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Abstract— Tactile exploration refers to the use of physical
interaction to infer object properties. In this work, we study the
feasibility of recovering the shape and pose of a movable object
from observing a series of contacts. In particular, we approach
the problem of estimating the shape and trajectory of a planar
object lying on a frictional surface, and being pushed by a
frictional probe. The probe, when in contact with the object,
makes observations of the location of contact and the contact
normal.

Our approach draws inspiration from the SLAM problem,
where noisy observations of the location of landmarks are
used to reconstruct and locate a static environment. In tactile
exploration, analogously, we can think of the object as a rigid
but moving environment, and of the pusher as a sensor that
reports contact points on the boundary of the object.

A key challenge to tactile exploration is that, unlike visual
feedback, sensing by touch is intrusive in nature. The object
moves by the action of sensing. In the 2D version of the problem
that we study in this paper, the well understood mechanics of
planar frictional pushing provides a motion model that plays
the role of odometry. The conjecture we investigate in this paper
is whether the models of frictional pushing are sufficiently
descriptive to simultaneously estimate the shape and pose of
an object from the cumulative effect of a sequence of pushes.

I. INTRODUCTION

Tactile feedback complements our global view of the
world with local but detailed information about mechanical
properties such as roughness, compliance, pose, or shape [1].
Humans, for example, can search very efficiently through the
insides of a bag when blindfolded. We have little problem
in identifying a familiar object, or even delineating its shape
from tactile cues [2].

The last two decades have seen a wealth of sensing
technologies aimed at recovering tactile information, with
substantial improvements in resilience, sensitivity, and ease
of integration. The question of how to make an efficient and
timely use of that information still remains a challenge.

The end-goal of our work is a broad capability for tactile
inference. In this paper, we study how feasible it is to
understand the pose and the shape of a movable planar
object through tactile interactions. The planar object lies
unconstrained, save for friction, on a flat surface, and a probe
pushes it while exploring its contour, as in Figure 1.

Our approach relies on a model of the mechanics of
frictional sliding [3] to predict the motion of the pushed
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Fig. 1. Setup for planar tactile exploration: A robotic manipulator moves
a vertical probe that pushes a flat object on a support surface. The pusher
observes both the contact location and the contact normal with the object.

object. The main question we explore is whether this model,
in combination with contact information, is sufficient to
recover the trajectory and shape of the object. We make the
following assumptions:
· Out-of-plane effects are negligible;
· a quasi-static pushing process;
· object and table interact via a frictional planar contact

with uniform friction and known pressure distribution;
· object and pusher interact via a frictional point contact.
· the probe can reach all points on the surface of the

object, and when in contact, the location of contact
and contact normal are well defined, except maybe at
corners.

Our contributions include:
· a formulation of the problem of tactile reconstruction;
· an approach to solve it;
· a metric to evaluate the fitness of a solution;
· a study of the sensitivity of the solution to imperfections

in the motion and observation models.
Our approach starts from a given sequence of contact

points and contact normals between object and probe. For
the purpose of this paper we gather the data with a simple
contour following strategy. We then use a Bayesian model
to fit the contact observations to model the motion of the
object. More specifically, we form a belief network in poses,
observations, and shapes, with which we find a maximum
a posteriori estimate for pose and shape, in the spirit of the
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Fig. 2. Illustration of the tactile reconstruction problem. (a) Typical input
data—contact locations and contact normals—when exploring a fraction of
the object boundary; (b) Input data for four complete revolutions of the
pusher around the object boundary; (c) Example of initial guess we input
to the optimizer; (d) Final estimated shape and pose of the object for an
instant of the trajectory. The solid line and white circles show the estimated
shape, and the dashed line ground truth.

conventional GraphSLAM algorithm [4]. In this problem, the
motion model is defined by the prediction of frictional push-
ing, and the measurement model observes contact position
and contact normal.

Finally, we formulate an objective function from the
belief network, which we optimize in batch subject to the
constraints from the motion and observation models. Figure 2
shows a typical example of the tactile data gathered from
pushing an object, a typical initial guess we input to the
optimizer, and an instant of the resultant estimated shape
and pose of the object. To the best of our knowledge, this is
the first work that addresses both pose and shape recovery
in the context of pushing.

The paper is organized as follows:
I. Introduction;

II. related work;
III. problem formulation;
IV. review on mechanics of frictional pushing;
V. simulated experiments;

VI. discussion of results and limitations;
VII. future work.

II. RELATED WORK

This paper describes a least-squares approach to recov-
ering the shape and trajectory of an object from tactile
interaction. It builds on an understanding of the mechanics
of planar pushing and sliding.

Mason [5] proposed one of the earliest models for the me-
chanics of pushing. He described an algorithmic resolution

technique in the form of a “voting” theorem to determine the
direction of rotation of a pushed object: clockwise, counter-
clockwise, or straight. Mason also pointed out the challenges
in accurately predicting the motion of a pushed object. The
indeterminacy of the pressure distribution between object
and its support, leads often to incorrect assumptions on the
location of the center of pressure and center of rotation.

Under the assumption of a known pressure distribution,
Goyal et al. [3] characterized the set of all possible frictional
forces on a planar sliding object with a geometric construc-
tion, the limit surface. They used it to efficiently compute the
motion of a sliding object subject to an external load [6].

Lee and Cutkosky [7] generalized the concept of limit
surface for uneven pressure distributions, and proposed three
different methods to compute it within the context of fixture
design for automation. Particularly relevant to this paper
is their ellipsoidal approximation, which provides a com-
pact and easily invertible relationship between motions and
forces. Lynch et al. [8] used it to construct an analytical
solution to the motion of a pushed object under the assump-
tion of quasi-static interaction. In this paper, we use that
approximation as the motion model of our Bayesian approach
to reconstructing the shape and trajectory of the object.

Contact-based shape reconstruction. The closest work to
this paper is by Moll and Erdmann [9] who explored the
problem of reconstructing both the shape and pose of a
convex smooth object by rolling it in between two planar
palms. Previously, Jia and Erdmann [10] had constructed
observers to estimate the pose and predict the motion of an
object dynamically pushed.

Petrovskaya and Khatib [11] applied a particle filter to
the problem of estimating the 6 DOF pose of an object
rigidly attached to a robot arm, and proposed the use of
scaling series to improve the efficiency of the estimation.
More recently Martinez-Hernandez et al. [12] demonstrated
a contour following technique to reconstruct the 2D shape
of an object also rigidly attached to a table. Strub et al. [13]
approached the same problem for an object pinned to a table,
limiting its mobility to a single rotational freedom. They
show how to actively use the rotation of the object and tactile
sensing to recover its shape. Our work relaxes completely the
constraints on the mobility of the object, except for frictional
interaction with the table.

Also closely related to contact-aware state estimation,
Zhang et al. [14] used a particle filter to estimate the location
of an object and dynamic properties such as dimension, mass,
and friction. More recently, Koval et al. [15] introduced the
manifold particle filter, imposing a hard constraint on the
binary contact/no-contact condition when tracking the pose
of an object.

Vision-based shape reconstruction. The problem of shape
reconstruction from a moving camera has been extensively
explored in the vision community. The problem is known as
structure from motion [16]. Large-scale 3D shape reconstruc-
tion has been demonstrated from multiview 2D images [17],
with Lidar pointclouds [18], or more recently from RGB-



D images [19]. Although the scenarios in vision-based and
touch-based sensing are different, they share a similar struc-
ture in terms of information extraction and inference. The
process is discussed further in the following section.

III. PROBLEM FORMULATION: SHAPE AND POSE
RECOVERY

We are concerned with the problem of simultaneously
estimating the shape and the trajectory of a rigid 2D object
pushed on a table.

Let O be an object in the plane, with position and ori-
entation denoted by q = (x, y, θ), and boundary determined
by a series of control points {si}1...N . We denote ~rp as
the unique contact point between pusher and object, and
n̂ to be the corresponding contact normal. The interaction
between object and pusher is observed with periodicity, and
we use the subscript t ∈ [1...T ] to indicate the corresponding
timestamp along the trajectory. We formulate the problem of
tactile reconstruction as:

Problem 1 (Tactile Reconstruction): Let {~rpt , n̂t}1...T
be a series of contact locations and contact normals of
a probe with a movable planar object O. The object is
subject to surface friction with the plane where it slides, and
point friction with the pusher. Estimate the control points
{si}1...N that determine the boundary of O, and the series
of poses {(xt, yt, θt)}1...T that determine its trajectory.

A. The Approach

Our approach formulates the joint estimation of shape
and trajectory as a least-squares optimization problem by
assuming Gaussian noise both in the contact measurements
and the motion predictions. We construct a cost function that
captures the fit of the estimated shape and trajectory to the
predicted motions and observations of the object. Parallel to
the SLAM problem [20], the optimization has the form of
a belief network, as illustrated in Figure 3, and the solution
has the form of a maximum a posteriori (MAP) estimate.

A measurement zt includes the observed contact location
~rpt and the corresponding contact normal n̂t. For the sake
of simplicity, we assume that pusher and object are always
in contact, so that zt is continuously well defined.

The optimization takes place in the space of the control
points of the object shape {si}1...N , and the control points
of its trajectory {(xt, yt, θt)}1...T . We aggregate all these
decision variables into a large vector X , and define a cost
function:

E(X) = [|D(X)|2, |G(X)|2, |K(X)|2, |L(X)|2, |S(X)|2]α (1)

composed of five terms that capture:
· D, G: fit of a solution X̂ to the observed contact

locations and contact normals;
· K, L: fit of a solution X̂ to the predictions of the motion

model in linear and angular displacements;
· S: shape prior that encourages control points to be

equally spaced.
The belief network in Figure 3 shows the relationship

between these constraints. In the current form of this work,

Fig. 3. Graphical representation (factor graph) of the cost function to
optimize. The dark shaded circles are the observations zt = (~pt, n̂t). The
factors D, G, K, L, and S in light shaded squares, constraint the values
of the states of the problem, represented in white background, that include
the shape of the object and its series of poses.

we hand picked their weighting α. A more mature imple-
mentation would tune the weights based on their information
matrix [4], to put more trust on constraints with higher
confidence.

Measurement Cost. Terms D and G enforce that the
measured contact points {~rpt}1...T lie on the boundary of
the object, and that the normals {n̂t}1...T point in the right
direction.

More precisely, for each instant t, Dt is the distance
between the observed contact point ~rpt , and the closest point
to the estimated boundary of the object. We approximate the
object’s boundary by a polygon with vertices at the control
points {si}1...N . Gt, in turn, is the distance between the
measured contact normal n̂t and the normal at the closest
point to the estimated boundary of the object.

Note that in the conventional SLAM formulation, data
association happens before computing the distance to land-
marks. In our problem, however, the are no distinguishable
landmarks on the boundary of the objects, except possibly
for corners. Data association becomes an integral part of the
optimization problem, similar to the iterative closest point
algorithm [21].

Motion Cost. Terms K and L favor solutions that are
consistent with models of pushing. The model we use to
predict the motion of the object is based on the limit surface.
It was proposed initially by Goyal et al. [3, 6], and later
streamlined by Lynch et al. [8] and Lee and Cutkosky [7].
For simplicity of computation, we will assume a uniform
pressure distribution between the object and its support.
Section IV reviews the mechanics of pushing and details
the construction of the motion model.

At an instant t, terms Kt and Lt represent correspondingly
the difference in position and orientation between the pose
qt+1 = (xt+1, yt+1, θt+1) estimated by the optimizer, and
the pose predicted by the motion model given the previous
pose qt = (xt, yt, θt), the estimated shape of the object
{si}1...N , and the observations zt and zt+1.



Shape Prior Cost. We define a shape prior to prevent de-
generate solutions. The term S encourages the control points
{si}1...N on the boundary of the object to be equispaced in
the workspace. For point si, we define Si as:

Si(X) = s̄− dist(si, si+1) (2)

where s̄ = 1
N

∑N
i=1 dist(si, si+1) and sN+1 = s1. By min-

imizing S =
∑
i Si(X)2, we force all individual distances

dist(si, si+1) to be closer to their mean value s̄.

IV. THE MECHANICS OF FRICTIONAL PLANAR PUSHING

This section gives an overview of the mechanics of fric-
tional pushing, and details the algebra to compute the in-
stantaneous velocity of the pushed object q̇t = (vxt , vyt , ωt).
With an estimate for q̇, it only remains to integrate from qt to
estimate qt+1. The analysis starts from the following inputs
at instant t:

· current object pose qt = (xt, yt, θt);
· contact location ~rpt ;
· contact normal n̂t.· velocity of pusher at contact ~vpt ;
· object shape O;
· object-support pressure distribution pd(·);
· object-support coefficient of friction µs;· object-pusher coefficient of friction µc.

We draw from Lynch et al. [8] and Lee and Cutkosky [7]
for the following derivations.

The most important assumption we make is quasi-static
interaction, i.e., accelerations do not play a decisive role.
In our implementation, the exploration is performed by a
contour following scheme that moves slowly, which means
that the net load on the object is mostly aligned with its
instantaneous velocity.

In the rest of this section we will omit the subscript t
for brevity. We will use the notation ~v = (vx, vy) for the
linear part of the velocity of the object, (fx, fy) for the
linear components of the friction load and m for the angular
component.

A. Limit Surface

The limit surface is the convex set of all possible net
frictional loads (fx, fy,m) at the interface between a sliding
object and its support surface. By virtue of the principle of
maximal dissipation, each possible sliding direction induces
a different frictional load. Goyal et al. [3] showed that in
the case of quasi-static pushing/sliding, a particular value
for a net frictional load also uniquely determines the corre-
sponding instantaneous motion of the sliding object q̇. Such
velocity must be orthogonal to the limit surface at the point
indicated by the frictional load (fx, fy,m).

In practice, we construct the limit surface of an object
by sampling the space of possible sliding directions. A
convenient approach is to sample the space of possible
instantaneous rotation centers. Each rotation center ~rRC
induces a velocity on the object. This, in turn, leads to a

Fig. 4. Integration of infinitesimal friction force to compute the total
frictional load between an object O and its support. If the instantaneous
center of rotation of the object is at ~rRC, a point ~ra with differential support
dA on the support will move with velocity ~va and will contribute with an
infinitesimal friction force d~f that opposes ~va.

frictional load (fx, fy,m), which we compute by integrating
Coulomb’s law over the entire support area of the object O:

(fx, fy) = −µs
∫
O
pd(~ra)

~va
|~va|

dA (3)

m = −µs
∫
O

(~ra − ~rRC)× pd(~ra)
~va
|~va|

dA (4)

where ~ra indicates any point in the support surface, and ~va its
instantaneous velocity, as illustrated in Figure 4. For a given
rotation center ~rRC , we can write ~va = k̂× (~ra−~rRC), with
k̂ pointing along the vertical axis.

Computing a limit surface is expensive. In our problem,
since we need to search over the space of objects shapes,
it becomes prohibitive. Lee and Cutkosky [7] proposed an
ellipsoidal approximation that significantly speeds up its
computation. We choose the center of mass of the object
~rCM as the reference point for moments, and proceed as:

1. Find the maximum magnitude of linear friction force
fmax = µsfn. This happens when the motion is a pure
translation, and fn is the total surface support force;

2. Find the maximum magnitude of torsional friction force
mmax. This happens when the motion of the object is a
pure rotation about the moment reference point. If we
substitute ~rRC = ~rCM, and ~va = [0, 0, ω]T × ~ra in (4),
we obtain mmax = −µs

∫
O |~ra|pd(~ra)dA.

3. Approximate the limit surface as an axis-aligned ellip-
soid with semi-principal axis fmax, fmax and mmax.

F (fx, fy,m) =

(
fx
fmax

)2

+

(
fy
fmax

)2

+

(
m

mmax

)2

= 1 (5)

The construction is illustrated in Figure 5. Lee and
Cutkosky [7] and Lynch et al. [8] further discuss the validity
of the approximation.

B. Motion of Object

In a quasi-static push, the magnitude of the external push-
ing force on an a sliding object is exactly sufficient to break
friction and no greater. Therefore, it will oppose the frictional
force, which we know lies on the object’s limit surface.
If we impose the resulting velocity q̇ to be orthogonal to
the approximated limit surface in (5), i.e., q̇ parallel to



Fig. 5. Ellipsoidal approximation of the limit surface F (fx, fy ,m) = 0.
The lengths of the major axis of the ellipsoid are fmax along fx and fy ,
and mmax along m. Any point on the surface of the ellipsoid represents
a total frictional load on a sliding object. Its resulting velocity q̇ must be
along the gradient ∇F (fx, fy ,m).

∇F (fx, fy,m), we obtain the following conditions between
object force and velocity:

vx
ω

= c2
fx
m

and
vy
ω

= c2
fy
m

with c =
mmax

fmax
(6)

To relate pusher and object velocities we need to determine
how the pusher motion translates into an applied force. That
conversion is nicely captured by the motion cone introduced
by Mason [5]. The following derivations are partially adapted
from Lynch et al. [8].

The motion cone plays the same role for the relative
velocity at a point contact interface as the friction cone plays
for forces at contact. Let ~vp be the velocity of the contact
point on the pusher, and ~vo be the velocity of the contact
point on the object. The motion cone is a span of object
velocities at contact such that:

· Pusher velocities ~vp inside the motion cone result in the
contact to stick, and in a perfect matching ~vo = ~vp.
· Pusher velocities ~vp outside the motion cone result in

the contact to slide, and in ~vo lying on one of the edges
of the motion cone.

The edges of the motion cone are defined by the motion
of the object when the applied force is on either edge of
the friction cone. In turn, the edges of the friction cone
are determined by the contact normal and the object-pusher
coefficient of friction µc. Each edge, labeled here by left
or right, induces a total applied force and moment on
the object. Passing those forces through (6) determines the
corresponding object motions q̇left = (vleftx , vlefty , ωleft) and
q̇right = (vrightx , vrighty , ωright). These induce a velocity on the
contact point on the object which, by definition, are the edges
of the motion cone:

~vlefto = (vleftx , vlefty ) + ωleft · k̂ × ~ro
~vrighto = (vrightx , vrighty ) + ωright · k̂ × ~ro

(7)

where ~ro is defined such that it indicates the location of
contact with respect to the origin of moments. We proceed
with the analysis independently for cases where the contact
sticks or slides.

Case I: Pusher sticks to the object. When the pusher
motion is inside the motion cone, the contact sticks and

Fig. 6. (left) Probe pushing an object with a velocity ~vp outside the motion
cone (spanned by ~vlefto and ~vrighto ). (right) The push results into a motion
to the object ~vo along the left bound of the motion cone, and sliding of the
pusher along the boundary of the object ~vslip.

~vo = ~vp. Abusing vector notation, we express ~vo as a
function of the object generalized velocity q̇ = (~v, ω) as
~vo = ~v + ω · k̂ × ~ro. The condition turns into:

vx − ω · roy = vpx

vy − ω · rox = vpy (8)

Additionally, the moment and force generated on the object
are related by m = ~ro× (fx, fy, 0)z , which expands as m =
roxfy − royfx. We solve equations (6) and (8) as:

vx =
(c2 + r2

ox)vpx + roxroyvpy
c2 + r2

ox + r2
oy

vy =
roxroyvpx + (c2 + r2

oy )vpy

c2 + r2
ox + r2

oy

ω =
roxvy − royvx

c2
(9)

Note that interestingly, the resulting velocity is independent
of the object-support coefficient of friction µs, a known
phenomenon for quasi-static pushing.

Case II: Pusher slides on the object. When the pusher
motion is outside the motion cone the contact slides and ~vo
lies on the boundary of the motion cone, in the direction or
either ~vlefto or ~vrighto . Let ~vb be the choice of boundary.

Only partial motion of the pusher is transferred to the
object. Part is lost in slipping. The fraction that is transferred
can be written as ~vo = κ~vb, where κ =

~vp·n̂
~vb·n̂ is the factor

that subtracts the sliding velocity at contact, as illustrated
in Figure 6. The instantaneous velocity of the object can be
recovered now with (9) as if it were an “effective” pusher
that sticks to the object with pushing velocity ~vo.

V. EXPERIMENTS

In this paper we evaluate the proposed approach in 2D
with simulated data. All the following experiments are con-
ducted in MATLAB on an Intel i7 desktop PC with 16GB
memory.

The experiments use a contour following algorithm as the
tactile exploratory procedure. Lederman and Klatzky [22]
categorized the different exploratory procedures that humans
use to recover object properties such as identity, texture,
weight or hardness, and observed that contour following is



the most effective way to obtain an accurate global shape.
These experiments show that the stream of tactile data
originating from such an exploration policy is sufficient to
recover the shape and trajectory of the object, even in the
presence of noise.

A. Simulated dataset

In our implementation, a square object of 100 mm in side
is pushed by a circular probe of 5 mm in radius. The probe
pushes the object while following its contour. The motion
of the probe is controlled based on the previous motion
direction and the current contact normal.

We simulate planar pushing as described in Section IV.
Friction coefficients are: µs = µc = 0.25. The pusher starts
close to the bottom left corner and in contact with the object.
The dataset is comprised of 10, 000 simulated steps for up to
4 complete turns around the contour of the object. Figure 2a
and Figure 2b show the contact points and contact normals
collected from the simulation.

B. Shape and Pose recovery

For the experiments in this paper, we do a 1
25 subsampling

of the dataset, for a total of T = 400 timestamps. We input
the following values:

· The number of control points for the shape is N = 8.
· The initial guess for the shape is roughly a circular

polygon centered at the origin and with a radius of
30 mm, smaller than the true shape, as illustrated in
Figure 2c.
· The initial guess for the trajectory of the object, detailed

in Appendix A, is a less trivial approximation based on
the automatic detection of corners.
· The weights α of the cost function are experimentally

set to [10, 0.5, 1, 10, 1]T .
We optimize the cost function (1) with the Matlab function

nonlinsq(), which uses a trust-region-reflective method.
The optimization takes in the order of 40 minutes to con-
verge. Figure 2c and Figure 2d shows a snapshot of the
starting initial guess, and the final optimized solution for
one time frame t. Figure 7 shows a qualitative comparison
with ground truth over more time steps.

To evaluate the performance of the algorithm, we de-
fine a metric G that, for a particular solution X̂ =
({(xt, yt, θt)}1...T , {si}1...N ) to Problem 1, averages the
minimum distance from each shape control point to the true
boundary of the object ∂O. More precisely, if Ht is the 2D
transformation induced by the true pose of the object at time
t, and Ĥt the estimated one given by (xt, yt, θt):

G(X̂) =

√√√√ 1

NT

T∑
t=1

N∑
i=1

min-dist(Ĥt(si), Ht(∂O))2 (10)

where min-dist computes the minimum distance from a point
to a shape, in our case a polygon. Intuitively, G(·) measures
how much each shape control point is off from the true object
shape, averaged over time and control points.

TABLE I
EXPERIMENTAL RESULTS

Experiment G (mm) Resnorm Time (103s)
P+S 7.1 6.5 1.9
P 5.3 0.0 2.5
S 4.6 1.6 2.4
P+S-D 7.6 0.0 2.5
P+S-G 9.0 17.1 2.4
P+S-K 9.8 20.5 2.3
P+S-L 6.5 0.0 2.1
P+S-S 7.5 0.0 2.5

Columns left to right: Type of experiment, final value of the
metric G, final value of the cost function, and computation time.

To evaluate the performance of the algorithm, we con-
ducted the following experiments:

P Find the trajectory of poses of the object
{(xt, yt, θt)}1...T assuming its shape is known.

S Find the shape of the object {si}1...N assuming its
trajectory of poses is known.

P+S Find both the shape and the trajectory of the object.
P+S-x In this experiment, we analyze the relevance of each

term in the cost function E(X) to the solution of
P+S. We individually set their weights to zero. The
term x indexes one of {D,G,K,L, S}.

P+S+σIn this experiment, we analyze the sensitivity of the
solution of P+S in the presence of Gaussian noise
in both the observation and motion models.

The results are discussed in the following section.

VI. DISCUSSION

A. Results

The top rows of Table I show that, as expected, the error
lowers when we provide information to the optimizer in the
form of either the ground truth for shape or pose. The results
also reflect that it is relatively easier to recover the shape
than the trajectory of the object. However, even with perfect
information for the pose of the object, we get some error
in the estimation of its shape, which we attribute to the
downsampling of the data.

We discuss now the respective contribution of the different
factors that compose the cost function. The experiments P+S-
x in Table I reflect that:

· Terms G and K seem to help the optimization better
than the other terms, since both the cost function and G
increase, which could indicate a local minimum.
· When either of the terms D, L, or S are removed from

the optimization, the cost function reaches zero without
G being zero, which could indicate that the problem
becomes under-constrained.
· Note that the term L, which captures the rotational

component of the motion prediction, seems to contribute
negatively to the optimization. We can only speculate
here that the rotation prediction from the model might



Fig. 7. Comparison of recovered pose and shape (solid line) with ground-truth (dashed line). Time steps from left to right and top to bottom. The circle
indicates the pusher. The knots on the solid line indicate the vertices of the estimated shape.

Fig. 8. Sensitivity of the optimization to Gaussian noise in the observation
(contact location) and motion models. (top) The observation noise is additive
white noise in the contact location. (bottom) The motion noise is introduced
as a percentage with respect to the predicted in one step of simulation. As
expected, the metric G grows with the noise.

not be too informative compared to the initial guess
(derived without downsampling).

Finally Figure 8 shows the sensitivity of the solution to
the presence of disturbances in the motion and observation
models. We conduct the P+S experiment where we add
different magnitudes of noise to the predicted instantaneous
motion of the object and the observed contact location.

Overall the experiments support the hypothesis that tactile
information, along with knowledge of the mechanics of
pushing, is sufficient to recover the trajectory and pose of
a movable planar object.

B. Limitations

The first and foremost limitation of the system is that
we assume a known uniform pressure distribution. This,
given the contact location and along with a quasi-static
assumption on the interaction between the object and the
support surface, gives a deterministic one-to-one mapping
between pusher velocities and predicted object motions. The
reality of friction however is that it more difficult to predict.
Small changes to the pressure distribution can change the
instantaneous center of rotation of the object. A more mature
implementation could use bounds for that uncertainty.

We also assume Gaussian noise in the contact measure-
ments which makes it suitable for a least-squares formula-
tion. But contact is essentially non-Gaussian. When there
is contact between two objects, the set of relative feasible
poses is a lower dimensional manifold that cannot be nicely
represented by a Gaussian distribution. Koval et al. [23]
formalize the concept of particle manifold filter that respects
that lower dimensionality, which could lead to more robust
implementations of the estimation of shape and pose.

Finally, the algorithm uses a batch optimization, but a
more efficient exploration would use current estimations to
guide future tactile motions. This would require an on-line
version of our algorithm.

VII. CONCLUSION AND FUTURE WORK

Motivated by a human’s ability to blindly explore objects
by touch, we present a method to recover the shape and
trajectory of a movable 2D object, while pushed by a probe.
We show that both can be recovered from a stream of contact
locations and contact normals, by exploiting knowledge of
the mechanics of pushing.

We contribute with a detailed formulation of the problem,
an approach to solve it, a metric to evaluate the fitness of
a solution, and an experimental study of the performance of
the approach on simulation data.

The approach defines a least-squares cost function that
fits the data to observation and motion models, along with
a prior on the representation of the shape. We have tested
the approach on a simulated dataset under controlled noise
to study the solvability and sensitivity of the problem.



Future research will include experiments with a real robot
to evaluate the system performance for varying shapes,
weights, materials and roughness. In addition, we will in-
vestigate on-line estimation of shape and pose, in the style
of the iSAM framework by Kaess et al. [24], to achieve real-
time active tactile exploration.

APPENDIX
INITIAL GUESS FOR POSES

The initial guess for the shape of the object is straight-
forward, with the control points {si}1...N placed in a
small circular configuration. If we start the optimization,
however, with a trivial value for the trajectory of the pose
{(xt, yt, αt)}1...T , the optimization does not converge.

The initial guess for the trajectory is relatively more im-
portant than that for shape. Observed contact points assigned
to edges too far from ground truth in the observation model
can guide the optimization in a very wrong direction. The
orientation seems to be particularly relevant for that purpose.
Our initial guess for the rotational trajectory of the object
comes from an automatic detection of corners on the object.
These give us a chance to estimate how much rotation is
performed during a complete cycle of contour following. The
key steps are as follows:

1) Compute the second derivative with respect to t of the
pusher-object contact location. Since the object moves
slowly, we can regard it as an approximation of the
curvature of the object.

2) Find peaks in the “curvature” profile, as in Figure 9. Use
a window-based approach to suppress erroneous multiple
peaks. Denote the set of monotonically increasing peaks
by {g}1...G.

3) Make guesses on the true number of corners of the object.
Each guess leads to a different interpretation for the
sequence of peaks. Score each value of the number of
corners by the corresponding periodicity of the distances
between peaks, and chose the best fit.

4) Estimate the average period ∆T of the number of samples
that it takes for one complete revolution of the probe
around the object.

5) Estimate the angle the object rotates ∆θ in one full
revolution of the probe along the object n̂t and n̂t+∆T .

6) Set the initial guess for the rotation as the linear interpo-
lation θt = t · ∆θ

∆T .
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