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Abstract—SLAM using monocular cameras is a promis-

ing solution because of their low cost and ability to capture 

accurate bearing information. However, this problem is 

challenging because we need to infer depth information 

from bearing-only cues in a sequence of images through 

triangulation and meanwhile consider uncertainty. In our 

previous work, the results of the SLAM system using one 

monocular camera were not stable and accurate enough for 

real application due to limited field of view (FOV) of a sin-

gle camera. Therefore, we propose a SLAM system that 

combines information from multiple monocular cameras to 

achieve a wider FOV in order to improve the stability of 

our system. Our SLAM system bases on a probabilistic 

framework of Extended Kalman filter (EKF), which fuses 

odometry information and bearing-only features from 

multiple cameras. Also, an extrinsic calibration process is 

proposed to accurately estimate the relative transformation 

between cameras and a robot. Besides, our approach is 

implemented efficiently by taking advantages of parallel 

processing techniques using CUDA. We conduct the ex-

periments on the ITRI Ubot platform. Results of our pro-

posed multi-monocular SLAM and localization using the 

constructed map are evaluated. We achieve mean error of 

18 cm on two datasets without artificial landmarks. Finally, 

we compare the result from one camera with that from 

multiple cameras and discuss the effects of various param-

eters on the overall SLAM performance. 

Keywords: monocular SLAM, visual SLAM, Bi-cam 

SLAM, bearing-only SLAM. 

I. INTRODUCTION 

Autonomy is the top issue in building service robots. 

One basic skill of robot is simultaneous localization and 

mapping (SLAM), on which mobile robots rely for 

navigation. A mobile robot must find its own location 

and possible routes to the destinations. Various sensors 

have been utilized for SLAM on mobile robots, such as 

laser range finders, sonars, vision sensors, etc. Localiza-

tion techniques using laser range finders [1] have been 

extensively studied. To produce robots with more af-

fordable price, researches propose to use low-cost vision 

sensors like cameras [2-11]. However, visual SLAM 

remains a challenge to apply in real-world environments 

in that the depth information cannot be measured directly 

and sensor noise. 

Three categories of vision sensors used in visual 

SLAM include stereo cameras, omnidirectional cameras, 

and monocular cameras. Stereo cameras are often used 

for visual SLAM problem [5, 8]. They estimate depth 

information by calculating the disparity between pairs of 

images. On the other hand, omnidirectional camera has 

the advantage of wide field of view [6] but the distorted 

image reduce the matching capability of features. In re-

cent studies considering the cost and popularity, the 

monocular camera is a promising direction for affordable 

service robots. However, the depth information of 

landmarks has to be estimated from sequence of images. 

In this work, we propose a system that applies multi-

ple monocular cameras with odometry information. The 

system integrates visual landmarks using Extended 

Kalman Filter (EKF) framework to achieve Visual 

SLAM on mobile robots. The benefits of light weight and 

low cost of monocular cameras are helpful for extensive 

robot applications.  

From the viewpoint of computation speed, CUDA 

provides an effective framework to utilize GPU to speed 

up independent processes. Therefore, we apply it to 

speed up computation-intensive components in order to 

achieve real-time process.   

A. Related Work 

In the aspect of probabilistic framework, vSLAM can 

be classified into two categories, EKF-based and parti-

cle-filter-based methods. Here we only focus on 

EKF-based approaches. Among them MonoSLAM [3] is 

the most popular method. The authors apply a motion 

model for camera's movement prediction and propose a 

solution for monocular camera to initialize a feature 

without delay. Still, MonoSLAM requires high frame 

rate and slow movement to track features successfully. 

Also, a pantoscopic lens is needed to track the features in 

the view for a longer time. Miro and Dissanayke [9] use 

stereo camera in their proposed EKF-based vSLAM. 

Feature extraction for vSLAM must overcome the 

issues of illumination variation, scale difference, and 

viewpoint change. Scale-invariant feature transform 

(SIFT) [12] meets the above three conditions. SIFT is 

currently widely used because of its capability in feature 

detection and description. SIFT selects feature points by 

using Difference of Gaussians. The selected feature 

points are local minima in size and space. Histogram of 

oriented gradient is used to describe these feature points. 

Speed-up robust feature (SURF) [13] has been applied on 

vSLAM in recent years. SURF adopts integral image 

method to approximate Gaussian second order partial 

derivation, which reduces the time to detect feature 
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points. Since SURF sums up the absolute value of block 

gradients rather than construct HOGs, it computes faster 

than SIFT. 

Solà et al. [11] claim that using multiple cameras in 

vSLAM could improve the efficiency of EKF SLAM. 

The method is called Bi-camera SLAM. It combines the 

advantages of both monocular and stereo vision. The 

landmark is initialized by (1) using the triangulation of 

stereo vision when the feature is close to the robot and (2) 

using angular information of the monocular camera 

when the feature is far from the robot. 

B. System Overview 

The main considerations in this work are: vSLAM 

stability of using monocular camera, computation time 

on feature extraction, matching, and EKF iterations. In 

this work, we apply multiple monocular cameras to 

achieve SLAM on a mobile robot. SIFT features and 

EKF-based approaches are adopted to fuse feature in-

formation from multiple cameras. 

The structure of this paper is as follows. In section II 

we first introduce the procedure of using multiple cam-

eras in vSLAM. Then, we describe feature extraction and 

landmark initialization. In section III, we illustrate how 

to apply CUDA to accelerate vSLAM procedure. In sec-

tion IV, the experiments are presented to verify the 

proposed method. 

 

 
Fig. 1.  Architecture of vSLAM system with multiple cameras. 

II. USING MULTIPLE CAMERAS IN SLAM 

In most of the SLAM process, the camera on the 

mobile robot is facing towards walking direction. How-

ever, this configuration does not good for landmark ini-

tialization. Landmark initialization depends on the vari-

ation of the viewing angle. According to experiments, 

landmarks located near the center of an image are not 

initialized when the robot walks straight. The reason is its 

parallax is limited between consecutive frames. The 

landmarks located near the boundary of an image are 

more possible to be initialized, but they would be soon 

out of sight as the robot moves. The inherent problem of 

a perspective camera is the limited field of view. Figure 2 

and 3 explain the limited usage of the facing-forward 

camera configuration in vSLAM. 

In this work, multiple cameras are placed on the mo-

bile robot to enlarge the field of view in order to prolong 

the tracking time of features. 

 
Fig. 2.  A landmark appears near the center of the image. 

 
Fig. 3.  A landmark appears at the boundary of an image. 

A. EKF vSLAM 

The key issues in EKF-based vSLAM are highlighted 

as follow. First the algorithm of visual feature extraction 

must acquire robust features that can serve as candidate 

targets. Second, uncertainty occurs during the transfor-

mation between the coordinates of a planar image, cam-

era, and global frame, which leads to the accumulation of 

estimation errors. Lastly for the step of target initializa-

tion, the depth of a target is represented by a Gaussian 

model.  

Figure 4 shows four stages of using a monocular 

camera in EKF-based vSLAM. Suppose the distance and 

orientation of a feature are represented by the mean and 

variance of the Gaussian model in the initialization stage, 

the subsequent prediction is similar to that using a laser 

range finder. Next, the robot observes the same target in 

another frame by data association. From the information 

of robot odometry and observation, the robot location is 

repeatedly updated. 

 
Fig. 4.  Four steps of vSLAM using multiple cameras. 

B. Camera Model 

Comparing to using a laser range finder in SLAM, 

using monocular cameras needs to conduct triangulation 

to estimate the distance information of a target feature. 

Each image captured from cameras is attached with the 

estimated position information provided by odometer. 

(1) 

In equation 1, [X Y Z] is the coordinate of the feature 

in 3D space. [u,v] is the coordinate of the feature after 
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being projected on the image. A is called the matrix of 

intrinsic parameters. [Cx, Cy] is the principal point. [Fx, 

Fy] is the focal length of the camera. [R | t] contains 

translational parameters, which is called the matrix of 

extrinsic parameters. 

C. Calibration of Multiple Cameras 

The camera calibration involves obtaining intrinsic 

and extrinsic parameters. Intrinsic parameters contain 

focal length, image center, and distortion parameter. 

They can be estimated by tools such as [14, 15]. Twenty 

photos of calibration boards in total were captured, in-

cluding all possible positions and rotations of the cali-

bration board and one picture of the calibration board 

covering the whole image (see Fig. 5). 

On the other hand, the extrinsic parameters of the 

camera, which represent the relationship between the 

camera and the robot, are acquired by our proposed 

method. The steps are described as follows. 

 

1) Align the center of the robot to a crossing point on 

the ground and orient the robot straight toward the 

wall (see Fig. 6). 

2) Input the captured photos and calibration pictures 

to the calibration tool to compute the relationship 

Tbc between the calibration board and camera co-

ordinate. Tbc includes the information of rotation 

and translation.  

3) Obtain the relationship Tbr between the calibration 

board and the center of the robot.  

4) According to the equation Tbr=Tbc*Tcr, the rela-

tionship Tcr between the camera and the robot can 

be obtained. 

The experimental result shows the accuracy of the 

camera calibration parameters affects the result of 

vSLAM considerably. Therefore, a larger calibration 

board is made for the experiment. The size of the cali-

bration board is 6×9 squares and the size of each square 

is 108×108 mm. 

D. Feature Extraction 

In our system, we extract SIFT feature to all captured 

images. Each feature extracted is indexed and kept in a 

temporary database. The feature is compared to the fea-

ture database by Euclidean distance. If the observed 

feature is matched to any features from previous frames, 

the association information is recorded for the following 

SLAM procedure. Otherwise, the feature is added to the 

database. 

The accuracy of feature matching is especially im-

portant for EKF vSLAM since the architecture of EKF 

does not deal with matching error. SURF feature was 

chosen for its speed in extraction, which is 3 times the 

speed of SIFT. However, SURF feature matching is in-

accurate compared to SIFT. Also, FLANN [16] was 

adopted for feature matching. The method applies 

kd-tree approximation in searching but the optimal solu-

tion of the searching result is not guaranteed. 

 
Fig. 5.  The checkerboard images used for camera calibration. 

 

 
Fig. 6.  The configuration for acquiring the extrinsic parameters of a 

camera. Left: the vertical view. Right: snapshot of the setup. 
 

To improve the accuracy of our feature extraction 

system and to maintain appropriate computation speed, 

we apply CUDA-based SIFT implementation and com-

plete search method for feature matching.  

E. Landmark Initialization 

After a feature has been observed for several times and 

forms a well-conditioned pair [17], the collected infor-

mation is enough for the robot to estimate the depth of 

the feature. Then, the feature is initialized and becomes a 

landmark. This process occupies much of the time cal-

culating well-conditioned pairs by sampling. The algo-

rithm is suitable for being speeded up by parallelization. 

Therefore, GPU can be applied to accelerate the com-

putation at this stage. 

III. PARALLEL PROCESSING USING CUDA 

Nvidia provides an easy way for GPU program de-

velopment and its CUDA library has been widely applied 

on parallel computing in many fields. The major differ-

ences between GPU and CPU lie in the efficiency of 

graphical computation and the memory bandwidth of 

GPU is much bigger than that of CPU. In this respect, 

GPU serves as a processor for parallel data. With this 

framework, programmers shift from using low-level 

development environments such as OpenGL or DirectX 

to using high-level environments such as CUDA or 

OpenCL. 

CUDA program is executed in multiple stages. The 

program run on CPU is called host; the program run on 

GPU is called device. The stage of parallel data is im-

plemented on device and is skipped when the program 

run on host. Therefore, a complete CUDA program 

consists of the programs for host and device. 

Parallelization of vSLAM Algorithm 

Two segments of the vSLAM Algorithm are the most 

time-consuming: feature extraction and landmark ini-

tialization. These two segments include procedures that 

Calibration images
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will be executed several times sequentially. Since each 

execution is independent of each other, the program can 

be speeded up by applying CUDA's parallel processing. 

SIFTGPU [18] is utilized for feature extraction, where 

hundreds of cores contribute to feature extraction and 

matching. As for landmark initialization, there is a pro-

cess of calculating KL distance by sampling 1000 times. 

 

Overall, the following sub-programs are parallelized: 

1) Coordinate transformation of sampling results 

2) Matrix multiplication of  HCH
T
 

3) Inverse-matrix computation 

4) n-dimension Gaussian sampling 

5) Gaussian distribution computation 

In general, speed-up of ten times for each 

sub-program can be achieved if it is properly parallelized. 

However, exchanging data between GPU memory and 

host memory should be treated carefully so that frequent 

and massive data exchange does not hinder the benefit of 

parallelization. 

IV. EXPERIMENTAL RESULTS 

A. UBot and Experimental Environment 

We conduct experiments of our multi-cam system on 

both Pioneer 3DX and ITRI UBot. Two Logitech 

V-UBH44 webcams mounted on an adjustable aluminum 

rack are used to capture images. The laser range finder on 

our platform is used to acquire the ground truth. There 

are two experimental setups: Environment 1 is a 7×5 m
2
 

field and Environment 2 is a 8×4 m
2
 field (see Fig. 7). In 

Environment 1, we do not decorate the environment with 

any artificial landmarks, but in environment 2 we do post 

some posters to increase the feature number. The com-

putational platform has Intel Core-i7 2600K CPU, 16GB 

memory and Nvidia GTX 560. 

 

 
Fig. 7. Top: Environment 1 and Environment 2. Bottom: Pioneer 3DX 

and ITRI UBot platform. 

B. CUDA-Accelerated Feature Extraction and 

Matching 

From preliminary experimental results, the speed of 

SURF feature extraction is 3 times the speed of SIFT. 

However, the accuracy of feature matching of SURF is 

not as good as the accuracy of SIFT. To improve the 

accuracy and speed, we adopt the SIFT program in 

CUDA, which accelerates the procedure by paralleliza-

tion on GPU. On our hardware platform, the speed of 

SIFT extraction is 1.5 times faster than SURF on CPU. 

On the other hand, complete searching requires more 

time than using FLANN but reduces matching errors 

greatly (see Table I, II and Fig. 9). 

Since SIFT or SURF is not robust to the change of the 

viewpoint (only 5° ~ 15° tolerance), incorrect feature 

matching occurs. Thus, extracting plenty of feature 

points is necessary to maintain the quality of visual 

SLAM. However, too many features also jeopardize the 

system efficiency. In our experiment, the number of 

feature extraction is set to 400. The following shows the 

experimental result with 1280*480 images (see Fig. 8). 

 

 
Fig. 8.  Rectangles represent the extracted SIFT features. The left part 
of the picture is captured by the camera facing left and the right part is 

by the camera facing right. Blue: first detected features. Green: features 

detected in multiple frames. 

 
Fig. 9.  The result of feature matching between two consecutive frames. 

Left: complete search with SIFT. Right: FLANN with SURF. 

 

 

 
 

TABLE I 
COMPARISON ON FEATURE EXTRACTION METHODS 

Approach Extraction Time 
Average localization error 
(use FLANN for feature 

matching) 

SURF w/ CPU 365 ms 23.98 cm 

SIFT w/ GPU 259 ms 22.17 cm 

 
TABLE II 

COMPARISON ON FEATURE MATCHING METHODS 

Approach Matching Time 

Average localization error 

(use SIFT for feature ex-
traction) 

FLANN 1432 ms 22.17 cm 

Complete 

search by GPU 

2097 ms 22.57 cm 
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C. Comparison of Using Multiple Cameras and One 

Monocular Camera 

Figure 10 compares localization errors of using mul-

tiple cameras and using the monocular camera. The re-

sult shows that using multiple cameras can improve the 

accuracy in robot localization.  The localization error of 

using the monocular camera is 43.6cm in average; the 

localization error of using multiple cameras is 27.9cm in 

average. We found that adequate viewing angle is an 

important factor of the robustness of the SLAM system 

because it facilitates feature tracking and landmark ini-

tialization. (see Fig. 10, 11).  
 

 
Fig. 10.  Comparison on the error of localization. Blue: Two cam-

eras, Red: single camera. 

 
Fig. 11.  The resulting maps built by single camera (left) and two 
cameras (right). Black: the map built by laser SLAM. Using two 

cameras obtains better result than using one camera. 

 

D. Refining Extrinsic Parameters of the Camera 

In our previous work [19], the camera was set on top 

of the robot without significant displacement from the 

robot center. As for the bi-cam system, the displacements 

of the cameras are non-negligible. The following ex-

periment makes comparisons between the system con-

sidering the displacement of the cameras and the system 

ignoring this issue. For the cameras without extrinsic 

calibration, the initialized visual landmarks are mostly 

not aligned with the ground truth. As Fig. 12 shows, after 

the camera calibration of extrinsic parameters, the lo-

calization error reduces from 27.9cm to 23.1cm in av-

erage after refinement. The result shows that by adjusting 

the extrinsic parameters more accurately, the localization 

error will reduce significantly and the map built will also 

improve. The quality of the constructed vSLAM map is 

comparable to the quality of laser-built map (See Fig. 12, 

13, 14). 

 
Fig. 12.  Comparison on the error of localization before (in red) and  

after (in blue) the refinement of camera extrinsic parameter. 

F. vSLAM on UBot with our Proposed Calibration 

We run our whole system on the UBot mobile plat-

form developed by ITRI. Also, the calibration accuracy 

of the camera is improved. The system is accelerated 

with the help of CUDA. The result is a vSLAM system 

with higher localization accuracy and computation speed. 

In experimental environment 1 (see Fig. 13), the average 

localization error is 15.2cm, and average computation 

time is 3.4 sec/step (1 step is approximately 10 cm). In 

experimental environment 2 (see Fig. 14), the average 

localization error is 21.5cm, and average computation 

time is 6.43 sec/step. A more challenging dataset is pre-

sented in Fig. 16. 

G. Local Localization 

Although our simultaneous localization and mapping 

utilizes the acceleration of GPU, there is a gap to re-

al-time processing. The following experiment inspects 

the issue of real-time localization after the map is gen-

erated and the functionality of mapping is turned off. The 

robot circled the environment 2 four times. Simultaneous 

localization and mapping was run for the first two loops, 

and only localization was run for the last two loops. The 

experimental result shows the computation time remains 

stably around 1.67/step after the mapping functionality 

was turned off (see Fig. 15(a) red line). Also, the local-

ization error stays at the same level (see Fig. 15(b)). 

 

 
Fig. 13.  Comparison on the resulting maps of vSLAM (blue: 
vSLAM trajectory, red: vSLAM map) and SLAM using laser 

(green: laser trajectory, black: laser map). 
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Fig. 14.  Comparison on the resulting maps of vSLAM (blue: 

vSLAM trajectory, red: vSLAM map) and SLAM using laser 
(green: laser trajectory, black: laser map). 

 

 
(a) 

 
(b) 

Fig. 15.  Comparison on the (a) computation time and (b) localiza-

tion error between SLAM processes with map building on and off 

(blue: map building was on, red: map building was off after two 
loops (T=300)). The computation is accelerated by turning the 

mapping off, while the localization error stays the same. 

 
Fig. 16.  The result of a more challenging dataset in environment 2. 

Comparison on the resulting maps of our overall vSLAM system 

(blue: vSLAM trajectory, red: vSLAM map) and SLAM using laser. 
(green: laser trajectory, black: laser map). 

V. CONCLUSION 

This work addresses vSLAM by adopting multiple 

cameras with EKF-based approach. We tested the accu-

racy of the proposed system under different experimental 

conditions. The parallel processing technique of CUDA 

is successfully applied to speed up feature extraction and  

landmark initialization. An accurate camera calibration 

procedure is also presented. The experimental result 

shows the vSLAM stableness and accuracy can be ef-

fectively improved by providing adequate field of view 

from multiple cameras. 
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