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Introduction

+ [0 perform desired tasks in indoor environments,

how to estimate robot’s position and map about
surroundings is a critical problem.
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SLAM

+ Simultaneous localization and mapping (SLAM)

« Incrementally build a map of this environment while
simultaneously determining its location

« Glven:

=

1. Robot’s odometry

2. Observations of nearby features % @
« Estimate:

1. Location of the robot

2. Map of features




Sensors

Sensor Diagram Weight
Sonar array \g. medium lightweight
Laser range finder high moderate
% weight
Stereo camera OZ‘ high lightweight
Omnidirectional ‘tk high moderate
camera weight
Monocular camera OZ' lightweight




VSLAM

Generic SLAM Vision-based SLAM

Landmark extraction @ ——— « Interest points (features)
Data association —— « Interest points matching
State predict ~

State update & — Probabilistic framework

landmark update L




vSLAM Challenge

Huge amount of features

« Degrade performance

« Cause mismatch




Solution Idea

Feature selection strategy

+« Remove useless features

« Keep good features




System Overview
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What is Feature?

+ Features (Interest points):

« Easy to find their correspondences

+ Desired features:

« Distinctive: outstanding, easily matched
« Invariant: invariant to scale, viewpoint change
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Feature Detectors

+ Scale Invariant Feature Transform (SIFT) [Lowe, 2004] IS
one of the best feature detectors, but slow

+ Speeded Up Robust Features (SURF) [Bay, et al., 2006]

« SURF has good performance as SIFT and faster
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Images

Extraction time 863.998 ms 267.634 ms



Feature Extraction Challenge

+ Hundreds of SURF points are extracted

« Increase computational time
« Need higher data storage

» But, fewer features are desired Iin practice

« Remove useless features
« Keep repeatable features

» A feature selection strategy is necessary
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Feature Selection

+« Human never process the whole image at once

« Focus on some regions of interest (ROISs)

+ A natural solution — visual attention system

Bottom-up approach | Top-down approach

Image-driven Knowledge-driven
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Feature Selection — Bottom-up Approach

+ Visual attention system

oput
« Saliency model Imige
[Itti et al., 1998]* Linear Fitering
/ cl. ==wi ol /
« Replace the original RGB / / d
color space with CIE L*a*b " ContorSuround Differ;(i;nceand Nomalzaton

Across-Scale Combinations and Normarlization

» Mimic color opponencies
of human vision [“R?Séi”"" c [ ] [ o /]

¥

Linear Combination

[1] L. Itti, C. Koch, and E. Niebur, “A Model of
Saliency-Based Visual Attention for Rapid / *

Scene Analysis,” PAMI, 1998. Saliency

Image




Feature Selection — Bottom-up Approach

+ Results of modified saliency model

Sal :N(%(C+I+O))
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Feature Selection - Top down approach

+ Sometimes, bottom-up ROIs are not enough

« For example:
‘ » ~

+ Integrates top-down approach to achieve flexible
feature selection
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Feature Selection - Top down approach

+ Human robot interaction (HRI) can be applied to
object learning

+« Communication with the robot
. [Pointing with intelligent devices]
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Feature Selection - Top down approach

+ Robot redetects known objects process
+ Based on an object

recognition algorithm (X0 Y1) ===~ @;

. RANSAC (%Y) ==~ =l
(Reject inconsistent matches) T .
H
« Compute Homography .
_Xi ] _Xi_ (1 1y1 -j' .
S Yil =H Yi X2 ’yz . .
1] 1] S



Feature Selection - Top down approach

+ Solving the homography matrix, then we project the
four end-points to determine top-down ROI




Feature Selection

+ Merge two ROlIs to obtain versatile features
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Experiment Setting

+« Ploneer 3DX
« Logitech webcam V-UBH44

Room size: 6m*8m
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Localization Error Comparison
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TDBU: the proposed integrated bottom-up and top-down selection
TD: top-down

BU: bottom-up

NO: without selection



Time Comparison
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TDBU: the proposed integrated bottom-up and top-down selection
TD: top-down

BU: bottom-up

NO: without selection



Matching Comparison 1/2
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Matching Comparison 2/2




Conclusions

+ We propose an integrated feature selection strategy
based on visual attention system for bearing-only
SLAM with EKF

« Reduce computation time to 62%
« Reduce localization error to 89%

+ Combining bottom-up and top-down approach to
construct ROIs allow us to

+« Select salient and useful features
« Improve data association



