore, the possible location of a newly observed landmark lies in a cone shape region. After several observation and updates, the region will converge into a closed region. However, traditional Gaussian distribution in XYZ space cannot provide a unified representation of these two kinds of probability distribution.
[image:]

Landmark Initialization
Here I will describe the Inverse depth method proposed by Civera et al. It is a unified representation can initialize the landmark without delay.

On first observation, 6 parameters are used to represent the landmark state:, where each terms are described in the figure below.

[image:]

The camera pose can be easily obtained. We can also compute using the camera parameters. For the inverse depth, is assigned a general Gaussian prior in inverse depth that encodes probabilistically the fact that the point has to be in front of the camera.
[image:]
which means
[image:]
With the probabilistic framework (e.g. EKF), we can keep on updating the state. After the uncertainty reduced, the possible region of landmark location will form a closed space.

(b) Chapter 12, Exercise 4
Why?
Because we assume that the variable xt does not depend on the passive features m- if we know the active features m0 and m+. Therefore, we can set m- to arbitrary value without affecting the conditional posterior.

What would be the update equation if these features would not be conditioned away?
If these features are not conditioned away, we should do a full EIF update (without multiplying the F-matrix).

Would the result be more accurate or less accurate?
The result would be more accurate if we conduct a full EIF update. On the other hand, if we perform the SEIF update without conditioning m- away, the result should be less accurate because some information of some link is arbitrarily ignored.

Would the computation be more or less efficient?
Less efficient. If we conduct the full EIF update, the efficiency is similar to EKF.

(c) Chapter 13, Exercise 1.
EKF
1. Using Gaussian distribution to represent the states makes the computation very fast.
2. No need to sample among the state distribution.
3. Capable to consider uncertainty over high dimensional state. In contrast, the number of particles required by particle filter increase exponentially.
GraphSLAM
1. Solve the full SLAM problem. It calculates posteriors over the full robot path along with map.
2. Consider data association with probability.
3. Incorporate sparsification idea by using information matrix.
FastSLAM
1. Multiple hypothesis tracking through per-particle data association.
2. Use sampling on highly non-linear portions of state space can avoid linearization error using EKF.
3. Particle filter is generally easier to implement.

(c) Chapter 13, Exercise 7.
Fast slam simulation
Red: ground truth
Blue: particles
Green: landmarks
[image:]
The following figure shows the strength of the correlations w.r.t timestep. At the beginning, the strength increases with time. This means the uncertainty increases. At time=72, the robot back to the starting point (20, 0), the strength reach the nadir. The situation is similar to the decrease of variance when closing a loop in EKF.
[image:]

[bookmark: _GoBack]function fastslamProcedure
 global Y;
 global setting;
 global landmark;
 global x_groundtruth;

 setting.nstep = 100;
 setting.nparticle = 100;
 setting.zrange = 10000;
 setting.nlandmark = 100;
 setting.Usigma = 0.1;
 setting.Zsigma = 0.1;
 %setting.Usigmath = 0.01;
 %setting.R = [0.1 0 0; 0 0.1 0; 0 0 0.01];
 setting.R = [0.5 0; 0 0.5];
 initLandmark();
 initParticle(); %draw init samples
 x_groundtruth = generate_x_groundtruth();
 for i=2:setting.nstep
 [u z c] = simulateOneStep(x_groundtruth,i);
 %for j=1:length(c)
 Y{i} = FastSlam(z,c,u,Y{i-1});
 %end
 end
 drawY();
 fitGaussian();
end
function fitGaussian()
global Y setting

f = zeros(0,2);
for kk = 1:setting.nstep
 data = zeros(setting.nparticle,2+setting.nlandmark*2);
 for i=1:setting.nparticle
 data(i,1:2) = Y{kk}.p{i}.xt;
 for j=1:setting.nlandmark
 if(Y{kk}.p{i}.landmark{j}.init==1)
 data(i,2+(j-1)*2 : 2+(j-1)*2+1) = Y{kk}.p{i}.landmark{j}.mu;
 end
 end
 end

 avg = mean(data);
 Cov = zeros(2+setting.nlandmark*2);
 for i=1:(2+setting.nlandmark*2)
 for j=1:(2+setting.nlandmark*2)
 for k=1:setting.nparticle
 Cov(i,j) = Cov(i,j) + (data(k,i)-avg(i))*(data(k,j)-avg(j));
 end
 end
 end
 Cov = Cov/setting.nparticle;
 f = [f;kk norm(Cov)];
end
figure
plot(f(:,1),f(:,2));
end

function drawY()
global Y x_groundtruth landmark
 figure
 hold on;
 for i=1:length(Y)
 for j=1:length(Y{i}.p)
 plot(Y{i}.p{j}.xt(1),Y{i}.p{j}.xt(2), 'b.');
 end
 pause(0.1);
 plot(x_groundtruth(i,1),x_groundtruth(i,2), 'r*');
 end
 for i=1:size(landmark,1);
 plot(landmark{i}(1),landmark{i}(2),'g*');
 end
end

function Yt = FastSlam(z, c, u, Yt_1)
 global setting;
 Yt.p = cell(length(Yt_1.p),1);
 for k=1:length(Yt_1.p) % loop over particles
 pstate = Yt_1.p{k};
 xt = pstate.xt + u+ randn(1,2)*setting.Usigma*2;

 Yt.p{k}.landmark = pstate.landmark;
 Yt.p{k}.w = 0;
 for j=1:length(c)
 j_lmk = c(j);
 if Yt.p{k}.landmark{j_lmk}.init == 0 % j never seen before
 mu = z(j,1:2) + xt; % initialize mean
 invG = invgp(xt, mu);
 Cov = invG*setting.R*invG';
 Yt.p{k}.landmark{j_lmk}.mu = mu;
 Yt.p{k}.landmark{j_lmk}.Cov = Cov;
 Yt.p{k}.landmark{j_lmk}.init = 1;
 Yt.p{k}.w = Yt.p{k}.w+0.9;
 else
 Cov = Yt.p{k}.landmark{j_lmk}.Cov;
 mu = Yt.p{k}.landmark{j_lmk}.mu;
 zt = z(j,1:2);
 zh = mu-xt; %g(mu, xt);
 G = gp(xt,mu);
 Q = G'*Cov*G + setting.R;
 K = Cov*G*Q;
 mu = mu + (K* (zt-zh)')';
 Cov = (eye(2) - K*G') * Cov;

 Yt.p{k}.landmark{j_lmk}.Cov = Cov;
 Yt.p{k}.landmark{j_lmk}.mu = mu;
 %Yt.p{k}.w = exp(-(zt-zh)*(zt-zh)');
 Yt.p{k}.w = Yt.p{k}.w+(1/sqrt(det(2*pi*Q))) * exp(-0.5*(zt-zh)*inv(Q)*(zt-zh)');
 end

 Yt.p{k}.xt = xt;
 end
 end

 Yttmp = Yt;
 corr = zeros(setting.nparticle, 1);
 corr(1) = Yt.p{1}.w;
 for i=2:setting.nparticle
 corr(i) = corr(i-1) + Yt.p{i}.w;
 end
 RAND = rand(setting.nparticle,1)*corr(setting.nparticle);
 for i=1:setting.nparticle
 j=0;
 for j=1:setting.nparticle
 if j==1, ub = 0;
 else ub = corr(j-1);
 end
 if RAND(i) < corr(j) && RAND(i) >= ub;
 break;
 end
 end
 Yt.p{i} = Yttmp.p{j};
 end
end

function x = gp(xt, mu)
 x = [1 0; 0 1];

end

function x = invgp(xt, mu)
 x = [1 0; 0 1];
end
function x_groundtruth = generate_x_groundtruth()
global setting
 x_groundtruth = zeros(setting.nstep, 2);
 for i=1:setting.nstep
 x_groundtruth(i,1:2) = [cos((i-1)*pi/36), sin((i-1)*pi/36)] * 20;
 %x_groundtruth(i,3) = i*pi/36; % 5 degree each step
 end
end

function [u,z,c] = simulateOneStep(x_groundtruth, index)
 global landmark;
 global setting;
 u = x_groundtruth(index,:) - x_groundtruth(index-1,:)+ [randn(1,2)*setting.Usigma]; % R
 c = zeros(0,1);
 z = zeros(0,2);
 for i=1:length(landmark)
 dist = norm(landmark{i} - x_groundtruth(index,1:2));
 if(dist < setting.zrange) %% visible
 z = [z; (landmark{i} - x_groundtruth(index,1:2))] ;
 c = [c; i];
 end
 end
end

function initLandmark()
 global setting landmark;
 landmark = cell(setting.nlandmark,1);
 rnd = rand(setting.nlandmark,2);
 for i=1:setting.nlandmark
 landmark{i} = rnd(i,:)*40-[20,20];
 end

end
function initParticle()
 global Y;
 global setting;
 global landmark;
 Y = cell(setting.nstep,1);
 Y{1}.p = cell(setting.nparticle,1);
 initLandmarkSigma = [0.1^2 , 0, 0, 0.1^2];
 for k=1:setting.nparticle
 Y{1}.p{k}.xt = [20 0];

 Y{1}.p{k}.landmark = cell(setting.nlandmark,1);
 Y{1}.p{k}.w = 1/setting.nparticle;
 for i=1:setting.nlandmark
 Y{1}.p{k}.landmark{i}.init = 0;
 %Y{1}.p{k}.landmark{i}.u = landmark{i};
 %Y{1}.p{k}.landmark{i}.Sigma =initLandmarkSigma;
 end
 end

end

image2.wmf
)

(

i

i

i

i

i

i

z

y

x

r

f

q

oleObject1.bin

image3.png
m unit directional vector defined by the
angle azimuth and elevation (6;, ¢,)

(.’L'.,;, Yi, Z,) first observation camera position

image4.wmf
)

(

i

i

f

q

oleObject2.bin

image5.wmf
i

r

oleObject3.bin

image6.png
po =0.1,0, =0.

image7.png
Initial inverse depth confidence [1.1,-0.9]

region: 1 1

Initial depth confidence region:[_’ go] U [00, —]
1.1 —0.9

image8.emf
-25 -20 -15 -10 -5 0 5 10 15 20 25

-25

-20

-15

-10

-5

0

5

10

15

20

25

image9.emf
0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

timestamp

strength

image1.png
Possible locations
of the landmark

@2 N Possible locations
/ of the landmark
’ : after several
/ observation.

