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ABSTRACT 

 

For feature-based monocular bearing-only SLAM, how 

to select useful features for SLAM process is crucial. 

The reason is overwhelming feature number will not 

only seriously slow down the system but produce 

erroneous SLAM result due to feature mismatching. In 

this paper, we propose a novel method for feature 

selection. The method combines both bottom-up (visual 

saliency) and top-down (learned object database) 

approaches to select versatile features. We argue that 

using human’s visual saliency to guide the robot’s visual 

SLAM feature selection is practicable. The experimental 

result after 10 runs attested our perspective. Compared 

with SLAM without feature selection, the running time 

here is reduced to 62% and the localization errors in the 

SLAM process decrease to 89% in mean and 89% in 

standard deviation. 

 

Keywords Visual SLAM; Bearing only SLAM; Visual 

Saliency 

 

1. INTRODUCTION 

 

In order to perform human’s orders in unstructured 

environments, it is crucial for robots to identify their 

current positions and construct the map of the 

surrounding areas. In the field of robotics, simultaneous 

localization and mapping (SLAM) research is regarded 

as the highly urgent issue to be solved. Due to the rich 

information carried by images and the low cost of a 

monocular camera, researchers are using monocular 

camera as a primary sensor for SLAM. The main 

objective of this paper is to address the following 

challenge of using monocular camera. 

The typical way to construct the map is to extract 

robust feature points from input images as landmarks, 

which is called feature-based SLAM. To effectively 

select  robust features with distinct, scale-invariant and 

viewpoint-adaptive property is crucial for the SLAM 

procedure, because processing time of typical SLAM 

algorithm scales with the number of features. 

 

1.1. Related Work 

 

Davison et al. [1] presented a MonoSLAM system 

which utilized Shi and Tomasi interest operator [3] to 

select features and solve. Civera et al. proposed to 

represent landmark in inverse depth. The inverse depth 

parametrization enables undelayed landmark 

initialization and possesses linearity property for EKF 

SLAM [4]. 

Lowe [5][6] presented SLAMB system using SIFT 

(Scale Invariant Feature Transform) [7] algorithm to 

generate 3D landmark points from a single robot pose 

with three cameras. Hundreds of matched points were 

used per image, with the database eventually storing 

many thousands of match points.  

vSLAM
®
, a commercial product developed by 

Evolution Robotics company [8], combines both vision 

and odometry [9][10]. The system uses SIFT features, 

and this system is tested in a typical home environment 

and shown to produce reasonably accurate map. 

Feature extraction is a key component that directly 

affects the ability of the system to reliably track and 

redetect features. Jensfelt et al. [11] used Harris-

Laplacian detector [12]. Newman and Ho [13] used 

maximally stable extremal regions (MSER) [14]. 

Frintrop and Jensfelt [16] presented a biologically 

motivated feature extraction strategy to create a sparse 

set of feature. The idea is based on the principle of 

visual attention in the human visual system [17]. Their 

work inspires us to select fewer features from the 

regions of interest (ROIs) rather than the whole image. 

Thus, the SLAM process is more likely to achieve real-

time performance. In this paper, we name it bottom-up 

selection strategy. 
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Fig. 1 Merge bottom-up ROI using human visual 

saliency (top-left) and top-down ROI using object 

detection (bottom-left) to select fewer yet useful 

features for monocular SLAM. The aim is to perform 

the SLAM system in an efficient and stable manner. 

 

In practice, features selected from pure bottom-up 

saliency region are not always sufficient for monocular 

SLAM to achieve reasonable precision. In this situation, 

human can intuitively select some objects in the 

environment for the robot. Lyons utilized terrain 

spatiogram to combine RGB and spatial cues for 

landmarks using manually selected views [19]. Later, a 

landmark saliency architecture, LSA, includes visual, 

structural, and semantic attractiveness components to 

select candidate landmarks automatically [20]. Then, the 

robot can recognize those objects as features in the next 

SLAM execution. We name this procedure the top-down 

selection strategy. 

Hochdorfe et al. presented a policy to rate and select 

landmarks in state vector based on landmark’s coverage, 

which provides the information for evaluating the 

benefit of a landmark for localization [18].  

Our proposed monocular SLAM system integrates 

both bottom-up and top-down features selection strategy 

to select fewer yet useful features, as shown in Fig. 1. 

Thus, we can perform SLAM more efficiently and still 

maintain stableness and acceptable precision for indoor 

application. 

 

1.2. System Overview 

 

Figure 2 shows the flowchart of the overall system. The 

inputs to the bearing-only EKF SLAM system are 

odometry and feature information obtained from the 

images. The outputs are the robot pose and a feature 

map. We propose the integrated feature selection 

algorithm to combine both bottom-up and top-down 

visual attention approach. The aim is to reduce the 

number of features to allow the EKF to perform 

efficiently and at the same time keeps the variety of the 

features. 

 

 
Fig. 2 Overview of the proposed monocular SLAM 

system with integrated feature selection strategy. 

 

2. FEATURE EXTRACTION AND SELECTION 

 

2.1. Feature Extraction 

 

The Scale-Invariant Feature Transform (SIFT) [7] and 

Speeded Up Robust Features (SURF) [21] are two 

frequently used feature extraction algorithms for SLAM. 

SURF, with comparable repeatability and similar 

performance to SIFT [21], is a much faster interest point 

detector with one third of computation cost according to 

our experiments. Our system adopts SURF for feature 

extraction. However, the drawback is a huge number of 

features are extracted per image. 

 

2.2. Feature Selection 

 

An ideal candidate for selecting distinguishable regions 

in an image is a visual attention system [15]. The 

attention system selects features in ROIs which is similar 

to human visual system. It can considerably reduce the 

number of features stored in the feature database and the 

matching time. 

There are two types of visual attention system, one is 

the bottom-up approach and the other is the top-down 

approach. Bottom-up approach uses the image-driven 

stimulus, while top-down is the knowledge-driven 

concept. 

Many researchers are devoted to the study of bottom-

up visual attention [16][22]. This saliency based regions 

selection strategy considers several feature channels 

independently, and strong contrasts or the uniqueness of 

features determine their overall saliency. The SLAM 

experimental result from Frintrop et al. [16] shows 

satisfying result using salient feature.  
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Fig. 3 A saliency image and its corresponding 

conspicuity maps 

 

Fig. 4 The saliency image (left). The bottom-up ROI 

(right) 

However, in practice, there are two problems for 

bottom-up saliency. 1) The bottom-up salient features 

are salient in image level but not in global level. For 

instance, the light bulb in an image is usually selected, 

but normally many identical light bulbs are in the room, 

which causes frequent mismatch in feature matching 

process. 2) Knowledge of object’s movability is not 

known. Objects that are more possibly displaced, e.g., 

chairs, are considered unsuitable features in the map. 

Hence, depending only on bottom-up visual attention 

is not enough. To build a feature map with global 

uniqueness and to prolong the valid time of the map, 

letting the robot also focus on objects that are static and 

globally unique, for example, sofa or pictures hanged on 

the wall, is beneficial. This is the top-down visual 

attention guidance. 

 

2.2.1. Bottom-up Visual Attention 

This algorithm consists of two typical processes. The 

first process is feature detection, where multiple low-

level visual features, such as intensity, color, and 

orientation are extracted from the input image at 

different scales. The next process is saliency 

computation. The salient energy is obtained by a center-

surround operation, which makes the salient region 

locally distinguishable. Thus, features from salient 

region tend to have lower mismatching rate. After 

normalization and linear combination of several 

conspicuity maps, salient image is generated to show 

which part is the most attractive. Note that the bright 

regions of the salient image are the regions of interest, 

which can be used for further analysis. 

 

 
An implementation of the most popularly used 

bottom-up saliency model is proposed by Itti et al. [17]. 

There are some different modifications from the original 

model. The standard color space used as features in the 

original model is RGB color space. In our 

implementation, we choose the CIE L*a*b color space 

which was designed to properly mimic how human 

vision perceives the real world [24]. The saliency image 

generated from our modified model is shown in Fig. 3. 

We set a threshold to produce a binary mask of the last 

saliency image. The white regions are the ROIs, and the 

black area is ignored. One example is displayed in Fig. 4. 

 
2.2.2. Top-down Visual Attention 

Given an object database with 2D images as in Fig. 5, 

the robot can recognize them in a top-down manner 

during SLAM. The detection algorithm scans the input 

image captured from the camera and searches for known 

objects in its database. The detection process is based on 

SURF feature matching. First, FLANN (Fast Library for 

Approximate Nearest Neighbors) [25] matches the  
 

    

 
Fig. 6 The construction of top-down ROI: (top-left) 

feature matching for object detection, (top-right) two 

objects are detected in the scene,  and (bottom) the 

final top-down ROI. 
 

          
 

         
Fig. 5 Seven examples of the 2D images in object 

database. First row, from left to right: sign board, 

poster, fire-extinguisher and hydrant. Second row, 

from left to right: elevator, billboard and poster. 
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Fig. 7 Bearing information of selected feature. 

 

features from the input image with the features from 

known object. Outliers in the matching results are 

eliminated with RANSAC (RANdom Sample Consensus) 

[26] method. 

Through the pairs of corresponding points, we then 

solve the Homograph matrix [27] to get the projection 

function between these two images. Finally, we project 

the four end-points from the image patch to the current 

image to estimate the corresponding quadrilateral. The 

final top-down ROI is shown in Fig. 6. 

 

2.2.3.  Merge Two ROIs 

Now we have two ROIs, one is from bottom-up visual 

attention and another is from top-down visual attention. 

We merge the two ROIs by OR operation to select more 

versatile SURF features, referring to Fig. 1. 
 

2.2.4. Bearing Information of Selected Features 

Using the pinhole camera model, we obtain the observed 

bearing   for the feature from the following 

transformation: 

( / 2)
arctan( )

W u

f



  

(1) 

where ( , )u v  is the feature position on an image W H  

and f is the focal length in pixel units, as shown in Fig. 7. 

 

3. BEARING-ONLY SLAM WITH EKF 

 

The prediction and update loop of the EKF per frame 

are as follows [28] : 

1) EKF Predict:  

Perform the procedure of prediction according to 

the motion model. 

2) Landmark Extraction: 

After the camera captures an image, SURF features 

are extracted and then selected based on our 

integrated visual attention system. Next, the bearing 

information is calculated as described in section 2. 

3) Feature Data Association 

Chi-square test is used to determine the association 

between features from the current image and past 

images. 

4) EKF Update for initialized landmarks: 

New measurements of existing map features are 

processed first in update. 

 
5) Check the SLAM state vector: 

If there is existing a well-conditioned pair of 

measurements for a non-initialized landmark, the 

initial landmark estimate is added to the SLAM state 

vector [2]. Once a newly initialized feature is 

generated, the remaining stored measurements are 

applied for update. As soon as the observation poses 

do not produce unprocessed measurements, they are 

removed from the SLAM state vector. Finally, if the 

current robot pose provides a measurement not yet 

being initialized landmark, the observation is stored 

and the current robot pose is added as new 

observation pose to the SLAM state vector. 

 

4. EXPERIMENTAL RESULTS 

 

4.1. Visual SLAM Dataset 

 

The experiments are performed on a P3DX platform. 

Logitech webcam V-UBH44 with horizontal view angle 

 

Fig. 8.  The experiment setting the monocular 

camera is mounted on the P3DX platform. The 

sick laser collects data for laser SLAM as 

ground truth. 
 

  

  
(a)                                  (b)                                    (c) 

  

 
(d)                                  (e)                                    (f) 

Fig. 9 Some sample images of the SLAM 

database, with timestamp (a) 7, (b) 40 (c) 71, (d) 

91, (e) 122, and (f) 152. 
 



 
63 degree is mounted at the height of 80cm. The camera 

faces 45 degree to the front left, which aims to maximize 

both observing ability and parallax of the feature. A 

SICK laser range finder collects data to perform RBPF 

SLAM as ground truth. 

We recorded data including images, odometry, and 

laser scanner reading for each time step. The robot was 

running at the speed around 110mm/s and captures data 

for every second. The experimental environment is a 

real-world indoor environment in Ming-Da Hall in 

National Taiwan University. The room size is about 6m 

× 8m. Fig. 9 shows some samples of our SLAM 

database. The robot circled a path of round corner 

rectangle for 4 times. After traveling a distance of 67.2 

meters, the robot recorded 619 steps of data.  

The monocular SLAM implementation is modified 

from Schlegel’s bearing-only SLAM using 

omnidirectional vision [23]. The parameters of the 

motion model are (0.03m)
2
/1m noise for change in 

position and (3deg)
2
/360deg rotational error. The 

observation model uses (0.5deg)
2 
as angular errors of the 

features. SURF extraction hessian threshold is set to 

2000. The computation was run on a 2.4Ghz Intel Core2 

Quad CPU. 

The top-down ROIs are amended by hand after the 

automatic detection was done, producing nearly ideal 

top-down ROIs. We assume that a more sophisticated 

object detection system can allow this process 

completely automatic and with high performance. 

 

4.2. Evaluation and Discussion of Feature Selection 

  

We conducted the experiments using the following 4 

feature selection strategies: 1) without selection (NO), 2) 

bottom-up (BU), 3) top-down (TD), and 4) the proposed 

integrated bottom-up and top-down selection (TDBU). 

We ran each selection method for 10 times. Fig. 10 

shows an example of result of monocular SLAM using 

TDBU. 

 

 
 

 
 

(a) 
 

 
 

(b) 
 

 

(c) 
 

Fig 12. (a) Average translation error over one run. 

(b) Standard deviation of translation error over one 

run. (c) Average running time for each step. These 

comparison figures show average values after we run 

each method for 10 times.  
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(b) 

Fig. 11. (a) Localization error against ground truth. 

(b) Runtime of each step. The proposed TDBU 

masking is in red and NO masking is in blue.  

                                         
Fig. 10 Monocular SLAM with the proposed 

feature selection produced the feature map (red), 

and the estimated robot trajectory (blue). We 

marked the room boundary manually in black and 

ground truth trajectory with dashed line. 



4.2.1.  Accuracy Analysis  

Figure 11 (a) shows the NO and TDBU translation error 

for one particular run. There is no obvious difference 

between NO and TDBU. Both have the similar pattern: 

the error is relatively small when the robot passed 

through the origin, at which more features with low 

uncertainty were initialized. Then error gradually 

increased after the robot left the origin. 

To clearly compare the accuracy, we use the average 

translation error and standard deviation of translation 

error as the metric. Figure 12 (a) compares the mean 

error. BU has almost the same accuracy as NO, whereas 

TD has the best accuracy probably because the object we 

selected has the property of global uniqueness and right 

now the TD mask is ideal. The TDBU have the second 

accuracy performance. From the standard deviation  

 

comparison in Fig. 12 (b), the TDBU has the smallest 

value, which means the SLAM error is relatively stable 

in the whole procedure. By examining the procedure, we 

find that in some views with BU or TD alone, too few 

features are selected and therefore cause the instability 

of SLAM. 

 

4.2.2. Time Analysis  

Figure 11 (b) shows the running time of NO and 

TDBU for one particular run. Figure 12 (c) shows the 

average running time. After feature selection, the SLAM 

computation time drastically decreases. TD and BU 

consumes respectively 40% and 47% time against NO, 

whereas the proposed TDBU uses 62%. In average, 57 

features are extracted without selection, and 44 features 

are selected with the proposed selection strategy. 

Note that the computation time here does not include 

the time for making BU or TD mask. One can easily 

include the computation time for a specific 

implementation for BU or TD. 
 

4.2.3. Feature Matching Comparison 

 By visually inspecting the feature matching of the 

whole SLAM procedure, our feature selection strategy 

indeed abates the probability of feature's mismatching. 

Figure 13 shows two examples where incorrect feature 

matching in NO is avoided using TDBU feature selection. 

 

5. CONCLUSION AND FUTURE WORK 

 

We proposed a new integrated feature selection strategy 

for bearing-only SLAM with EKF by combining both 

bottom-up visual saliency and top-down recognition 

concept to obtain the versatile features. This visual 

attention system is applied to construct the ROIs to 

select fewer SURF features for monocular SLAM. 

In the experiments, the number of selected SURF 

features is 77% of the original extracted number. We 

have shown that the proposed integrated feature 

selection strategy helps produce better localization 

accuracy and stability, and requires 62% SLAM running 

time compared with SLAM without feature selection. 

Therefore, we can conclude that using human’s visual 

saliency to guide the robot’s visual SLAM feature 

selection is practicable.  

In the current trend of mapping application, robot 

should not only build a metric map with distance 

relations but create a semantic map with object 

information. For our current system, the features 

selected by top-down masking can be easily tagged with 

the object IDs and therefore achieve semantic mapping. 

Currently, appropriate top-down objects should be flat 

objects, e.g. signboards, posters, but the system is 

possible to be extended to 3D scenarios. To scale to 

large environment, some hierarchical map building 

techniques can be applied to fuse multiple local maps 

into a global map.  

 

 

 

   
(a)                                                                                        (b) 

Fig. 13.  Comparison of Monocular SLAM feature matching result of consecutive images at (a) timestamp 28 and 

(b) timestamp 100. The left part is the result without masking (NO) and the right part is the result with the 

proposed integrated feature matching (TDBU). 
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