

An Integrated Feature Selection Strategy For Monocular SLAM

Presenter: Kuan-Ting Yu Advisor: Li-Chen Fu

NTU Intelligent Robot Lab

Industrial Technology Research Institute

1

September, 2011

Outline

- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

Outline

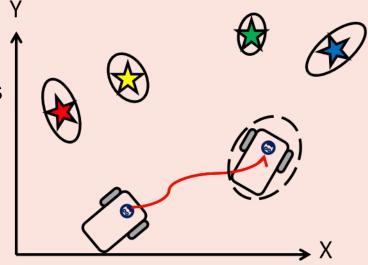
- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

Introduction

 To perform desired tasks in indoor environments, how to estimate robot's position and map about surroundings is a critical problem.

SLAM

- Simultaneous localization and mapping (SLAM)
 - Incrementally build a map of this environment while simultaneously determining its location
 - Given:
 - 1. Robot's odometry
 - 2. Observations of nearby features
 - Estimate:
 - 1. Location of the robot
 - 2. Map of features



Sensors

Sensor	Diagram	Cost	Weight
Sonar array		medium	lightweight
Laser range finder	·.	high	moderate weight
Stereo camera	· · ·	high	lightweight
Omnidirectional camera	-6-	high	moderate weight
Monocular camera		low	lightweight

vSLAM

Generic SLAM

- Landmark extraction
- Data association
- State predict
- State update & landmark update

Vision-based SLAM

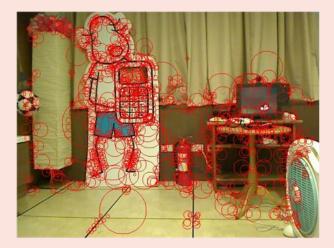
- Interest points (features)
- Interest points matching

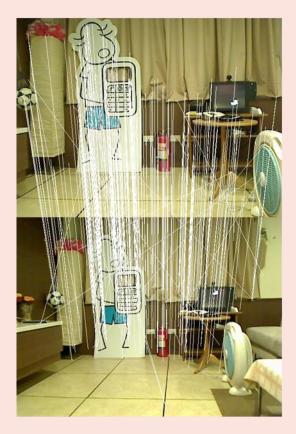
Probabilistic framework

vSLAM Challenge

Huge amount of features

- Degrade performance
- Cause mismatch

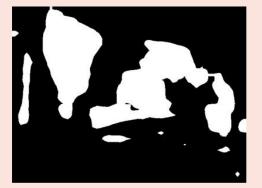




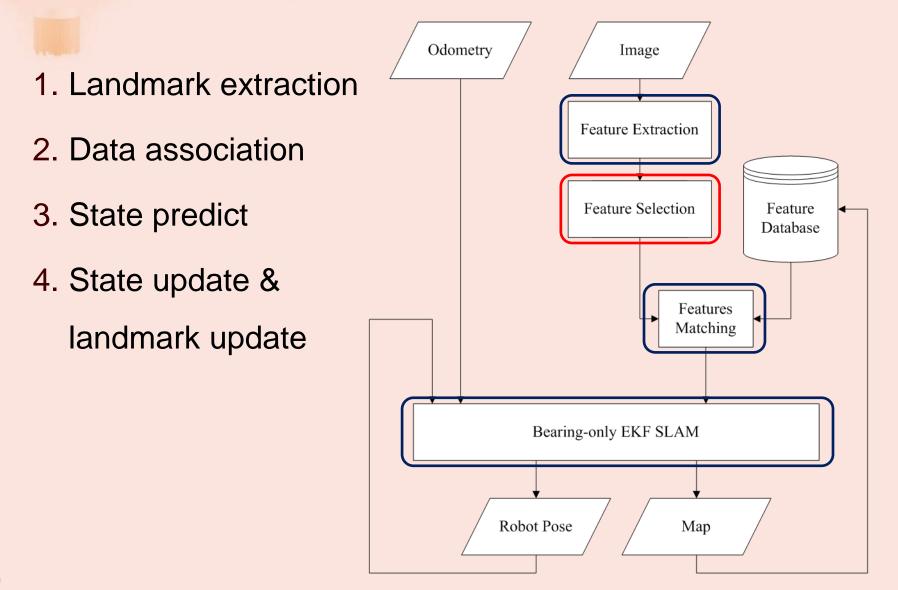
Solution Idea

Feature selection strategy

- Remove useless features
- Keep good features



System Overview



Outline

- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

What is Feature?

Features (interest points):

Easy to find their correspondences

- Desired features:
 - Distinctive: outstanding, easily matched
 - Invariant: invariant to scale, viewpoint change

Feature Detectors

- Scale Invariant Feature Transform (SIFT) [Lowe, 2004] is one of the best feature detectors, but slow
- Speeded Up Robust Features (SURF) [Bay, et al., 2006]
 - SURF has good performance as SIFT and faster

Feature Extraction Challenge

- Hundreds of SURF points are extracted
 - Increase computational time
 - Need higher data storage
- > But, fewer features are desired in practice
 - Remove useless features
 - Keep repeatable features

A feature selection strategy is necessary

Feature Selection

- Human never process the whole image at once
 - Focus on some regions of interest (ROIs)
- A natural solution visual attention system

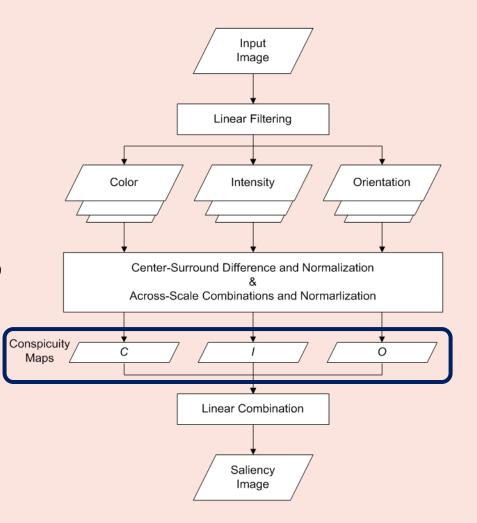
Outline

- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

Feature Selection – Bottom-up Approach

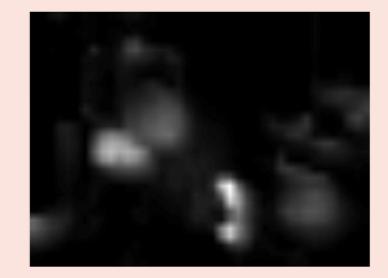
- Visual attention system
 - Saliency model
 [Itti et al., 1998]¹
 - Replace the original RGB color space with CIE L*a*b
 - Mimic color opponencies of human vision

[1] L. Itti, C. Koch, and E. Niebur, "A Model of Saliency-Based Visual Attention for Rapid Scene Analysis," *PAMI*, *199*8.



Feature Selection – Bottom-up Approach

Results of modified saliency model



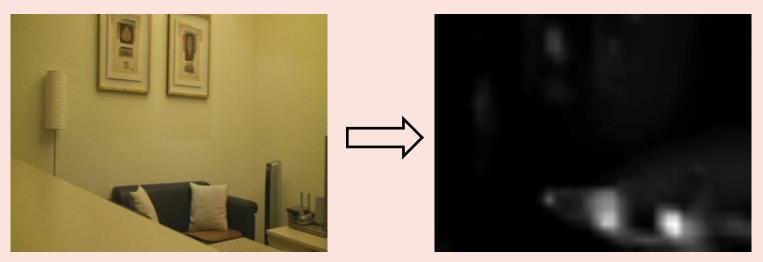
$$Sal = N(\frac{1}{3}(C+I+O))$$

Outline

- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

Sometimes, bottom-up ROIs are not enough

For example:



 Integrates top-down approach to achieve flexible feature selection

 Human robot interaction (HRI) can be applied to object learning

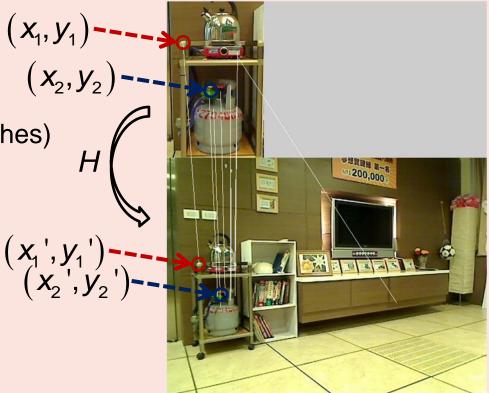
- Communication with the robot
 - Pointing with intelligent devices

- Robot redetects known objects process
- Based on an object recognition algorithm
 - * RANSAC

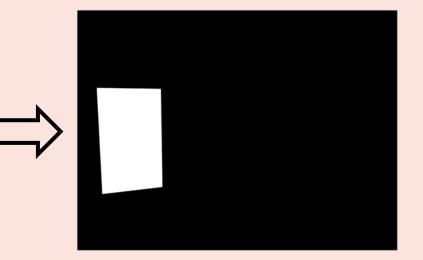
(Reject inconsistent matches)

Compute Homography

$$S_{i}\begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix} = H\begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix}$$

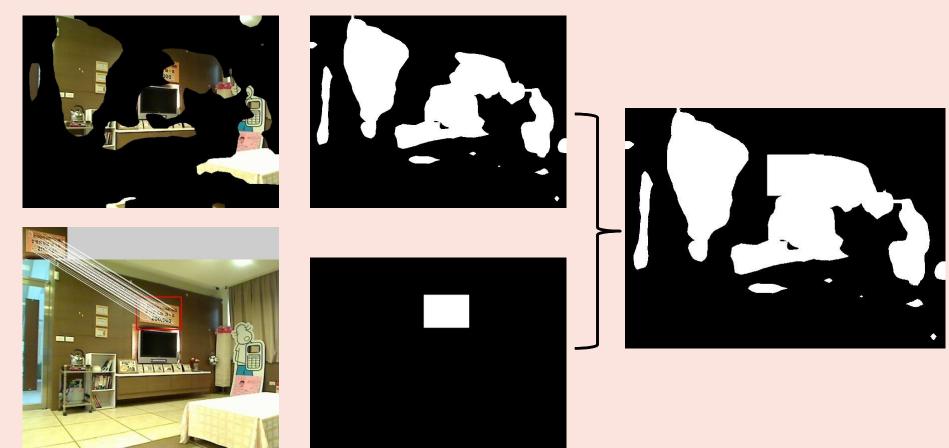


 Solving the homography matrix, then we project the four end-points to determine top-down ROI



Feature Selection

Merge two ROIs to obtain versatile features



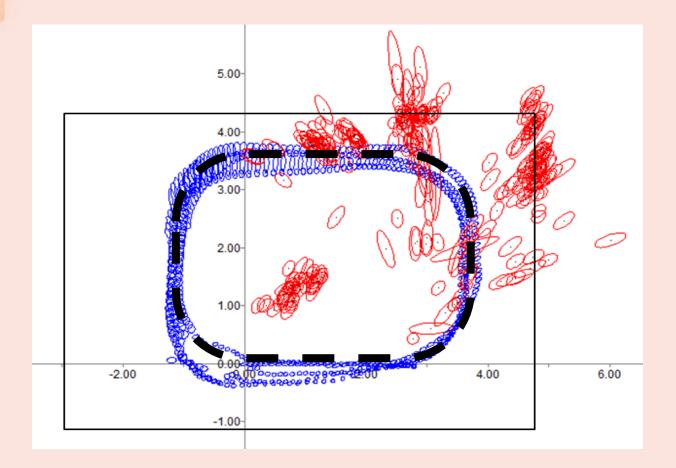
Outline

- Introduction
- Feature Extraction
- Bottom-up Feature Selection
- Top-down Feature Selection
- Experimental Results
- Conclusions

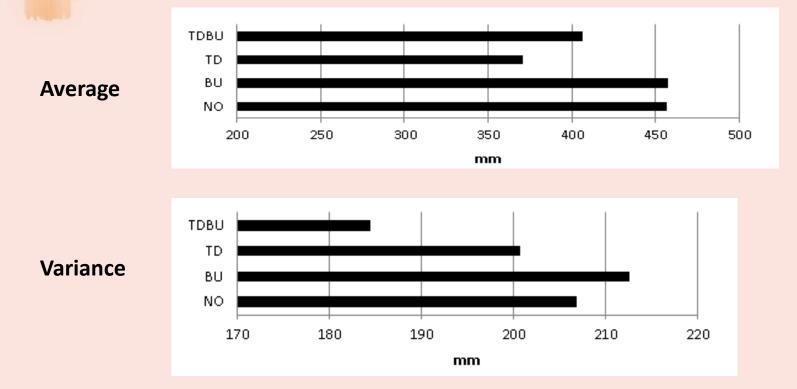
Experiment Setting

- Pioneer 3DX
- Logitech webcam V-UBH44

Room size: 6m*8m



Localization Error Comparison



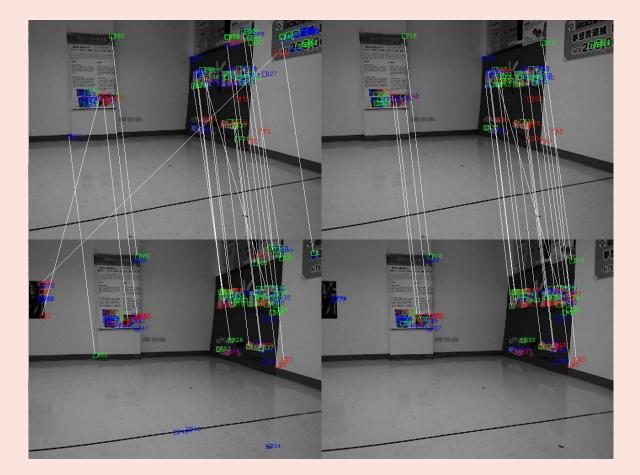
TDBU: the proposed integrated bottom-up and top-down selection TD: top-down BU: bottom-up NO: without selection

Time Comparison

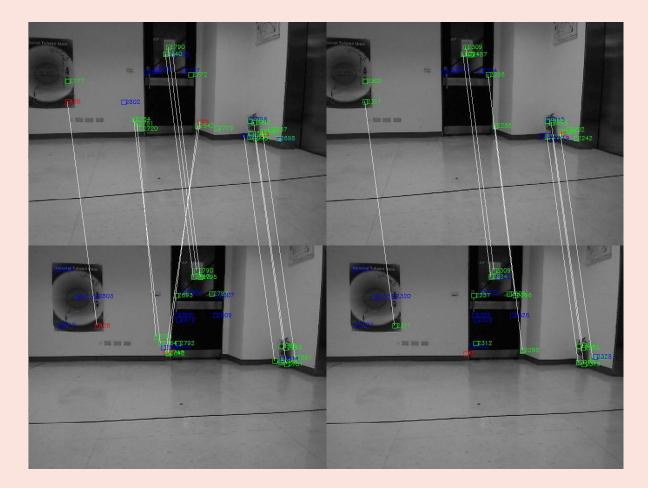


TDBU: the proposed integrated bottom-up and top-down selection TD: top-down BU: bottom-up NO: without selection

Matching Comparison 1/2



Matching Comparison 2/2



Conclusions

- We propose an integrated feature selection strategy based on visual attention system for bearing-only SLAM with EKF
 - Reduce computation time to 62%
 - Reduce localization error to 89%
- Combining bottom-up and top-down approach to construct ROIs allow us to
 - Select salient and useful features
 - Improve data association