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Abstract— Accurate and robust object state estimation en-
ables successful object manipulation. Visual sensing is widely
used to estimate object poses. However, in a cluttered scene or
in a tight workspace, the robot’s end-effector often occludes
the object from the visual sensor. The robot then loses visual
feedback and must fall back on open-loop execution.

In this paper, we integrate both tactile and visual input
using a framework for solving the SLAM problem, iSAM
(incremental smoothing and mapping), to provide a fast and
flexible solution. Visual sensing provides global pose informa-
tion but is noisy in general, whereas contact sensing is local but
the measurement is more accurate relative to the end-effector.
By combining them, we aim to exploit their advantages in
order to overcome their limitations. We explore the technique
in the context of a pusher-slider system. We adapt iSAM’s
measurement cost and motion cost to the pushing scenario, and
use an instrumented setup to evaluate the estimation quality
with different object shapes and on different surface materials.

I. INTRODUCTION

We are interested in providing robot manipulators with
the ability to track the state of a task in realtime with
ordinary hardware. Visual object tracking and detection have
been widely studied [1, 2, 3] and can provide reliable
estimates of object pose, especially in scenarios with no or
limited occlusions. However, it is characteristic of robotic
manipulation that the robot, the gripper, or the surrounding
clutter will “get in the way” and occlude the object from
the cameras. In these scenarios, tactile sensing from distal
sensors located at the end-effector can help track the state of
an object. Unfortunately, there is a lack of algorithms that can
make sense of the high frequency but local information they
provide. In this work, we describe a flexible state estimation
framework that fuses in real time tactile and visual sensing.

In previous work [4], we showed that it is possible to
infer the shape and trajectory of a pushed object only
from a batch stream of tactile information. However, the
performance was slow and not suitable for online tracking. In
this paper, we explore the idea of combining vision sensing
for approximate global estimation with tactile sensing for
last-inch accurate interaction. We explore the algorithm in
the context of a pusher-slider system [5]. The goal is to
estimate 2D object poses in real time given intermittent
contact measurements and unreliable vision measurements.

This work was supported by NSF award [IIS-1427050] through the
National Robotics Initiative.

Fig. 1. Concept illustration. (top) Before the robot touches the object, the
camera is able to track the object but with noticeable error due to imperfect
calibration. (middle) After the robot makes contact with the object, the
object pose is corrected based on the contact information. (bottom) During
camera occlusion, the estimator still can keep track of the object while
being pushed based on contact information. Red shape: current object pose
estimate. Grey shape: object real pose in the last image. Black curve: object
trajectory. Cyan: camera ray to object.



The robot can push the object in various ways and with
different contact modes (single-double contacts and sticking-
sliding contacts). Figure 1 illustrates the high-level concept.

We use Incremental Smoothing and Mapping (iSAM) [6]
as the underlying optimization framework because of its
smoothing structure and the flexibility to fuse heterogeneous
measurements and cost functions. The models we use to
run the smoothing algorithm assume that we know the
shape of the object and that the pressure distribution on
the sliding surface between the object and the ground is
uniform. In practice, we do not have control over the pressure
distribution in the experiment, but the experiments show that
the algorithm still works.

Our system features:
• real time estimation at 100 Hz;
• incorporating contact physics in estimation;
• robustness to unreliable sensor input;
• the object can be pushed in various ways, which may

involve changing the number of contacting fingers, or
involve switching between sticking and sliding;

A key aspect of our system, enabled by the availability
of tactile sensing, is that we do not need to consider
expensive complementarity programming of the sorts that
originates in classical contact problems (contact/no-contact
or sticking/sliding). Relying on tactile and force measure-
ments allows us to formulate the problem without complex
hybrid dynamics, which speeds up the algorithm.

II. RELATED WORK

In this section, we discuss related literature from three
aspects: A. state estimation for object manipulation, B. state
estimation frameworks, and C. pushing mechanics.

A. State estimation in object manipulation

Petrovskaya and Khatib [7] tackle the problem of global
localization of a known and fixed object by touch. They apply
particle filter (PF) to fuse multiple point contact information.
PF can handle nonlinear systems and represent multiple
modes. In practice, although pure touch-based localization
is inspiring, for many real cases, it is often simple to add
extra global sensors, e.g. cameras, to quickly trims the search
space.

Zhang and Trinkle [8] use PF to track an object during a
grasping acquisition with contact sensing patches on static
fingers. They find that there is a particle depletion problem,
which happens when the contact sensor yields very accurate
measurements compared to that from cameras. The inability
to fuse information of different accuracy scales is an inherent
problem with particle filters.

Koval et al. [9] propose adding manifolds to resolve the
problem of particle depletion. They keep track of binary
variables representing the contact state. According to the
variable, the filter uses different set of dynamical constraints.

Although contacting a surface is usually assumed to elim-
inate the uncertainty completely in the contact direction, we
claim that it is only true if we use the exact contact point as
the reference frame. If not, any physical extension from the

reference point is not exactly precise and will have different
amounts of uncertainty.

Li et al. [10] propose a contact graph that represents the
transition of discrete contact states in order to let the contact
state evolve according to physics. In terms of computation,
adding discrete variables will make the system unscalable
due to a combinatorial number of contact modes of partici-
pating surfaces.

Schmidt et al. [11] focus on using depth pointclouds and
contact constraints for state estimation. Izatt et al. [12] also
use both a depth sensor and a high-resolution touch sensor.
Hebert et al. [13] fuses both vision and contact sensors.
However, they do not consider motion models of the object
during frictional contact interaction, which may let noisy
measurements introduce unphysical estimates. Their scenario
has less dynamical frictional interaction compared to pushing
manipulation.

In our previous work [4], we attempt to recover not only
pose but also the shape of an unknown object during pushing
exploration. We use a batch nonlinear least squares approach
to incorporate both contact measurement and motion model
constraints. The result was too slow and unreliable to be used
in closed-loop interaction. In this paper, we aim to adopt
a similar formulation to a easier problem that is useful to
enable reactive planning and control. The problem involves
tracking the pose of a known object in an online fashion by
adding visual input.

B. State Estimation Framework

Extended Kalman Filter (EKF) is a popular framework for
online and realtime localization [14, 12, 13]. It linearizes
a system so as to apply a Kalman Filter, designed for
linear systems. One key drawback with this approach is
that the linearization point is chosen as the current estimate
of variables. As it is often off from the ground truth, this
can result in an inaccurate linearization, followed by an
inaccurate estimation.

Kaess et al. [6] propose incremental smoothing and map-
ping (iSAM) to solve the above issues. iSAM can be viewed
as an online nonlinear least-square optimization tool, where
cost functions and variables for the optimization can be
added during each time step and can update the current
estimate of the variables and linearization points. The update
is fast because it uses a QR-factorized matrix to represent
the linearized cost functions, and only updates very small
fraction of the matrix. Also, it exploits the sparsity of the
constraints.

Besides being fast, it provides more accurate estimates
than filtering based method e.g. extended Kalman Filter and
particle filter (PF) because it maintains all the cost functions
(soft constraints) of multiple timesteps instead of just the last
step, and finds the optimal solution based on all of them. This
can avoid noisy measurements to cause jumpy estimates. It
also updates the linearization point at a later stage to avoid
the inaccurate linearization issue in Kalman Filter.



Fig. 2. Diagram for explaining the pushing state estimation problem.

C. Pushing mechanics

Pushing is difficult to model and predict because it in-
volves two or more simultaneous frictional interaction be-
tween pushers and the object, and between object and sur-
face. In terms of accuracy, the frictional interactions between
real materials are uncertain. This is demonstrated in Yu et al.
[5] by analyzing a large experimental pushing dataset. They
found that friction properties are difficult to characterize
precisely and they change based on many factors. However,
based on some simplification, Lynch et al. [15] propose
an analytical and probably the most popular physics-based
motion model. It is based on Limit Surface (LS) [16] for
force-motion mapping, and ellipsoid approximation of LS
[17] for fast computation. We use Lynch’s motion model
as the pushing motion model due to its simplicity. There
are more advanced pushing modeling which can be easily
plugged in. Zhou et al. [18] use a convex polynomial to
represent LS more accurately. Bauza and Rodriguez [19] use
a Gaussian process to learn a stochastic model directly from
data without physical modeling.

III. EXAMPLE PROBLEM: PUSHER-SLIDER OBJECT POSE
ESTIMATION

We are concerned with the problem of estimating the
pose of a rigid 2D object pushed on a table in real time.
The interaction between object and pusher is observed with
periodicity and we use the subscript t ∈ [1...T ] to indicate
the corresponding timestamp along the trajectory.

Object pose. We estimate the object pose denoted by xt =
(x, y, θ) with the following inputs.

Visual input. A visual input includes a 2D pose wt, and a
binary variable denoting whether it is available at time t. We
need the latter because sometimes the camera is occluded or
the frame has not arrived.

Tactile input. A tactile input zt = zt,i includes force
experienced (fx, fy)t,i and finger position (px, py)t,i in 2D
on finger i. Finger positions are derived from robot joint
states. We use Dt,i to represent whether finger i at time t
is in contact or not by setting a constant threshold τ on the
force received. That is, Dt,i = 1[‖(fx, fy)t,i‖ ≥ τ ], where
1[·] is an indicator function.

We illustrate the above variables in Figure 2.
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Fig. 3. Factor graph representation of the variables and cost functions.

IV. METHOD

A. Applying iSAM

Here we describe how we use iSAM in the context of the
pushing state estimation problem. Refer to [6] for the details
of the iSAM algorithm. Below, we present the problem as
solving a least squares problem; i.e., finding variables to
minimize a cost function. Note that the variables and cost
functions will be added and removed as time proceeds, in
contrast to batch optimization techniques. Also, note that
iSAM requires the assumption of a Gaussian noise model.
We will test normality using real data in Section V.

The overall cost function is a sum of 4 cost functions:
• the pushing motion cost M ;
• the tactile measurement cost C;
• the visual measurement cost V ;
• stationary prior cost S.

A factor graph in Figure 3 shows the relationship between
these cost functions. In summary the overall least squares
problem is:

X∗ = argmin
X

T∑
t=1

‖M(xt−1,xt, zt, zt+1)‖2Λ

+ ‖C(xt, zt)‖2Γ + ‖V (xt,wt)‖2Υ
+ ‖S(xt,xt−1)‖2Ω ,

(1)

where X is a long vector formed by concatenating xt’s, and
|e|Σ = eT Σ−1e computes squared Mahalanobis distance
with covariance matrix Σ. The matrices Λ, Γ, Υ, and Ω
are the covariance matrices for the corresponding noise. We
identify them from the measurement input and the ground
truth. If some measurement is missing due to physical
limitations, we will remove the relevant cost functions, e.g.
when the object is not in camera view, we remove the V
term.

We always add a stationary prior because, in object manip-
ulation, the object movement is almost zero in the time step
of an estimation cycle, about 10 ms. From experiment, this
cost helps prevent the program become underdetermined. On
the other hand, it stabilizes the estimation result by filtering
out jitters due to sensor noise.

Below we will describe the 4 cost functions in detail.
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Fig. 4. Illustration of contact measurement cost. Point A is the closest
point from the object to the pusher. Object is at the pose described by the
variables. Point B is the contact point derived from the finger position and
sensed force direction. Vector C represents the distance between the two
points that we want to minimize.

B. Physics-based pushing motion

Using Lynch’s pushing model [15], we have the following
assumptions:

• pushing at quasi-static speed;
• using ellipsoid limit surface approximation;
• uniform friction between object and the surface and

between object and pusher;
• uniform pressure distribution between the object and the

surface and between object and pusher.
To impose the pushing model, we use the following cost

function:

M(xt−1,xt, zt, zt+1) =

[
vx
ω
− c2Fx

m
,
vy
ω
− c2Fy

m

]T
, (2)

where
• vx and vy are object velocities in x and y axes, derived

from finite differences of xt−1 and xt;
• ω is angular velocity;
• (Fx, Fy) is the total force i.e.,

∑
i(fx, fy)i;

• m is the total applied moment relative to current esti-
mate of object center;

• c is a scalar constant derived from the object pressure
distribution.

All the variables are in the current object frame.
Note that we do not need to distinguish between sticking

or sliding because we sense the force acted on the object
directly. By using limit surface representation we can directly
map the force acted on the object to the object velocity.
Please refer to [4] for detailed derivation.

C. Contact measurement

The measurement cost is defined as the difference between
the sensed contact point B and the estimated closest point
A on the object with respect to the pusher contour.

C(xt, zt) = A(xt, zt)−B(zt). (3)

Figure 4 illustrates the cost function and the two points. Note
that this cost imposes not only that the contact point is right
on the object boundary but also that the contact direction is
correct.
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Fig. 5. Experimental hardware setup.

D. Visual measurement and stationary prior

The visual measurement cost forces the pose estimate to
be close to the visual input; the stationary prior forces the
pose estimate to be close to the one from the last step. Both
are implemented with a subtraction of two inputs:

V (a,b) = S(a,b) = a− b. (4)

The cost functions output a vector of three elements. Since
the third element is an angle, we need to wrap it into [−π, π).

V. EXPERIMENTS

Our system estimate object pose at 100 Hz. It consumes
visual inputs at 30 Hz and tactile inputs at 250 Hz. We want
to answer the following questions through our experiments:

• Is contact measurement noise normally distributed?
Since we assume a Gaussian noise model, we test
normality of the noise and find the covariance matrices
for each cost functions.

• Is iSAM a better parametric estimation framework than
EKF in terms of estimation accuracy?

• How does each cost function contribute to form the final
estimate? Which cost is able to correct what type of
error?

• How well does the estimation work on different shapes?
Is there special geometry that is harder than others?

• How well does the estimation work on different sur-
faces?

• How fast can iSAM compute? Realtime computation is
crucial to provide inputs for reactive control or planning.

More details about the experimental software and results are
available online [20].

A. Hardware setup

We rigorously evaluate our method, we have an instru-
mented setup as shown in Figure 5: a 6 DOF industrial
robotic manipulator equipped with two stiff cylindrical rods
acting as a pusher. The setup is similar to that in our previous
work where we collected an extensive pushing dataset [5].



TABLE I
OBJECTS USED IN THE EXPERIMENTS. PHYSICAL PROPERTIES.

Object rect1 ellip2 butter

Picture
Mass (g) 837 1110 1197
Width (mm) 90 105 95.3, 54.7
Height (mm) 90 130.9 156

Robot. The system uses an ABB IRB 120 industrial robotic
arm with 6 DOF to control precisely the position and velocity
of its tool center point (TCP). The TCP moves at 60 mm/s
in the experiments.

Force sensing. We use two ATI Nano17 F/T sensors rigidly
attached to the gripper to measure the reaction force from
the object on the pusher.

Since we only have force sensors but not contact sensors,
we assume contact direction and sensed force direction is the
same when we compute contact measurement cost. In our
experiments, we find them to be very close. Using only the
force sensor allows the pusher to be very slim in appearance
and strong mechanically.

Pushers. The robot is equipped with two stiff cylindrical
steel pushers, mounted on and perpendicular to the measure-
ment plates of the force-torque sensor. The pusher has length
115 mm and diameter 6.25 mm.

Objects. We use 3 objects, all water-jet cut in stainless steel.
All objects are 13 mm thick. The friction coefficient between
the pusher and the object is approximately 0.25, which was
determined using a traditional variable slope experiment. A
fiducial marker, Apriltag [21], of 3 cm by 3 cm is stuck
on the block to facilitate tracking from webcam. This is
to obtain realistic visual object pose estimation input. The
objects are also instrumented with reflective markers and
tracked with a Vicon motion tracking system for groundtruth.
Table I summarizes the objects that we experimented with.

Surface material. We experiment with four surfaces: i) ABS,
ii) Delrin, iii) plywood and iv) polyurethane (hardness 80A
durometer). We have found different frictional characteristics
in [5].

Pushing procedure. We use a pushing procedure to test the
system. It covers several kinds of possible ways to push with
two fingers: having contact and no contact; having sticking
and sliding; having one finger and two fingers in contact;
having occlusion or not. The procedure takes around 50 sec
and is illustrated in Figure 6.

Default configuration. The default object for pushing is
rect1, and the default surface is plywood. If later we do
not specify the configuration then we are using the default.

Computation. All computation was done on a laptop ma-

chine with Intel Core i7-3920XM CPU and 16 GB RAM.

Baseline. We use pure visual input without any filtering as
our baseline method. When a visual input is not available at
a time step, we use the latest available visual input.

B. Noise characterization

Since iSAM assumes a Gaussian noise model, we first
want to test normality of the measurement noise models,
and then find their covariance matrices. To find the error
distributions, we evaluate the cost functions by using sensor
measurements and groundtruth object pose from Vicon.

Our results confirmed that all the cost functions can be
well approximated with a Gaussian distribution. Due to space
constraints, we only show the normality test for contact
measurement in Figure 7, which gives error distributions
close to normal. While in theory an ideal contact should
result in zero distance, in reality, any extension from the
contact point will be imperfect. For example, the stiff pusher
may deflect slightly when pushing an object such that the
contact point given by the robot’s kinematics does not math
reality.

Having ensuring all the noises can be approximated as
Gaussian distribution, we find the error covariance matrices
using the groundtruth pose estimated from Vicon. In the
following experiments, we use the same covariance matrices
found with the default configuration because we find the
parameters to be similar across different shapes and surfaces.
In doing so, we can demonstrate the robustness of our
estimation algorithm to variation.

C. iSAM vs EKF, smoothing vs filtering

In this section, we want to examine whether optimizing
over a history of steps performs better than over one stpe
like in EKF. Table II the result in terms of root mean squared
error (RMSE) in translation and rotation.

We feed the same data with both visual and tactile
information into EKF and iSAM using a different history
length. The estimation accuracy is shown in Table II. We
have two observations from the result:

• EKF does improve the accuracy from pure visual input
but is not as good as iSAM with multiple steps of
history. Having a very short history makes the system
more prone to abrupt sensor noise.

• Keeping longer history in iSAM, in general, increases
the accuracy, but the improvement becomes limited as
the number of steps increase.

D. Contribution of costs

Visual input has its strengths and weaknesses. It provides
global information to guide the local tracking with motion
and contact model. In our experiment, if the camera does not
provide input for sufficiently long, we will lose track of the
object. However, visual input alone is noisy and inaccurate.
We see an average of 15 mm translational error as shown in
Table II, which is due to calibration error and occlusions. In
that situation, contact model can help to refine the estimation.



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Illustration of the standard testing pushing procedure. The webcam is located roughly at the right side of the block and looking left. (a)-(d) straight
two finger pushes. (e)(f) corner two-finger pushes. (g)(h) one-finger pushes. Although some pushes are symmetric but the robot may occlude the webcam
in different ways.
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Fig. 7. Normality test of contact measurement error. Top left: scatter plot
of the errors in contact frame. Top right: histogram of the data projected
to first axis and a fitted Gaussian curve. Bottom: QQ plot in first axis; the
closer the data points to the straight line, the better the noise follows a
Gaussian distribution.

TABLE II
RMSE WITH DIFFERENT ESTIMATION METHODS.

Method Trans. Rot.
(mm) (deg)

Visual input 15.7±11.7 3.4±3.0
EKF 6.4±1.8 6.4±6.4

iSAM 1-step 7.3±3.8 3.7±3.6
iSAM 100-step 6.3±2.2 2.6±2.6
iSAM 200-step 6.0±2.1 2.3±2.3

iSAM 1000-step 6.1±2.1 1.8±1.8

Figure 9 shows some examples where contact helps to refine
the visual input.

Moreover, when there is no visual input for a sequence of
time due to occlusion, we find that both contact model and
motion model are important for accurate estimation as shown
in Figure 8, where visual inputs are not available, we show
how contact measurement cost and motion cost contribute to
good estimation. In (b), we see the estimation works well
by using both costs. In (c), we use measurement cost but
not contact cost, and the estimation fails because the motion

TABLE III
RMSE WITH DIFFERENT SHAPES.

Baseline iSAM
Shape Trans. Rot. Trans. Rot.

(mm) (deg) (mm) (deg)
rect1 15.7±11.7 3.4±3.0 6.0±2.1 2.3±2.3
ellip2 16.7±14.6 4.0±3.3 7.3±4.9 5.7±4.7
butter 68.4±59.5 10.7±10.7 12.0±8.5 12.1±10.4

prediction is very sensitive to the current estimate of object
pose. On the other hand, in (d), we use contact model but
not motion model, the estimated pose drifts perpendicularly
to the contact normal.

E. Varying object shapes

We first show that the cost functions can be applied to
rect1, ellip2, and butter shapes. Figure 9 shows a
qualitative result of validating contact measurement cost. The
algorithm can be applied if the object can be approximated
well as polygons and does not have small cavities where
pusher cannot enter.

We want to see if there are relationships between es-
timation accuracy and object shapes. Table III shows the
estimation accuracy with the three objects. Although the
standard pushing procedure may result in slightly different
pushing interaction with the shape, we can still observe a
general tendency. We observe that there are different error
characteristic for different shapes. In general, for objects with
smooth curves, i.e. ellip2 and butter, the estimation
error in rotation will be greater. We can reason it from a
simple analysis: the measurement difference of nearby poses
have a small gradient. In the extreme case, a circular object is
ambiguous in all contact directions, so contact measurement
will not be useful to distinguish object orientation.

Note that the baseline error of pushing butter is rel-
atively high. That is because Apriltag was occluded more
often by the robot and the Vicon markers.

F. Varying surfaces

We want to show that our solution works on different
surfaces. In our previous work, each surface has different
frictional properties [5]. The variations include the variance
of dynamic coefficient of friction, anisotropic/isotropic fric-
tion, etc. In the experiment, we ensure the initial object pose
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Fig. 8. Estimation results without Apriltag pose estimation due to occlusions and with different contact costs enabled. Red-dotted contour: current estimate
of object pose. Green-dotted contour: estimate from the previous step. Dashed contour: groundtruth. (a) Initial condition, the pusher is going to push in
the grey arrow direction. (b)(c)(d) are after 10 steps with the same push but with different contact costs enabled. (b) has both contact and motion costs.
(c) has motion but not contact costs. (d) has contact but not motion costs.

Fig. 9. Qualitative result of estimation. Here we emphasize the contribution
of contact measurement cost. Green object contour: noisy pose input from
visual pose detection. Red object contour: after iSAM update. Dashed object
contour: groundtruth pose from vicon. Blue circle: pusher position. Green
arrow from pusher: sensed contact normal. Star: sensed contact point. Notice
the penetration between the pusher and the object from noisy input, which
is corrected by the contact measurement.

is as similar as possible for fair comparison, so the pushing
strokes are with respect to the initial pose of the object.
Table IV compares estimation accuracy on different surfaces.
We also list their dynamic coefficients of friction (DCoF).

In most situations, the system greatly reduces the noise
when fusing contact measurement. Only on the delrin
surface, the rotation estimate is worse than baseline. We
hypothesize that surface delrin has the smallest DCoF
among all the surfaces, so force sensing is not as accurate
compared to surfaces with higher DCoF. Therefore, after
fusing it, the estimation in rotation become worse. We
also see that abs, with low DCoF, has poorer accuracy in
estimating rotation compared to other surfaces.

Part of the accuracy improvement using contact comes
from the fact that we use two fingers to push objects stably,
reducing the uncertainties from pushing.

G. Timing

The average time of computation is less than 1 ms for
a 200-step history, including periodic reliniearization. The
linearization step is more time consuming, averaging 28 ms
(± 21 ms) to linearize. The maximum linearization time was

TABLE IV
RMSE WITH DIFFERENT SURFACES USING RECT1.

Baseline iSAM
Surface DCoF Trans. Rot. Trans. Rot.

(mm) (deg) (mm) (deg)
abs 0.16 14.3±10.9 7.8±7.5 5.6±2.7 3.7±3.6

delrin 0.15 13.6±7.0 1.3±1.1 8.7±3.3 3.0±2.9
plywood 0.28 15.7±11.7 3.4±3.0 6.0±2.1 2.3±2.3

pu 0.35 11.0±8.8 3.0±2.9 5.1±2.4 1.9±1.9

70 ms, which corresponds to a pushing distance of 4.2 mm
if we are pushing at 60 mm/s.

To ensure constant processing rate, we choose to only
maintain a history of 200 steps for all the results in this
paper. We remove 100 nodes and related cost functions
when the number of nodes reaches 300 steps. We do so
because iSAM will relinearize every 100 steps, and removing
nodes also requires relinearization. Then we can save time
by not relinearizing. The length can be chosen as a trade-off
between computation speed and accuracy.

Note that the time reported above does not include visual
input processing time. The Apriltag pose is tracked at 30 Hz.
So, using tactile sensor also helps with fast motion because
contact sensors and robot pose is publishing at the higher
rate of 250 Hz.

VI. CONCLUSION

In this paper, we propose and demonstrate the use of
iSAM for online estimation of object pose while pushing an
object. Through extensive experiments, we understand how
well the solution works in different task conditions, including
different shapes, materials, and object interactions.

We shows that iSAM can give better accuracy than EKF
by keeping a history of observations, while still being fast
enough to allow realtime estimation. By design, tactile
sensing allows the system to distinguish between contact/no-
contact and sticking/sliding without requiring expensive
complementarity programming.

Failure modes. In some challenging cases, the estimation
loses track of the object. The main reasons are:



• force sensor detects contact when there is no contact;
• the estimation not receiving good visual inputs for a

long period of time.
A careful calibration of the tactile/force sensor surely helps
with the first issue. A conservative thresholding for when
there is contact also helps in reducing damaging false contact
positives. When contact is activated, a bad measurement
will offset the estimate significantly because the contact
measurement has high condidence. The second point can
be alleviated if we plan for motions that facilitate visual
perception.

Limitations. This work has focused on tracking one object
on a clean table top scenario. It may be possible to rely on
occasional visual inputs to keep track of object of interest
in clutter and reason about the contact situation, but many
details need to be addressed. In general, interaction of two or
more objects without visual input is very challenging, even
for humans.

Future Work. In the future, we would like to test our
estimation in the context of a pushing controller [22] for
reactive manipulation, which has been tested with accurate
ground truth feedback from an external tracking system,
and to generalize to 3D tasks such as prehensile manipula-
tion [23, 24, 25]. In both scenarios, state estimation is crucial
to enable robot reactiveness and correct for dynamic, motion
and sensor noise.

The proposed algorithm relies on the structure of a basic
localization problem. There are many concepts and advances
from the SLAM community, such as more complex data
association schemes, that can be applied in a manipulation
scenario. A motivating example is what to do when a high-
fidelity contact sensor like Gelsight [26] is available. Texture
and salient geometric features can help with associating
measurement with the object model.

REFERENCES
[1] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker Jr, A. Rodriguez,

and J. Xiao, “Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge,” ICRA, 2017.

[2] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive track-
ing,” in European Conference on Computer Vision. Springer, 2012.

[3] T. Schmidt, R. Newcombe, and D. Fox, “Dart: dense articulated real-
time tracking with consumer depth cameras,” Autonomous Robots,
2015.

[4] K.-T. Yu, J. Leonard, and A. Rodriguez, “Shape and Pose Recovery
from Planar Pushing,” in IROS, 2015.

[5] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a
million ways to be pushed. a high-fidelity experimental dataset of
planar pushing,” in IROS, 2016.

[6] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. on Robotics (TRO), vol. 24,
no. 6, pp. 1365–1378, Dec. 2008.

[7] A. Petrovskaya and O. Khatib, “Global localization of objects via
touch,” IEEE Trans. on Robotics (TRO), vol. 27, no. 3, pp. 569–585,
2011.

[8] L. Zhang and J. C. Trinkle, “The application of particle filtering to
grasping acquisition with visual occlusion and tactile sensing,” in
ICRA, 2012.

[9] M. Koval, N. Pollard, and S. Srinivasa, “Pose estimation for planar
contact manipulation with manifold particle filters,” IJRR, vol. 34,
no. 7, June 2015.

[10] S. Li, S. Lyu, and J. Trinkle, “State estimation for dynamic systems
with intermittent contact,” in ICRA, 2015.

[11] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and
D. Fox, “Depth-based tracking with physical constraints for robot
manipulation,” in ICRA, 2015.

[12] G. Izatt, G. Mirano, E. Adelson, and R. Tedrake, “Tracking objects
with point clouds from vision and touch,” in ICRA, 2017.

[13] P. Hebert, N. Hudson, J. Ma, and J. Burdick, “Fusion of stereo
vision, force-torque, and joint sensors for estimation of in-hand object
location,” in ICRA, 2011.

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[15] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active
sensing by pushing using tactile feedback.” in IROS, 1992.

[16] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar Sliding with Dry
Friction Part 1. Limit Surface and Moment Function,” Wear, 1991.

[17] S. H. Lee and M. Cutkosky, “Fixture planning with friction,” Journal
of Manufacturing Science and Engineering, vol. 113, no. 3, 1991.

[18] J. Zhou, A. Bagnell, and M. Mason, “A fast stochastic contact model
for planar pushing and grasping: Theory and experimental validation,”
in RSS, 2017.

[19] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in ICRA, 2017.

[20] Website for state estimation: data, code, and experimental result.
[Online]. Available: http://mcube.mit.edu/push-est

[21] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
ICRA, 2011.

[22] F. Hogan and A. Rodriguez, “Feedback control of the pusher-slider
system: A story of hybrid and underactuated contact dynamics,” in
WAFR, 2016.

[23] N. Chavan-Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. A. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. A.
Fuhlbrigge, “Extrinsic Dexterity: In-Hand Manipulation with External
Forces,” in ICRA, 2014.

[24] N. Chavan-Dafle and A. Rodriguez, “Prehensile pushing: In-hand
manipulation with push-primitives,” in IROS, 2015.

[25] N. Chavan-Dafle and A. Rodriguez, “Sampling-based Planning of
In-Hand Manipulation with External Pushes,” in ISRR, 2017. [Online].
Available: http://arxiv.org/abs/1707.00318

[26] M. K. Johnson and E. H. Adelson, “Retrographic sensing for the
measurement of surface texture and shape,” in CVPR, 2009.


